JP3456054B2 - High breakdown voltage lateral semiconductor element - Google Patents

High breakdown voltage lateral semiconductor element

Info

Publication number
JP3456054B2
JP3456054B2 JP11417295A JP11417295A JP3456054B2 JP 3456054 B2 JP3456054 B2 JP 3456054B2 JP 11417295 A JP11417295 A JP 11417295A JP 11417295 A JP11417295 A JP 11417295A JP 3456054 B2 JP3456054 B2 JP 3456054B2
Authority
JP
Japan
Prior art keywords
region
impurity concentration
concentration
conductivity type
junction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11417295A
Other languages
Japanese (ja)
Other versions
JPH08316451A (en
Inventor
直樹 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP11417295A priority Critical patent/JP3456054B2/en
Publication of JPH08316451A publication Critical patent/JPH08316451A/en
Application granted granted Critical
Publication of JP3456054B2 publication Critical patent/JP3456054B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はパワーICなどに使用さ
れる横型高耐圧半導体素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lateral high withstand voltage semiconductor element used for a power IC or the like.

【0002】[0002]

【従来の技術】図7は従来の横型高耐圧半導体素子(ダ
イオード)の断面図を示す。p- 基板1上にエピタキシ
ャル成長により形成されたn- 領域2が形成され、さら
にp-基板1と表面を結ぶp+ 領域である接続領域4が
形成され、n- 領域2の表面層にn+ カソード領域3が
形成される。接続領域4、p- 基板1、n- 領域2、お
よびn+ カソード領域3でpnダイオードが構成され、
接続領域4の上にアノード電極5が形成され、n+ カソ
ード領域3の上にカソード電極6が形成される。またp
- 基板1とn- 領域2とでpn接合である第1接合31
が形成され、接続領域4とn- 領域2とでpn接合であ
る第2接合32が形成される。通常、接続領域4の不純
物濃度はn- 領域2に比較して高く設定されており、逆
バイアス時に第2接合32から伸びる空乏層は主にn-
領域2側に伸長する。
2. Description of the Related Art FIG. 7 is a cross-sectional view of a conventional lateral high breakdown voltage semiconductor element (diode). p - n is formed by epitaxial growth on the substrate 1 - area 2 is formed, further p - connection region 4 and p + region connecting the substrate 1 and the surface is formed, n - n in the surface layer of the region 2 + The cathode region 3 is formed. The connection region 4, the p substrate 1, the n region 2, and the n + cathode region 3 constitute a pn diode,
An anode electrode 5 is formed on the connection region 4, and a cathode electrode 6 is formed on the n + cathode region 3. Also p
- substrate 1 and the n - first junction is a pn junction between the region 2 31
Is formed, and the connection region 4 and the n region 2 form a second junction 32 which is a pn junction. Normally, the impurity concentration of the connection region 4 is set higher than that of the n region 2, and the depletion layer extending from the second junction 32 during reverse bias is mainly n −.
It extends to the region 2 side.

【0003】図8は図7の素子断面図と空乏層の拡がり
図および電界強度分布図を示し、同図(a)はn- 領域
2の表面に空乏層が達していない場合の図で、同図
(b)はn- 領域の表面に空乏層が達している場合の
図を示す。同図(a)において、n- 領域2の不純物濃
度を比較的低濃度で、厚みを厚く設定した場合は、第1
接合31および第2接合32から伸びる空乏層端20
は、第2接合32の絶縁破壊電圧EMAX の電圧でも、n
- 領域2の全表面には達せず、n+ カソード領域3側の
- 領域2の表面は空乏層化されない。一方同図(b)
において、n- 領域2の不純物濃度を比較的高濃度に
し、厚みを比較的薄く設定して、第1接合31および第
2接合32からn- 領域2内に伸びる空乏層端20が第
2接合32の絶縁破壊電圧以下の電圧でn- 領域2の全
表面に到達するようにする。勿論、p-基板1の不純物
濃度と厚みは最適化する必要がある。即ち、同図(a)
の状態では、n+ カソード領域3側のn- 領域2の全表
面においては空乏化されないため、n- 領域2の表面に
おける電界強度Eは第2接合32でピークになる。一
方、同図(b)では、第1接合31から伸長した空乏層
によりn- 領域2の全表面部が空乏化している。そのた
め、第2接合32およびn+ カソード領域3とn- 領域
2との第3接合33の2箇所に電界強度のピークが現れ
る。素子に印加される電圧は電界強度Eを空乏層の伸び
る距離で積分した値、即ち、面積(ハッチング部分で示
す)で表される。また素子耐圧は絶縁破壊電界強度E
MAX に達する電圧で表されるため、この面積が大きい程
耐圧は高くなる。同図(a)と同図(b)を比較する
と、この面積は同図(b)の方が遙に大きく、従って、
同図(b)の方が高い耐圧を持つことできる。同図
(b)の構造の素子では比較的高いn-領域2の不純物
濃度で、しかもn- 領域2の厚さが比較的薄くても高耐
圧を得る事ができ、特に素子のオン抵抗がn- 領域2の
不純物濃度に依存するMOSFET等ではこのリサーフ
構造が非常に有効である。
FIG. 8 shows a cross-sectional view of the device of FIG. 7, a spread diagram of the depletion layer, and a field intensity distribution diagram. FIG. 8 (a) shows the case where the depletion layer does not reach the entire surface of the n region 2. , (B) shows a case where the depletion layer reaches the entire surface of the n region. In FIG. 3A, when the impurity concentration of the n region 2 is set to be relatively low and the thickness is set to be large,
Depletion layer edge 20 extending from the junction 31 and the second junction 32
Is the voltage of the dielectric breakdown voltage E MAX of the second junction 32,
- not reach the entire surface area 2, n + cathode region 3 side n - region 2 of the surface is not depleted. Meanwhile, the same figure (b)
At n region 2, the impurity concentration is set to be relatively high and the thickness is set to be relatively thin so that the depletion layer edge 20 extending from the first junction 31 and the second junction 32 into the n region 2 is the second junction. The entire surface of the n region 2 is reached at a voltage equal to or lower than the dielectric breakdown voltage of 32. Of course, the impurity concentration and thickness of the p substrate 1 need to be optimized. That is, FIG.
In this state, since the entire surface of the n region 2 on the n + cathode region 3 side is not depleted , the electric field intensity E on the surface of the n region 2 has a peak at the second junction 32. On the other hand, in the same figure (b), the entire surface of the n region 2 is depleted by the depletion layer extending from the first junction 31. Therefore, peaks of the electric field strength appear at two locations of the second junction 32 and the third junction 33 between the n + cathode region 3 and the n region 2. The voltage applied to the element is represented by a value obtained by integrating the electric field strength E with the extension distance of the depletion layer, that is, an area (shown by a hatched portion). In addition, the breakdown voltage of the element is the breakdown electric field strength E
It is expressed by the voltage that reaches MAX , so the larger this area, the higher the breakdown voltage. Comparing the figure (a) and the figure (b), this area is much larger in the figure (b).
You can have a breakdown voltage higher figure (b). An impurity concentration of regions 2, moreover n - - higher n is an element of the structure of FIG. (B) be relatively thin thickness of the region 2 can be obtained a high withstand voltage, in particular on-resistance of the device This resurf structure is very effective for MOSFETs and the like that depend on the impurity concentration of the n region 2.

【0004】[0004]

【発明が解決しようとする課題】しかし、この素子は、
高耐圧を得るために、第1接合31および第2接合32
からの空乏層端20の伸びをn- 領域2の表面のどの個
所でも均等になるように、例えば、対向するn+ カソー
ド領域3端と接続領域4端とを紙面に垂直な面で同心円
に形成することで効果を上げることがでる。しかし、小
容量素子の場合にはチップ面積が小さく、同心円にでき
るが、大容量素子の場合には面積効率(チップ面積に対
する活性領域の面積の比率)を大きくするためには、櫛
の歯状にし、n+ カソード領域3端と接続領域3端が曲
線部分(素子終端部)と直線部分(通常部)とから構成
される場合が多い。そのため、空乏層端20の伸びが全
個所で均一にできなくなり、所定の耐圧を得ることが困
難となる。
However, this device has the following problems.
In order to obtain a high breakdown voltage, the first junction 31 and the second junction 32
So that the extension of the depletion layer edge 20 from the surface of the n region 2 is made uniform at all points on the surface of the n region 2, for example, the opposite n + cathode region 3 end and the connection region 4 end are concentric in a plane perpendicular to the paper surface. The effect can be improved by forming. However, in the case of a small-capacity element, the chip area is small and can be made into concentric circles, but in the case of a large-capacity element, in order to increase the area efficiency (ratio of the area of the active region to the chip area), In many cases, the end of the n + cathode region and the end of the connection region 3 are composed of a curved portion (element termination portion) and a straight portion (normal portion). Therefore, the extension of the depletion layer edge 20 cannot be made uniform at all points, and it becomes difficult to obtain a predetermined breakdown voltage.

【0005】図9に大容量素子の平面図を示す。ここで
は大容量化を図る一例として、櫛の歯状の平面パターン
を示す。接続領域4でn- 領域2が囲まれ、n- 領域2
でn+ カソード領域3が囲まれている。接続領域4の上
に図示されていないアノード電極が形成され、その一部
に点線で示すアノードパッド25が形成され、この部分
に外部導出リード線がボンデングされる。またn+ カソ
ード領域3の上に図示されていないカソード電極が形成
され、その一部に点線で示すカソードパッド26が形成
され、この部分に外部導出リード線がボンデングされ
る。この櫛の歯状の平面パターンにおいて、所定の耐圧
を得ながら、素子のオン電圧を低下させるために、接続
領域4端とn+ カソード領域3端との対向長(図4の紙
面に垂直な面上での長さに相当する)をできる丈長く
し、これらに挟まれたn- 領域2表面の幅W(接続領域
4端とn+ カソード領域3端との対向幅)を所定の耐圧
が確保できる条件で、できる丈狭くする必要がある。こ
のような平面パターンでは曲線部分(素子終端部)のa
部およびb部と、直線部分(通常部)のc部が存在し、
電圧が印加されたときの空乏層の伸びが異なり、電界強
度分布も異なる。
FIG. 9 shows a plan view of a large capacity element. Here, as an example of increasing the capacity, a comb tooth-shaped plane pattern is shown. Region 2 is surrounded, n - - n in the connection region 4 region 2
The n + cathode region 3 is surrounded by. An anode electrode (not shown) is formed on the connection region 4, an anode pad 25 shown by a dotted line is formed on a part thereof, and an external lead wire is bonded to this part. Further, a cathode electrode (not shown) is formed on the n + cathode region 3, a cathode pad 26 shown by a dotted line is formed in a part thereof, and an external lead wire is bonded to this part. In this comb tooth-shaped plane pattern, in order to reduce the ON voltage of the element while obtaining a predetermined breakdown voltage, the facing length of the connection region 4 end and the n + cathode region 3 end (perpendicular to the plane of FIG. 4). The width W of the surface of the n region 2 sandwiched between them (opposing width between the end of the connection region 4 and the end of the n + cathode region 3) is a predetermined withstand voltage. It is necessary to make the length as narrow as possible under the condition that can secure. In such a plane pattern, a of the curved portion (element end portion)
Part and b part and c part of the straight line part (normal part) exist,
The extension of the depletion layer when a voltage is applied is different, and the electric field strength distribution is also different.

【0006】図10は素子断面図、空乏層の拡がり図お
よび電界強度分布図を示し、同図(a)は図9のa部の
A−A切断部、同図(b)は図6のb部のB−B切断
部、同図(c)は図6のc部のC−C切断部について示
した図である。尚、同図(a)、(b)は素子終端部を
示し、同図(c)は通常部を示す。同図(a)では、n
- 領域の周囲が接続領域4に囲まれており、n- 領域
2の体積に対して接続領域4の体積の比率が増加してい
るため、接続領域4とn+カソード領域3との間のn-
領域2が低い電圧で空乏化され、最大電界強度はn+
ソード領域3とn- 領域2との第3接合33に現れ、こ
の部分で絶縁破壊が発生する。同図(b)では、逆にn
- 領域2の体積に対する接続領域4の体積の比率が低下
しており、接続領域4とn+ カソード領域3との間のn
- 領域2は高い電圧でも完全に空乏化されず、空乏層端
20がn- 領域2の全表面に達する前に、最大電界強度
が接続領域4とn- 領域2との第2接合32に現れ、こ
の部分で絶縁破壊が発生する。一方同図(c)では、n
- 領域2と接続領域4が直線的に対向し、またn- 領域
2とn+ カソード領域3も直線的に対向するため、最大
電界強度がカソード側とアノード側とに等しく現れ、絶
縁破壊が発生する。そのため、電界強度Eが絶縁破壊電
界強度EMAX に達する直前の空乏層の伸びで電界強度E
を積分した値(電界強度分布図のハッチングで示した面
積)は、同図(a)および同図(b)の方が同図(c)
より小さく、従って耐圧も低い。ここで示した例は直線
部分のn- 領域2の不純物濃度と厚みを最適化した場合
であるが、曲線部分を最適化した場合は今度は他の曲線
部分と直線部分が低い電圧で絶縁破壊を起こす。いずれ
にしても、このように曲線部分(素子終端部)と直線部
分(通常部)とが混在する平面パターンの素子では、混
在しない素子と比べて全領域に亘って最適化することは
困難であり、耐圧は低下する。
FIG. 10 shows a cross-sectional view of the device, a depletion layer spread diagram and an electric field intensity distribution diagram. FIG. 10A is a sectional view taken along the line A--A of FIG. 9, and FIG. 6B is a view showing the BB cutting part of the b part, and FIG. 6C is a view showing the CC cutting part of the c part of FIG. It is to be noted that FIGS. 11A and 11B show an element termination portion, and FIG. 11C shows a normal portion. In FIG.
- around the region 2 is surrounded by connected areas 4, n - because the ratio of the volume of the connection region 4 with respect to the volume of the region 2 is increased, between the connecting region 4 and the n + cathode region 3 of n -
The region 2 is depleted at a low voltage, the maximum electric field strength appears at the third junction 33 between the n + cathode region 3 and the n region 2, and dielectric breakdown occurs at this portion. On the contrary, in FIG.
- it has reduced the ratio of the volume of the connecting region 4 to the volume of the region 2, n between the connecting region 4 and the n + cathode region 3
- region 2 totally depleted Sarezu even at a high voltage, the depletion layer end 20 the n - before reaching the entire surface of the region 2, the maximum electric field strength connection region 4 and the n - second junction 32 between the region 2 Appears and dielectric breakdown occurs at this part. On the other hand, in FIG.
- area 2 and the connecting region 4 is linearly opposed and n - region 2 and the n + cathode region 3 also in order to linearly opposed, the maximum electric field strength appear equal to the cathode side and the anode side, dielectric breakdown Occur. Therefore, the electric field strength E increases due to the extension of the depletion layer immediately before the electric field strength E reaches the breakdown electric field strength E MAX.
The integrated value (area shown by hatching in the electric field intensity distribution diagram) is the same in FIG. 6A and FIG.
It is smaller and therefore has a lower breakdown voltage. The example shown here is a case where the impurity concentration and the thickness of the n region 2 of the straight line portion are optimized, but when the curved line portion is optimized, this time the other curve portions and the straight line portion have dielectric breakdown at a low voltage. Cause In any case, it is difficult to optimize the entire area of an element having a plane pattern in which a curved portion (element end portion) and a straight portion (normal portion) are mixed as compared with an element which is not mixed. Yes, the breakdown voltage decreases.

【0007】この問題を避けるため、これらの素子終端
部の曲率半径を大きくすると面積効率が減少し、同じ素
子容量を得るためのチップ面積が増加しコストが上昇す
る。また、図9において、素子終端部のn- 領域2の幅
Wを通常部より大きくすることも可能であるがb部で
は、空乏層の伸びが通常部より小さいため、この効果は
少ない。また、図10(a)(図9のa部)において、
+ カソード領域3よりも低濃度のn領域(nバッフ
ァ)を付加することで、空乏層端20を通常部のカソー
ド側より多く素子終端部のカソード側に伸長させ、素子
終端部のカソード側の電界強度を若干緩和することが可
能であるがこれも効果は十分でない。また、図10
(b)(図9のb部)において、接続領域4(アノード
領域)よりも低濃度のp領域(pバッファ)を付加する
ことにより、空乏層端20を通常部のアノード側より素
子終端部のアノード側に多く伸長させ、電界強度を若干
緩和することが可能であるがこれも効果は十分でない。
In order to avoid this problem, if the radius of curvature of these element end portions is increased, the area efficiency is reduced, the chip area for obtaining the same element capacitance is increased, and the cost is increased. Further, in FIG. 9, it is possible to make the width W of the n region 2 of the element termination portion larger than that in the normal portion, but this effect is small in the portion b because the depletion layer extends less than the normal portion. Further, in FIG. 10 (a) (portion a in FIG. 9),
By adding an n region (n buffer) having a concentration lower than that of the n + cathode region 3, the depletion layer end 20 is extended more toward the cathode side of the element termination portion than the cathode side of the normal portion, and the cathode side of the element termination portion is expanded. Although it is possible to slightly reduce the electric field strength of, the effect is not sufficient. In addition, FIG.
(B) (part b in FIG. 9), by adding a p region (p buffer) having a concentration lower than that of the connection region 4 (anode region), the depletion layer end 20 is moved from the anode side of the normal part to the element termination part. It is possible to extend a large amount to the anode side to slightly relax the electric field strength, but this is also not sufficiently effective.

【0008】この発明は、前記課題を解決するために、
- 領域2において、素子終端部のa部では通常部のc
部よりも高濃度のn領域となるように不純物濃度を増加
させ、また逆に素子終端部のb部では通常部のc部より
も低濃度のn領域が形成されるように逆の導電形のp型
不純物を導入することで電界強度の緩和を図り、高電圧
を確保できる高耐圧横型半導体装置を提供することを目
的とする。
The present invention, in order to solve the above problems,
In the n region 2, the a part at the end of the device is c
The impurity concentration is increased so as to be an n region having a higher concentration than that of the part, and conversely, the conductivity type of the opposite conductivity type is formed so that an n region having a lower concentration than the c part of the normal part is formed in the b part of the element termination part. It is an object of the present invention to provide a high breakdown voltage lateral semiconductor device in which the electric field strength is relaxed by introducing the p-type impurity and the high breakdown voltage can be secured.

【0009】[0009]

【課題を解決するための手段】前記目的を達成するため
に、第1導電形の第1領域の表面層に選択的に形成され
た第2導電形の第2領域と、第2領域の表面層に選択的
に形成された第1導電形または第2導電形の高濃度の第
3領域とを備え、第2領域の表面と第1領域とを接続す
る第1導電形の高濃度の接続領域である第4領域を形成
し、第4領域と第2領域とが接する第2接合および第1
領域と第2領域とが接する第1接合とを逆バイアスする
電圧を印加した場合に、この第1接合と第2接合の近傍
の電界強度が破壊電界強度に達する以前に、第1接合か
ら第2領域に伸びた空乏層が第2領域のに到達す
ることで、第2領域の不純物濃度を比較的高濃度にして
も高耐圧が得られる構造(所謂リサーフ構造)を有する
横型半導体素子において、第2領域の表面部が曲線領域
である素子終端部の第2領域の不純物濃度と第2領域の
表面部が直線領域である通常部の第2領域の不純物濃度
とをそれぞれ異なった値に設定することである。
In order to achieve the above object, a second region of a second conductivity type selectively formed in a surface layer of a first region of the first conductivity type and a surface of the second region. A high-concentration third region of the first conductivity type or a second conductivity type selectively formed in the layer, the high-concentration connection of the first conductivity type connecting the surface of the second region and the first region Forming a fourth region, which is a region, and connecting the fourth region and the second region to the second junction and the first region
When a voltage for reverse biasing the first junction in which the region and the second region are in contact is applied, before the electric field strength near the first junction and the second junction reaches the breakdown electric field strength, by depletion layer extending to the second region reaches the entire front surface of the second region, lateral semiconductor having also a relatively high concentration of impurity concentration in the second region a high breakdown voltage is obtained structure (so-called RESURF structure) In the element, the surface area of the second area is a curved area
In it the element terminating portion of the second region impurity concentration and a second region of the
This is to set the impurity concentration of the second region of the normal portion whose surface portion is a linear region to different values.

【0010】また、第4領域の表面部の曲率半径が、第
3領域の表面部の曲率半径よりも大きい曲率半径を有
し、素子終端部の第2領域の不純物濃度を通常部の第2
領域より高濃度になるように設定すると効果的である。
Further , the radius of curvature of the surface portion of the fourth region is larger than that of the surface portion of the third region, and the impurity concentration of the second region of the element termination portion is set to the second region of the normal portion.
It is effective to set the density to be higher than the area.

【0011】また第4領域の表面部の曲率半径が、第3
領域の表面部の曲率半径よりも小さい曲率半径を有し、
素子終端部の第2領域の不純物濃度を通常部の第2領域
より低濃度になるように設定すると効果的である。さら
に通常部の第2領域と同一の不純物濃度を有する素子終
端部の第2領域の表面層に、通常部の不純物濃度よりも
高濃度の第2導電形の第5領域を形成することで、素子
終端部の第5領域を含む第2領域の平均不純物濃度(第
領域と第5領域の不純物濃度の平均値)を、通常部の
第2領域より高濃度にするとよい。
The radius of curvature of the surface of the fourth region is the third
Has a radius of curvature smaller than the radius of curvature of the surface of the region,
It is effective to set the impurity concentration of the second region of the element termination portion to be lower than that of the second region of the normal portion. Further, by forming the fifth region of the second conductivity type having a higher concentration than the impurity concentration of the normal portion on the surface layer of the second region of the element termination portion having the same impurity concentration as the second portion of the normal portion, The average impurity concentration of the second region including the fifth region of the element termination portion (the average value of the impurity concentrations of the second region and the fifth region) may be higher than that of the second region of the normal portion.

【0012】また通常部の第2領域と同一の不純物濃度
を有する素子終端部の第2領域の表面層に、第1導電形
不純物を導入し、正味の不純物濃度(第2導電形不純物
濃度から第1導電形不純物濃度を差し引いた値)が、通
常部よりも低濃度の第2導電形の第5領域を形成するこ
とで、素子終端部の第5領域を含む第2領域の平均不純
物濃度(第2領域と第5領域の不純物量の総量を第2
と第5領域の合計の体積で割った値)を、通常部の第
2領域より低濃度とするとよい。
Further, the first conductivity type impurities are introduced into the surface layer of the second region of the element termination portion having the same impurity concentration as that of the second region of the normal portion to obtain a net impurity concentration (from the second conductivity type impurity concentration). The value obtained by subtracting the impurity concentration of the first conductivity type) forms the fifth region of the second conductivity type having a lower concentration than that of the normal portion, so that the average impurity concentration of the second region including the fifth region of the element termination portion is formed. (The total amount of impurities in the second region and the fifth region is defined as the second region.
The value obtained by dividing the total volume of the region and the fifth region) is preferably lower than that of the second region of the normal part.

【0013】第5領域を形成するための拡散マスクの窓
(拡散窓)を素子終端部全面または局部的に複数個形成
するとよい。
It is preferable that a plurality of diffusion mask windows (diffusion windows) for forming the fifth region are formed on the entire surface of the element termination portion or locally.

【0014】[0014]

【作用】図9の素子終端部のa部に相当するn- 領域に
通常部のn- 領域よりも高濃度のn領域を付加すること
により、素子終端部のn- 領域の全面が低い電圧で空乏
化することを防止でき、カソード側に強い電界強度の部
分が発生することを防止することができる。また、図9
の素子終端部のb部に相当するn- 領域に通常部のn-
領域よりも低濃度のn領域を付加することにより、素子
終端部のn- 領域の全面が低い電圧でも空乏化できるよ
うにすることで、アノード部に強い電界強度の部分が発
生することを防止することができる。
Normal portion in the region n - - [action] n corresponding to a portion of the device termination portion of FIG. 9 by adding a high concentration of n area than, n of the element terminating portion - area of the entire surface is low voltage It is possible to prevent depletion in the above, and to prevent generation of a portion having a strong electric field strength on the cathode side. In addition, FIG.
N of the normal portion in the region - n corresponding to the b portion of the device termination portion -
By adding an n region having a concentration lower than that of the region, it is possible to deplete the entire surface of the n region of the device termination portion even at a low voltage, thereby preventing generation of a portion having a strong electric field strength in the anode portion. can do.

【0015】[0015]

【実施例】図1はこの発明の第1実施例をダイオードに
適用した要部断面図で、図9のa部に相当する素子終端
部の断面図を示す。p- 基板1の表面層にn- 領域2を
選択的に形成し、n- 領域2の表面層に選択的にn+
ソード領域3を形成し、n- 領域2の表面とp- 基板1
とを接続するp+ の接続領域4を形成し、n- 領域2の
表面層に接続領域と接して、n+ カソード領域とは
分離されて、n領域7が形成される。また接続領域4上
にアノード電極5、n+ カソード領域3上にカソード電
極6が形成される。接続領域4とn- 領域2とが接する
第2接合32およびp- 基板1とn- 領域2とが接する
第1接合31とを逆バイアスする電圧を印加した場合
に、この第1接合31と第2接合32の近傍の電界強度
が絶縁破壊電界強度に達する以前に、第1接合31から
- 領域2内およびさらにn領域7内に伸びた空乏層端
20が、n領域7およびn- 領域2の表面付近に到達す
るように、n領域7の不純物濃度を比較的高濃度に調整
する。このn領域7はp-基板1に到達していなくとも
到達していても良い。即ち素子終端部のn- 領域2とn
領域7のn形不純物量の総量をその体積で割った平均の
不純物濃度が素子終端部の曲率半径の大きさに応じて通
常部のn- 領域2のn形不純物濃度に比べて増加させる
ことにより、通常部と同程度に空乏層が伸長するように
設計すれば良い。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a cross-sectional view of an essential part in which a first embodiment of the present invention is applied to a diode, and shows a cross-sectional view of an element termination portion corresponding to part a in FIG. p - region 2 is selectively formed, n - - n on the surface layer of the substrate 1 to form a selectively n + cathode region 3 in the surface layer of the region 2, n - region 2 surface and p - substrate 1
An n region 7 is formed by forming a p + connection region 4 for connecting with and contacting the connection region 4 on the surface layer of the n region 2 and being separated from the n + cathode region 3 . Further, an anode electrode 5 is formed on the connection region 4, and a cathode electrode 6 is formed on the n + cathode region 3. When a voltage for reverse biasing the second junction 32 in which the connection region 4 and the n region 2 are in contact with each other and the first junction 31 in which the p substrate 1 and the n region 2 are in contact with each other is applied, Before the electric field strength in the vicinity of the second junction 32 reaches the breakdown electric field strength, the depletion layer edge 20 extending from the first junction 31 into the n region 2 and further into the n region 7 becomes n regions 7 and n −. The impurity concentration of n region 7 is adjusted to a relatively high concentration so as to reach the vicinity of the surface of region 2. The n region 7 may or may not reach the p substrate 1. That is, n region 2 and n
The average impurity concentration obtained by dividing the total amount of the n-type impurities in the region 7 by the volume thereof is increased in accordance with the radius of curvature of the element termination portion as compared with the n-type impurity concentration in the normal region n region 2. Therefore, the depletion layer may be designed to extend to the same extent as the normal portion.

【0016】図2はこの発明の第2実施例をダイオード
に適用した要部断面図で、図9のb部に相当する素子終
端部の断面図を示す。図1のn領域7に相当する領域を
-領域2のn形不純物量より少ない量のn--領域8で
形成する。第1接合31および第2接合32とを逆バイ
アスする電圧を印加した場合に、この第1接合31と第
2接合32の近傍の電界強度が絶縁破壊電界強度に達す
る以前に、第1接合31からn- 領域2およびn--領域
8に伸びた空乏層端20がn--領域8およびn- 領域2
の表面付近に到達するように、n--領域8の不純物濃度
を比較的低濃度に調整する。このn--領域8はp- 基板
1に到達していなくとも到達していても良い。即ち素子
終端部のn- 領域2とn--領域8のn形不純物量の総量
をその体積で割った平均の不純物濃度が素子終端部の曲
率半径の大きさに応じて通常部のn- 領域2のn形不純
物濃度に比べて減少させることにより通常部と同程度に
空乏層端20が伸長するように設計すれば良い。だだ
し、このn--領域8は例えば逆導電型(p形)不純物を
導入することで形成するため、n--領域8の不純物量は
元のn形不純物量から、導入されたp形不純物量を差し
引いた残りの不純物量をいう。
FIG. 2 is a sectional view of an essential part of a second embodiment of the present invention applied to a diode, and shows a sectional view of an element termination portion corresponding to part b of FIG. A region corresponding to the n region 7 of FIG. 1 is formed by the n region 8 having a smaller amount than the n type impurity amount of the n region 2. When a voltage for reverse biasing the first junction 31 and the second junction 32 is applied, before the electric field strength near the first junction 31 and the second junction 32 reaches the dielectric breakdown electric field strength, the first junction 31 from n - region 2 and the n - depletion edge 20 extending to the region 8 the n - region 8 and the n - region 2
The impurity concentration of the n region 8 is adjusted to a relatively low concentration so as to reach the vicinity of the surface. The n region 8 may or may not reach the p substrate 1. That is, the average impurity concentration obtained by dividing the total amount of n-type impurities in the n region 2 and the n region 8 at the element end portion by the volume thereof is n − in the normal portion according to the radius of curvature of the element end portion. The depletion layer edge 20 may be designed to extend to the same extent as in the normal portion by reducing the n-type impurity concentration in the region 2. However, since the n -- region 8 is formed by introducing, for example, an opposite conductivity type (p-type) impurity, the impurity amount of the n -- region 8 is changed from the original n-type impurity amount. The amount of impurities remaining after subtracting the amount of impurities.

【0017】図3はこの発明の第3実施例を横型IGB
Tに適用した場合の要部断面図で、図9のa部に相当す
る個所の要部断面図を示す。p- 基板1上にn- 領域2
が形成され、n- 領域2に表面からp- 基板1に接する
+ 領域である接続領域4を形成し、さらにpウェル領
域10を形成し、この接続領域4とpウェル領域10の
表面層にp++コンタクト領域11とn+ エミッタ領域9
とを形成し、n+ エミッタ領域9とn- 領域2とに挟ま
れたpウェル領域10の表面上に絶縁膜を挟んでゲート
電極18が形成され、p++コンタクト領域11とn+
ミッタ領域9との表面にエミッタ電極12が形成され
る。またこれらの領域と離れて、n- 領域2の表面層に
選択的にnバッファ領域14およびnバッファ領域14
の表面層にp+ コレクタ領域13が形成され、その上に
コレクタ電極15が形成される。さらにゲート電極1
8、エミッタ電極12およびコレクタ電極15とそれぞ
れ接触するゲート端子G、エミッタ端子Eおよびコレク
タ端子Cが形成される。また、pウェル領域10とnバ
ッファ領域14とに挟まれたn- 領域2の表面層に拡散
窓16を有する拡散マスク17を介してn形不純物が拡
散され、n領域7が形成される。図1と異なる点は、n
領域7とn- 領域2との不純物濃度の平均の不純物濃度
を増加させるために、n形不純物を多数の局部的に窓明
けされた拡散窓16から拡散する。横型IGBTでは、
通常、p+ コレクタ領域13(ダイオードの場合のカソ
ード部に相当)のパンチスルーを防止するnバッファ領
域14が存在するため、これと同一の工程で上記の平均
のn形不純物濃度を増加させるための領域を形成しよう
とすると、nバッファ領域14の不純物濃度は大きすぎ
る。そのためこの実施例のように多数の局部的な拡散窓
16から不純物を導入することによって、工程を増やさ
ずに、平均の不純物濃度を最適な値に調整できる。
FIG. 3 shows a horizontal IGB according to a third embodiment of the present invention.
FIG. 10 is a cross-sectional view of a main part when applied to T, and shows a cross-sectional view of the main part of a portion corresponding to part a of FIG. 9. n - region 2 on p - substrate 1
Is formed, a connection region 4 that is a p + region that is in contact with the p substrate 1 from the surface is formed in the n region 2, and a p well region 10 is further formed, and the connection region 4 and the surface layer of the p well region 10 are formed. P + + contact region 11 and n + emitter region 9
Forming the door, n + emitter region 9 and the n - across the insulating film on the surface of the p-well region 10 sandwiched between the region 2 is the gate electrode 18 is formed, p ++ contact regions 11 and n + emitter An emitter electrode 12 is formed on the surface of the region 9. Further, apart from these regions, the n buffer region 14 and the n buffer region 14 are selectively formed in the surface layer of the n region 2.
The p + collector region 13 is formed in the surface layer of the above, and the collector electrode 15 is formed thereon. Furthermore, the gate electrode 1
8, a gate terminal G, an emitter terminal E and a collector terminal C which are respectively in contact with the emitter electrode 12 and the collector electrode 15 are formed. Further, n-type impurities are diffused into the surface layer of the n region 2 sandwiched between the p well region 10 and the n buffer region 14 through the diffusion mask 17 having the diffusion window 16 to form the n region 7. The difference from FIG. 1 is that
To increase the average impurity concentration of regions 7 and n region 2, n-type impurities are diffused through a number of locally windowed diffusion windows 16. In a lateral IGBT,
Normally, since there is an n buffer region 14 for preventing punch-through of the p + collector region 13 (corresponding to the cathode portion in the case of a diode), the above-mentioned average n-type impurity concentration is increased in the same step. In order to form the region of 1, the impurity concentration of the n buffer region 14 is too high. Therefore, by introducing impurities through a large number of local diffusion windows 16 as in this embodiment, the average impurity concentration can be adjusted to an optimum value without increasing the number of steps.

【0018】図4はこの発明の第4実施例を横型IGB
Tに適用した場合の要部断面図で、図9のb部に相当す
る個所の要部断面図を示す。図2と異なる点は、素子終
端部のn- 領域2とn--領域8を合わせた領域の平均の
不純物濃度を減少させるために、p形不純物をn- 領域
2の表面層に多数の局部的に窓明けされた拡散窓16か
ら拡散し、n--領域8を形成する点である。横型IGB
Tでは、通常、pウェル領域10が存在し、これと同一
の工程で上記の平均のn形不純物濃度を減少させるため
のn--領域8を形成しようとすると、pウェル領域10
の不純物濃度は大きすぎ、p転してしまう。そのため、
この実施例のように多数の局部的な拡散窓16からp形
不純物を導入することによって、工程を増やさずに、平
均の不純物濃度を最適な値に調整する。この拡散窓16
を狭めて小さな幅、例えば1μm程度にすることで、n
- 領域2に拡散するp形不純物の表面濃度をn- 領域2
の表面濃度より低下させることができ、n- 領域2をp
転させずにn--領域8を形成できる。
FIG. 4 shows a horizontal type IGBT according to a fourth embodiment of the present invention.
FIG. 10 is a cross-sectional view of a main part when applied to T, and shows a cross-sectional view of the main part of a portion corresponding to part b of FIG. 9. The difference from FIG. 2 is that a large number of p-type impurities are added to the surface layer of the n region 2 in order to reduce the average impurity concentration in the region where the n region 2 and the n region 8 are combined at the end of the device. The point is that diffusion is performed from the locally opened diffusion window 16 to form the n region 8. Horizontal IGB
In T, the p-well region 10 is usually present, and if the n -- region 8 for reducing the average n-type impurity concentration is formed in the same step, the p-well region 10 is formed.
The impurity concentration of is too high, causing p-shift. for that reason,
By introducing p-type impurities from a large number of local diffusion windows 16 as in this embodiment, the average impurity concentration is adjusted to an optimum value without increasing the number of steps. This diffusion window 16
Is narrowed to a small width, for example, about 1 μm,
- the surface concentration of the p-type impurity diffused into region 2 n - region 2
The surface concentration of n region 2 can be reduced to p
The n -- region 8 can be formed without rolling.

【0019】尚、図3、図4でn領域7およびn--領域
8が波形に形成されているが、島状に個々に形成してい
てもよい。またn--領域8は場合によってはp転してp
--領域になっても構わない。また、図3、図4では便宜
上不純物導入のための拡散窓16有する拡散マスク1
7を断面図に記入しているが、この拡散マスク16は不
純物導入時のみ必要で最終段階まで残す必要はない。ま
た、この実施例では不純物の導入にnバッファ領域14
およびpウエル領域10に使用される不純物導入工程を
利用したが、他の適当な不純物の導入工程があればそれ
を利用してもよいことは言うまでもない。
Although the n region 7 and the n region 8 are formed in a wavy shape in FIGS. 3 and 4, they may be formed individually in an island shape. In addition, the n -- region 8 may be turned over by p
- it may be made to the area. Further, FIG. 3, the diffusion mask 1 having a diffusion window 16 for the convenience impurity introduced in FIG. 4
7 is shown in the cross-sectional view, this diffusion mask 16 is necessary only at the time of introducing impurities and need not be left until the final stage. Further, in this embodiment, the n buffer region 14 is used to introduce impurities.
Further, although the impurity introducing step used for the p-well region 10 is used, it goes without saying that any other appropriate impurity introducing step may be used.

【0020】図5、図6は図3、図4で不純物を導入す
る拡散窓16を示す平面図で、半円状パターン図と放射
状パターン図をそれぞれ示す。図5、図6において、n
- 領域2の表面に酸化膜等に局部的に多数窓明けされた
拡散窓16を有する拡散マスクが形成される。ここでは
拡散窓16の位置のみ示し、拡散マスク自体は示してい
ない。またこの拡散窓16の形状はこれ以外に例えば微
小円など多数配置するなど各種パターンが考えられるこ
とはいうまでもない。また図中の他の符号の説明は他図
と同様のため省略する。
FIGS. 5 and 6 are plan views showing the diffusion window 16 for introducing impurities in FIGS. 3 and 4, showing a semicircular pattern diagram and a radial pattern diagram, respectively. In FIGS. 5 and 6, n
- diffusion mask having locally large number Apertures spreading window 16 in the oxide film on the surface of the region 2 and the like are formed. Here, only the position of the diffusion window 16 is shown, and the diffusion mask itself is not shown. Needless to say, other various patterns can be considered for the shape of the diffusion window 16, such as a large number of minute circles arranged. Further, explanations of other reference numerals in the drawings are omitted since they are similar to the other drawings.

【0021】尚、第1実施例と第2実施例を同時に適用
し、また第3実施例と第4実施例を同時に適用して素子
を製作する場合が多いが、素子構造によってはこれらの
実施例を単独に適用する場合もある。例えば、曲率半径
などの大小により、より支配的な素子終端部にのみそれ
に合う実施例を適用するなどである。また、これらの実
施例をダイオードおよびIGBTに適用した例を述べた
が、MOSFET,MOSゲートサイリスタなど多くの
素子に対して適用できることも言うまでもない。
In many cases, the element is manufactured by simultaneously applying the first and second embodiments and the third and fourth embodiments at the same time. In some cases, the example may be applied alone. For example, it is possible to apply an embodiment that matches only the more dominant element end portion due to the size of the curvature radius and the like. Further, although the examples in which these embodiments are applied to the diode and the IGBT have been described, it goes without saying that they can be applied to many elements such as MOSFETs and MOS gate thyristors.

【0022】[0022]

【発明の効果】この発明によれば、素子終端部のn-
域の平均の不純物濃度を、通常部の不純物濃度と異なっ
た値に、最適化することで、この部分の電界集中を防止
し、素子耐圧の向上が図れる。また面積効率を上げるた
め、曲率半径の小さな素子終端部を多数有する大容量の
横型半導体素子でも高耐圧化が図れる。さらに、既存の
工程を利用してn- 領域の平均の不純物濃度を最適化す
ることができるため、製造コストの増大なしに高耐圧化
できる。
According to the present invention, by optimizing the average impurity concentration of the n region of the element termination portion to a value different from the impurity concentration of the normal portion, electric field concentration in this portion is prevented. The element breakdown voltage can be improved. Further, in order to improve the area efficiency, it is possible to increase the breakdown voltage even in a large-capacity lateral semiconductor element having a large number of element end portions having a small radius of curvature. Further, since the average impurity concentration in the n region can be optimized by utilizing the existing process, the breakdown voltage can be increased without increasing the manufacturing cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の第1実施例をダイオードに適用した
要部断面図で、図9のa部に相当する素子終端部の断面
FIG. 1 is a cross-sectional view of an essential part in which a first embodiment of the present invention is applied to a diode, and is a cross-sectional view of an element termination part corresponding to part a of FIG.

【図2】この発明の第2実施例をダイオードに適用した
要部断面図で、図9のb部に相当する素子終端部の断面
FIG. 2 is a cross-sectional view of an essential part in which a second embodiment of the present invention is applied to a diode, and is a cross-sectional view of an element termination part corresponding to part b of FIG.

【図3】この発明の第3実施例を横型IGBTに適用し
た場合の要部断面図で図9のa部に相当する個所の要部
断面図
3 is a cross-sectional view of a main part when a third embodiment of the present invention is applied to a lateral IGBT, and is a cross-sectional view of a main part of a portion corresponding to part a of FIG.

【図4】この発明の第4実施例を横型IGBTに適用し
た場合の要部断面図で図9のb部に相当する個所の要部
断面図
FIG. 4 is a cross-sectional view of a main part when a fourth embodiment of the present invention is applied to a lateral IGBT, and is a cross-sectional view of the main part of a portion corresponding to part b of FIG.

【図5】第3実施例、第4実施例で不純物を導入する拡
散窓16を示す半円状パターン図
FIG. 5 is a semicircular pattern diagram showing a diffusion window 16 for introducing impurities in the third and fourth examples.

【図6】第3実施例、第4実施例で不純物を導入する拡
散窓16を示す放射状パターン図
FIG. 6 is a radial pattern diagram showing diffusion windows 16 for introducing impurities in the third and fourth embodiments.

【図7】従来の高耐圧横型半導体素子(ダイオード)の
断面図
FIG. 7 is a cross-sectional view of a conventional high breakdown voltage lateral semiconductor element (diode).

【図8】図4の素子断面図と空乏層の拡がり図および電
界強度分布図
8 is a cross-sectional view of the device of FIG. 4, a spread view of a depletion layer, and an electric field strength distribution view.

【図9】大容量素子の平面図FIG. 9 is a plan view of a large capacity element.

【図10】素子断面図、空乏層の拡がり図および電界強
度分布図を示し、(a)は図9のa部、(b)は図9の
b部、(c)は図9のc部についてそれぞれを示した図
10A and 10B are a device cross-sectional view, a depletion layer spread diagram, and an electric field intensity distribution diagram, where FIG. 10A is a portion of FIG. 9, FIG. 9B is a portion b of FIG. 9, and FIG. Figure showing each of

【符号の説明】[Explanation of symbols]

1 p- 基板 2 n- 領域 3 n+ カソード領域 4 接続領域(p+ 領域) 5 アノード電極 6 カソード電極 7 n領域 8 n--領域 9 n+ エミッタ領域 10 pウェル領域 11 p++コンタクト領域 12 n+ エミッタ電極 13 p+ コレクタ領域 14 nバッファ領域 15 コレクタ電極 16 拡散窓 17 拡散マスク 18 ゲート電極 20 空乏層端 25 アノードパッド 26 カソードパッド 31 第1接合 32 第2接合 33 第3接合 G ゲート端子 E エミッタ端子 C コレクタ端子 W n- 領域表面の幅1 p - substrate 2 n - region 3 n + cathode region 4 connection region (p + region) 5 anode electrode 6 cathode electrode 7 n region 8 n - region 9 n + emitter region 10 p-well region 11 p ++ contact regions 12 n + emitter electrode 13 p + collector region 14 n buffer region 15 collector electrode 16 diffusion window 17 diffusion mask 18 gate electrode 20 depletion layer end 25 anode pad 26 cathode pad 31 first junction 32 second junction 33 third junction G gate terminal E emitter terminal C collector terminal W n - width of the area surface

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01L 29/06 H01L 29/78 H01L 29/861 ─────────────────────────────────────────────────── ─── Continuation of the front page (58) Fields surveyed (Int.Cl. 7 , DB name) H01L 29/06 H01L 29/78 H01L 29/861

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】第1導電形の第1領域の表面層に選択的に
形成された第2導電形の第2領域と、第2領域の表面層
に選択的に形成された第1導電形または第2導電形の高
濃度の第3領域とを備え、第2領域の表面と第1領域と
を接続する第1導電形の高濃度の接続領域である第4領
域を形成し、第4領域と第2領域とが接する第2接合お
よび第1領域と第2領域とが接する第1接合とを逆バイ
アスする電圧を印加した場合に、この第1接合と第2接
合の近傍の電界強度が破壊電界強度に達する以前に、第
1接合から第2領域に伸びた空乏層が第2領域の
到達することで、第2領域の不純物濃度を比較的高濃
度にしても高耐圧が得られる構造を有する横型半導体素
子において、第2領域の表面部が曲線領域である素子終
端部の第2領域の不純物濃度と第2領域の表面部が直線
領域である通常部の第2領域の不純物濃度とがそれぞれ
異なった値に設定されることを特徴とする高耐圧横型半
導体素子。
1. A second region of a second conductivity type selectively formed on a surface layer of a first region of a first conductivity type, and a first conductivity type selectively formed on a surface layer of a second region. Alternatively, a fourth region, which is a high-concentration connection region of the first conductivity type, is formed, which includes a high-concentration third region of the second conductivity type and which connects the surface of the second region and the first region. When a voltage for reverse biasing the second junction in which the region and the second region are in contact and the first junction in which the first region and the second region are in contact is applied, the electric field strength near the first junction and the second junction before but reaching the breakdown field strength, the depletion layer extending from the first joint to the second region is all the front surface of the second region
By reaching the in lateral semiconductor device having a structure that even if the impurity concentration at a relatively high concentration of high-voltage obtained in the second region, the surface portion of the second region of the device termination portion is curved region The impurity concentration in the second region and the surface of the second region are straight lines
A high withstand voltage lateral semiconductor device, wherein the impurity concentration of the second region of the normal portion, which is a region, is set to different values.
【請求項2】第4領域の表面部の曲率半径が、第3領域
の表面部の曲率半径よりも大きい曲率半径を有し、素子
終端部の第2領域の不純物濃度が通常部の第2領域の不
純物濃度より高濃度になるように設定されることを特徴
とする請求項1記載の高耐圧横型半導体素子。
Wherein the curvature of the surface portion of the fourth region radius, the third area surface portion radius of curvature greater than the radius of curvature of the possess, second impurity concentration of the second region is usually part of the device termination portion 2. The high breakdown voltage lateral semiconductor device according to claim 1, wherein the impurity concentration of the region is set to be higher than that of the region.
【請求項3】第4領域の表面部の曲率半径が、第3領域
の表面部の曲率半径よりも小さい曲率半径を有し、素子
終端部の第2領域の不純物濃度が通常部の第2領域の不
純物濃度より低濃度になるように設定されることを特徴
とする請求項1記載の高耐圧横型半導体素子。
3. The radius of curvature of the surface portion of the fourth region is smaller than the radius of curvature of the surface portion of the third region, and the impurity concentration of the second region of the element termination portion is the second of the normal portion. 2. The high breakdown voltage lateral semiconductor device according to claim 1, wherein the impurity concentration of the region is set to be lower than that of the region.
【請求項4】通常部の第2領域と同一の不純物濃度を有
する素子終端部の第2領域の表面層に、通常部の不純物
濃度よりも高濃度の第2導電形の第5領域を形成するこ
とで、素子終端部の第5領域を含む第2領域の平均不純
物濃度(第2領域と第5領域の不純物濃度の平均値)
が、通常部の第2領域より高濃度となることを特徴とす
る請求項記載の高耐圧横型半導体素子。
4. A fifth region of the second conductivity type having a higher concentration than the impurity concentration of the normal portion is formed in the surface layer of the second region of the element termination portion having the same impurity concentration as the second region of the normal portion. By doing so, the average impurity concentration of the second region including the fifth region of the element termination portion (the average value of the impurity concentrations of the second region and the fifth region)
3. The high breakdown voltage lateral semiconductor element according to claim 2, wherein the concentration is higher than that of the second region of the normal portion.
【請求項5】通常部の第2領域と同一の不純物濃度を有
する素子終端部の第2領域の表面層に、第1導電形不純
物を導入し、正味の不純物濃度(第2導電形不純物濃度
から第1導電形不純物濃度を差し引いた値)が、通常部
よりも低濃度の第2導電形の第5領域を形成すること
で、素子終端部の第5領域を含む第2領域の平均不純物
濃度(第2領域と第5領域の不純物量の総量を第2領域
と第5領域の合計の体積で割った値)が、通常部の第2
領域より低濃度となることを特徴とする請求項記載の
高耐圧横型半導体素子。
5. A first conductivity type impurity is introduced into the surface layer of the second region of the device termination portion having the same impurity concentration as that of the second region of the normal portion to obtain a net impurity concentration (second conductivity type impurity concentration). The value obtained by subtracting the impurity concentration of the first conductivity type from the above) forms the fifth region of the second conductivity type having a lower concentration than that of the normal portion, so that the average impurity of the second region including the fifth region of the element termination portion is formed. concentration (second region and the value of the total amount of impurities divided by the total volume of the second region <br/> a fifth region of the fifth region) of the normal portion second
4. The high breakdown voltage lateral semiconductor device according to claim 3, wherein the concentration is lower than that of the region.
【請求項6】第5領域を形成するための拡散マスクの窓
(拡散窓)が素子終端部全面に形成されるか、または局
部的に複数個形成されることを特徴とする請求項また
記載の高耐圧横型半導体素子。
6. The method of claim 4 windows diffusion mask for forming a fifth region (diffusion window) is characterized in that it is or locally plurality formation formed in the element terminal portion entirely Further <br /> is a high voltage lateral semiconductor device described in 5 .
JP11417295A 1995-05-12 1995-05-12 High breakdown voltage lateral semiconductor element Expired - Lifetime JP3456054B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11417295A JP3456054B2 (en) 1995-05-12 1995-05-12 High breakdown voltage lateral semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11417295A JP3456054B2 (en) 1995-05-12 1995-05-12 High breakdown voltage lateral semiconductor element

Publications (2)

Publication Number Publication Date
JPH08316451A JPH08316451A (en) 1996-11-29
JP3456054B2 true JP3456054B2 (en) 2003-10-14

Family

ID=14630985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11417295A Expired - Lifetime JP3456054B2 (en) 1995-05-12 1995-05-12 High breakdown voltage lateral semiconductor element

Country Status (1)

Country Link
JP (1) JP3456054B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9153682B2 (en) 2010-07-06 2015-10-06 Sanken Electric Co., Ltd. Semiconductor device
US9293525B2 (en) 2012-05-28 2016-03-22 Fuji Electric Co., Ltd. Semiconductor device and method of manufacturing semiconductor device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001102569A (en) * 1999-09-28 2001-04-13 Fuji Electric Co Ltd Semiconductor device
JP4857458B2 (en) * 2000-06-07 2012-01-18 富士電機株式会社 High voltage semiconductor device
JP6207985B2 (en) * 2013-11-21 2017-10-04 三菱電機株式会社 Semiconductor device and manufacturing method thereof
DE112022003040T5 (en) * 2021-07-21 2024-04-04 Rohm Co., Ltd. SEMICONDUCTOR COMPONENT

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9153682B2 (en) 2010-07-06 2015-10-06 Sanken Electric Co., Ltd. Semiconductor device
US9293525B2 (en) 2012-05-28 2016-03-22 Fuji Electric Co., Ltd. Semiconductor device and method of manufacturing semiconductor device

Also Published As

Publication number Publication date
JPH08316451A (en) 1996-11-29

Similar Documents

Publication Publication Date Title
US5430316A (en) VDMOS transistor with improved breakdown characteristics
US5192989A (en) Lateral dmos fet device with reduced on resistance
JP3904648B2 (en) Semiconductor device
EP0450306B1 (en) High-speed diode and method for producing the same
JP2988871B2 (en) Trench gate power MOSFET
US20030040144A1 (en) Trench DMOS transistor with embedded trench schottky rectifier
US9349811B2 (en) Field plate configuration of a semiconductor device
US4750028A (en) Semiconductor device having floating semiconductor zones
CN106469751B (en) Semiconductor device and method for manufacturing the same
JP3203858B2 (en) High breakdown voltage MIS field-effect transistor
JPH01253966A (en) Vertical field effect transistor
WO2019157818A1 (en) Igbt chip having composite gate structure comprising dummy gate
JPH08181308A (en) Insulated gate semiconductor device
JP3456054B2 (en) High breakdown voltage lateral semiconductor element
US6472693B1 (en) Semiconductor device and method of manufacturing the same
US7385273B2 (en) Power semiconductor device
US20080093638A1 (en) Semiconductor Device
JP3259330B2 (en) Method for manufacturing semiconductor device
JPH02154469A (en) Vertical field effect transistor
JP2003526949A (en) Trench gate semiconductor device
JP4177229B2 (en) Semiconductor device and manufacturing method thereof
JP2808871B2 (en) Method for manufacturing MOS type semiconductor device
JPH0286171A (en) Semiconductor element and its manufacture
JPH11330469A (en) Insulated gate type of semiconductor
JP2002110988A (en) Semiconductor device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070801

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080801

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080801

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080801

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080801

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090801

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090801

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100801

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100801

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100801

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term