JP3453352B2 - Polishing apparatus and polishing method - Google Patents

Polishing apparatus and polishing method

Info

Publication number
JP3453352B2
JP3453352B2 JP2000285401A JP2000285401A JP3453352B2 JP 3453352 B2 JP3453352 B2 JP 3453352B2 JP 2000285401 A JP2000285401 A JP 2000285401A JP 2000285401 A JP2000285401 A JP 2000285401A JP 3453352 B2 JP3453352 B2 JP 3453352B2
Authority
JP
Japan
Prior art keywords
polishing
semiconductor substrate
polishing pad
polished
pad
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000285401A
Other languages
Japanese (ja)
Other versions
JP2002093758A (en
Inventor
恵友 鈴木
Original Assignee
株式会社半導体先端テクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社半導体先端テクノロジーズ filed Critical 株式会社半導体先端テクノロジーズ
Priority to JP2000285401A priority Critical patent/JP3453352B2/en
Priority to KR1020000067579A priority patent/KR100650079B1/en
Publication of JP2002093758A publication Critical patent/JP2002093758A/en
Application granted granted Critical
Publication of JP3453352B2 publication Critical patent/JP3453352B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/042Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H5/00Combined machining
    • B23H5/06Electrochemical machining combined with mechanical working, e.g. grinding or honing
    • B23H5/08Electrolytic grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/24Lapping pads for working plane surfaces characterised by the composition or properties of the pad materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B57/00Devices for feeding, applying, grading or recovering grinding, polishing or lapping agents
    • B24B57/02Devices for feeding, applying, grading or recovering grinding, polishing or lapping agents for feeding of fluid, sprayed, pulverised, or liquefied grinding, polishing or lapping agents
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/16Polishing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30625With simultaneous mechanical treatment, e.g. mechanico-chemical polishing

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明が属する技術分野】本発明は、半導体製造装置に
係り、特に半導体基板上に形成された被研磨物を研磨す
る研磨装置及び研磨方法に関する。
The present invention relates] relates to a semiconductor manufacturing apparatus, and more particularly to a polishing instrumentation 置及 beauty polishing method for polishing a workpiece that is formed on a semiconductor substrate.

【0002】[0002]

【従来の技術】半導体基板上に堆積した金属膜(Cu,
W,Al等)を平坦化し、例えばCuダマシン等の金属
埋め込み配線を形成する際に、CMP(Chemical Mecha
nicalPolishing:化学的機械的研磨)が用いられてい
る。そして、配線幅の異なる上記金属埋め込み配線を同
時に形成する際、幅の異なる複数の溝に金属膜を堆積さ
せると、金属膜の表面に凹凸(段差)が形成されること
が知られている。
2. Description of the Related Art A metal film (Cu,
(W, Al, etc.) is flattened and CMP (Chemical Mecha
nicalPolishing: chemical mechanical polishing) is used. It is known that when simultaneously forming the metal-embedded wirings having different wiring widths, when a metal film is deposited in a plurality of grooves having different widths, irregularities (steps) are formed on the surface of the metal film.

【0003】従来、この金属膜の段差を緩和するため
に、研磨パッドの硬さや、研磨パッドの回転速度を制御
して、研磨(化学的機械的研磨)を行っていた。
Conventionally, in order to alleviate the step of the metal film, the hardness of the polishing pad and the rotation speed of the polishing pad are controlled to carry out polishing (chemical mechanical polishing).

【0004】[0004]

【発明が解決しようとする課題】しかし、上記従来の研
磨では、優れた段差緩和性が得られなかった。すなわ
ち、研磨パッドのたわみ等によって、金属配線の中央部
がその周辺よりも多く削れてしまうディッシングや、金
属配線全体の膜減りであるエロージョンが起こってしま
う問題があった。この問題を解決するため、従来は金属
膜の膜厚を厚くしていたが、研磨量が多くなり、スルー
プットが低くなってしまう問題があった。
However, the above conventional polishing has not been able to obtain an excellent step reducing property. That is, there is a problem that the bending of the polishing pad or the like causes the central portion of the metal wiring to be shaved more than the periphery thereof, and the erosion that is a film reduction of the entire metal wiring. In order to solve this problem, the film thickness of the metal film has conventionally been increased, but there has been a problem that the polishing amount increases and the throughput decreases.

【0005】本発明は、上記従来の課題を解決するため
になされたもので、段差緩和性の高い研磨装置及び研磨
方法を提供することを目的とする。
The present invention has been made to solve the above-mentioned conventional problems, and an object of the present invention is to provide a polishing apparatus and a polishing method having a high step relief property.

【0006】[0006]

【課題を解決する為の手段】の発明に係る研磨装置
は、半導体基板上の被研磨物を研磨する研磨装置であっ
て、 複数の導電粒子を含有し、前記被研磨物の凹凸に応
じて変形するとともに変形部分の抵抗値が変動する研磨
パッドと、前記半導体基板を保持するとともに、この半
導体基板を前記研磨パッドの表面に押し付ける保持板
と、前記半導体基板と前記研磨パッドの間に、電解液、
砥粒、及び薬液成分を含有する研磨液を供給する研磨液
供給部と、前記研磨パッドの裏面に設けられた電極と、
前記半導体基板と、前記電極との間に電圧を印加する電
圧印加部と、を備え 前記研磨パッドの抵抗値の変動に
より、前記電解液の分解度を変動させることを特徴とす
るものである。
Means for Solving the Problems The polishing apparatus according to this invention, there in a polishing apparatus for polishing a workpiece on a semiconductor substrate
Containing a plurality of conductive particles,
A polishing pad resistance of deformation portion that fluctuates while Flip deformation, said holds the semiconductor substrate, and a holding plate for pressing the semiconductor substrate on the surface of the polishing pad during the polishing pad and the semiconductor substrate With electrolyte,
Abrasive grains, and a polishing liquid supply unit that supplies a polishing liquid containing a chemical liquid component, and an electrode provided on the back surface of the polishing pad,
Said semiconductor substrate, and a voltage applying unit for applying a voltage between the electrodes, the variation of the resistance value of said polishing pad
More, it is characterized in Rukoto varying the resolution of the electrolyte.

【0007】[0007]

【0008】の発明に係る研磨装置において、前記導
電粒子は、金属膜で被覆された球状のシリコンであるこ
が好適である。
[0008] Oite the polishing equipment according to this invention, the conductive particles, it is preferable that a silicon spherical coated with a metal film.

【0009】[0009]

【0010】[0010]

【0011】の発明に係る研磨装置において、前記研
磨パッドは、前記被研磨物の凸部に対応して圧縮変形し
た部分の抵抗値が低くなり、その部分に流れる電流値が
高くなるものである。
[0011] Oite the polishing equipment according to this invention, the polishing pad, the resistance value of the portion which is compressed and deformed in response to the convex portion of the workpiece is lowered, high current flowing in that portion Do that is also of the.

【0012】の発明に係る研磨装置において、前記電
圧印加部は、0.1〜10Vの電圧を印加することが好
である。
[0012] Oite the polishing equipment according to this invention, the voltage applying unit is good is possible to apply a voltage of 0.1~10V
It is suitable .

【0013】の発明に係る研磨装置において、前記研
磨液供給部は、前記電解液として亜硫酸または硫酸銅水
溶液を含有する研磨液を供給することが好適である。
[0013] Oite the polishing equipment according to this invention, the polishing liquid supply portion, it is preferable to supply a polishing liquid containing sulphite or copper sulfate aqueous solution as the electrolyte solution.

【0014】の発明に係る研磨装置において、前記研
磨液供給部により供給される研磨液は、砥粒を含有しな
いことが好適である。
[0014] Oite the polishing equipment according to this invention, the polishing liquid supplied by the polishing liquid supply portion, it is preferable to not contain abrasives.

【0015】[0015]

【0016】の発明に係る研磨方法は、部分的に電気
伝導率が変動し得る研磨パッドの表面に対して半導体基
板を押し付けながら、電解液、砥粒、及び薬液成分を含
有する研磨液を半導体基板と研磨パッドの間に供給し、
半導体基板上に形成された被研磨物の化学的機械的研磨
を行うとともに、前記半導体基板と、前記研磨パッドの
裏面に設けられた電極との間に電圧を印加することによ
り、前記電解液を分解して前記被研磨物の電解研磨を行
研磨方法であって、 前記被研磨物の凹凸に応じて前記
研磨パッドが変形することにより変形部分の抵抗値が変
動し、この抵抗値の変動により前記電解液の分解度を変
動させることを特徴とするものである。
The polishing method according to this invention, while pressing the semiconductor substrate against partially the surface of the polishing pad the electrical conductivity may vary, the electrolytic solution, abrasive grain, and the polishing liquid containing the chemical components Supply between semiconductor substrate and polishing pad,
While performing chemical mechanical polishing of an object to be polished formed on a semiconductor substrate, by applying a voltage between the semiconductor substrate and an electrode provided on the back surface of the polishing pad, the electrolytic solution is removed. A polishing method for performing electrolytic polishing of the object to be polished by disassembling , according to the unevenness of the object to be polished,
When the polishing pad is deformed, the resistance value of the deformed part changes.
And the change in the resistance changes the degree of decomposition of the electrolyte.
It is characterized by moving .

【0017】の発明に係る研磨方法は、部分的に電気
伝導率が変動し得る研磨パッドの表面に対して半導体基
板を押し付けながら、電解液及び薬液成分を含有する研
磨液を半導体基板と研磨パッドの間に供給し、半導体基
板上に形成された被研磨物の化学的研磨を行うととも
に、前記半導体基板と、前記研磨パッドの裏面に設けら
れた電極との間に電圧を印加することにより、前記電解
液を分解して前記被研磨物の電解研磨を行う研磨方法で
あって、 前記被研磨物の凹凸に応じて前記研磨パッドが
変形することにより変形部分の抵抗値が変動し、この抵
抗値の変動により前記電解液の分解度を変動させること
を特徴とするものである。
The polishing method according to this invention, while pressing the semiconductor substrate against partially the surface of the polishing pad the electrical conductivity may vary, and the semiconductor substrate a polishing liquid containing electrolyte and chemical components polishing By supplying between the pads to perform chemical polishing of the object to be polished formed on the semiconductor substrate, and applying a voltage between the semiconductor substrate and an electrode provided on the back surface of the polishing pad. , The electrolysis
With a polishing method in which a liquid is decomposed and electrolytic polishing is performed on the workpiece.
The polishing pad depends on the unevenness of the object to be polished.
Due to deformation, the resistance value of the deformed part changes, and this resistance
It is characterized in that the degree of decomposition of the electrolytic solution is changed by changing the resistance value .

【0018】[0018]

【0019】の発明に係る研磨方法において、前記研
磨パッドの圧縮変形部分に対応する前記被研磨物の電解
研磨レートが高くなるものである。
[0019] Oite the polishing how according to this invention, the in which electrolytic polishing rate that a higher of said corresponding object to be polished to a compressive deformation portion of the polishing pad.

【0020】の発明に係る研磨方法において、前記半
導体基板と、前記研磨パッドの裏面に設けられた電極と
の間に、0.1〜10Vの電圧を印加して電解研磨を行
うことが好適である。
[0020] Oite the polishing how according to this invention, the semiconductor substrate, between the electrodes provided on the back surface of the polishing pad, perform electrolytic polishing by applying a voltage of 0.1~10V Is preferred .

【0021】の発明に係る研磨方法において、前記半
導体基板と研磨パッドの間に、前記電解液として亜硫酸
または硫酸銅水溶液を含有する研磨液を供給すること
好適である。
[0021] Oite the polishing how according to this invention, between the semiconductor substrate and the polishing pad, to supply a polishing liquid containing sulphite or copper sulfate aqueous solution as the electrolyte solution
It is suitable .

【0022】の発明に係る研磨方法において前記被
研磨物が、化学的機械的研磨によっては研磨困難な硬い
金属であることが好適である。
[0022] In the polishing method according to this invention, the object to be
Abrasive is hard, difficult to polish by chemical mechanical polishing
Metal der Rukoto is preferred.

【0023】[0023]

【発明の実施の形態】以下、図面を参照して本発明の実
施の形態について説明する。図中、同一または相当する
部分には同一の符号を付してその説明を簡略化ないし省
略することがある。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. In the drawings, the same or corresponding parts are designated by the same reference numerals, and the description thereof may be simplified or omitted.

【0024】実施の形態1.図1は、本発明の実施の形
態1による研磨装置及び研磨方法を説明するための図で
ある。図2は、図1に示した研磨パッドの近傍を拡大し
た断面図である。図1において、参照符号1は研磨パッ
ド、2は保持板、3は半導体基板、31は半導体基板3
上に形成された被研磨物、4は研磨液供給部、41は研
磨液供給部4により供給された研磨液を示している。ま
た、5は電極としての導電基板、6は電圧印加部、7は
リテーナーを示している。
Embodiment 1. FIG. 1 is a diagram for explaining a polishing apparatus and a polishing method according to a first embodiment of the present invention. FIG. 2 is an enlarged cross-sectional view of the vicinity of the polishing pad shown in FIG. In FIG. 1, reference numeral 1 is a polishing pad, 2 is a holding plate, 3 is a semiconductor substrate, and 31 is a semiconductor substrate 3.
The object to be polished formed above, 4 is a polishing liquid supply unit, and 41 is a polishing liquid supplied by the polishing liquid supply unit 4. Further, 5 is a conductive substrate as an electrode, 6 is a voltage applying section, and 7 is a retainer.

【0025】研磨パッド1は、図2に示すように、複数
の導電粒子11を含有している。このため、研磨パッド
1は、導電性を有し、かつ部分的に電気伝導率が変動し
得る(後述)。ここで、上記導電粒子11は、例えばA
u,Ag,Pt等からなる金属膜によって被覆された球
状のシリコン(シリコン球)である。また、研磨パッド
1は、電解研磨(後述)が可能である程度に、研磨パッ
ド1の全体に上記導電粒子11を含有する。すなわち、
研磨パッド1全体が導電性を有している。また、研磨パ
ッド1は、たわみの無い状態で、できるだけ均一な電気
伝導率または抵抗値を有することが望ましい。また、研
磨パッド1は、図示しない回転機構により水平方向に回
転する。
The polishing pad 1 contains a plurality of conductive particles 11 as shown in FIG. For this reason, the polishing pad 1 has conductivity, and the electrical conductivity thereof may partially vary (described later). Here, the conductive particles 11 are, for example, A
It is a spherical silicon (silicon sphere) covered with a metal film made of u, Ag, Pt, or the like. Further, the polishing pad 1 contains the above-mentioned conductive particles 11 in the entire polishing pad 1 to the extent that electrolytic polishing (described later) is possible. That is,
The entire polishing pad 1 has conductivity. Further, it is desirable that the polishing pad 1 has as uniform an electric conductivity or resistance value as possible in a state without any bending. Further, the polishing pad 1 is horizontally rotated by a rotating mechanism (not shown).

【0026】また、研磨パッド1は、ウレタン樹脂等の
弾性材により形成されている。このため、保持板2によ
って半導体基板3が研磨パッド1に押し付けられると、
図2に示すように、半導体基板3上に形成された被研磨
物31の凹凸に応じて研磨パッド1が変形する。例え
ば、被研磨物31の凸部31aに対応する部分の研磨パ
ッド1は圧縮変形する(図2参照)。そして、この圧縮
部分において、上記導電粒子11同士の接触面積が広く
なり、電気抵抗値が低くなる。すなわち、研磨パッド1
内に、低抵抗領域Aが形成される。従って、電圧印加部
6によって電圧が印加されると、低抵抗領域Aに流れる
電流値が高くなり、凸部31aの電解研磨レートが高く
なる(後述)。また、凸部31aが研磨されるにつれ、
研磨パッド1の圧縮変形が少なくなるため、電解研磨レ
ートが徐々に低くなる。
The polishing pad 1 is made of an elastic material such as urethane resin. Therefore, when the semiconductor substrate 3 is pressed against the polishing pad 1 by the holding plate 2,
As shown in FIG. 2, the polishing pad 1 is deformed according to the unevenness of the object 31 to be polished formed on the semiconductor substrate 3. For example, the polishing pad 1 at a portion corresponding to the convex portion 31a of the object to be polished 31 is compressed and deformed (see FIG. 2). Then, in this compressed portion, the contact area between the conductive particles 11 becomes large and the electric resistance value becomes low. That is, the polishing pad 1
A low resistance region A is formed therein. Therefore, when a voltage is applied by the voltage application unit 6, the value of the current flowing in the low resistance region A becomes high, and the electrolytic polishing rate of the convex portion 31a becomes high (described later). Further, as the convex portion 31a is polished,
Since the compressive deformation of the polishing pad 1 decreases, the electrolytic polishing rate gradually decreases.

【0027】一方、被研磨物31の凹部31bに対応す
る部分の研磨パッド1は圧縮変形しない。この場合、上
記圧縮部分(低抵抗領域A)と比較して、導電粒子11
同士の接触面積は小さくなり、電気抵抗値が高くなる。
すなわち、研磨パッド1内に、高抵抗領域Bが形成され
る。従って、電圧印加部6によって電圧が印加される
と、高抵抗領域Bに流れる電流値が低くなり、電解研磨
レートが低くなる(後述)。
On the other hand, the portion of the polishing pad 1 corresponding to the recess 31b of the object to be polished 31 is not compressed and deformed. In this case, as compared with the compressed portion (low resistance region A), the conductive particles 11
The contact area between them becomes small, and the electric resistance value becomes high.
That is, the high resistance region B is formed in the polishing pad 1. Therefore, when a voltage is applied by the voltage application unit 6, the value of the current flowing in the high resistance region B becomes low and the electrolytic polishing rate becomes low (described later).

【0028】保持板2は、半導体基板3を真空吸着等に
より保持するとともに、この半導体基板3を研磨パッド
1の表面1aに所定の圧力(図1中の矢印に対応する)
で押し付けるためのバックプレートである。また、保持
板2は、図示しない回転機構により水平方向に回転す
る。
The holding plate 2 holds the semiconductor substrate 3 by vacuum suction or the like, and holds the semiconductor substrate 3 on the surface 1a of the polishing pad 1 at a predetermined pressure (corresponding to the arrow in FIG. 1).
It is a back plate for pressing with. Further, the holding plate 2 is rotated in the horizontal direction by a rotation mechanism (not shown).

【0029】半導体基板3は、例えば、シリコン基板、
石英基板、セラミックス基板等の基板である。この半導
体基板3の上には、被研磨物31としての金属膜、バリ
アメタル層、接着層、または絶縁膜等が形成されてい
る。なお、本発明の実施の形態においては、被研磨物3
1が金属膜である場合について説明する。また、この金
属膜31は、例えば、Cu(銅)、W(タングステ
ン)、Al(アルミニウム)、或いはその合金等からな
る。また、図2に示すように、金属膜31の表面には、
凹凸(凸部31a及び凹部31b)すなわち段差が形成
される。また、半導体基板3は、保持板2を介して接地
されている。
The semiconductor substrate 3 is, for example, a silicon substrate,
It is a substrate such as a quartz substrate or a ceramic substrate. A metal film, a barrier metal layer, an adhesive layer, an insulating film, or the like as the object to be polished 31 is formed on the semiconductor substrate 3. In the embodiment of the present invention, the object to be polished 3
A case where 1 is a metal film will be described. The metal film 31 is made of, for example, Cu (copper), W (tungsten), Al (aluminum), or an alloy thereof. Further, as shown in FIG. 2, on the surface of the metal film 31,
Concavities and convexities (projections 31a and recesses 31b), that is, steps are formed. The semiconductor substrate 3 is grounded via the holding plate 2.

【0030】研磨液供給部4は、研磨液41を、研磨パ
ッド1の上、詳細には研磨パッド1と半導体基板3上に
形成された被研磨物31との間(図2参照)に供給する
ためのノズルである。上記研磨液41は、電解液、砥
粒、及び薬液成分を含有する液体である。ここで、電解
液の具体例としては、亜硫酸や硫酸銅水溶液等が挙げら
れる。また、砥粒の具体例としては、シリカ(Si
2)、アルミナ(Al23)、またはセリア(Ce
2)等が挙げられる。また、研磨液41は上記電解液
を含有しているため、研磨パッド1から電流が加わると
電気分解し、半導体基板3上に形成された被研磨物31
を溶解する。
The polishing liquid supply unit 4 supplies the polishing liquid 41 onto the polishing pad 1, specifically between the polishing pad 1 and the object to be polished 31 formed on the semiconductor substrate 3 (see FIG. 2). It is a nozzle for doing. The polishing liquid 41 is a liquid containing an electrolytic solution, abrasive grains, and a chemical liquid component. Here, specific examples of the electrolytic solution include sulfurous acid and an aqueous solution of copper sulfate. Further, as a specific example of the abrasive grains, silica (Si
O 2 ), alumina (Al 2 O 3 ), or ceria (Ce
O 2 ) and the like. Further, since the polishing liquid 41 contains the above-mentioned electrolytic solution, it is electrolyzed when a current is applied from the polishing pad 1, and the object to be polished 31 formed on the semiconductor substrate 3 is polished.
Dissolve.

【0031】電極5は、研磨パッド1の裏面1b上に形
成された、例えば導電基板である。この電極5には、電
圧印加部6から電圧が印加される。図1及び図2におい
ては、電極5に負の電圧が印加されている。そして、こ
の電極5と固着した研磨パッド1に電流が流れる。
The electrode 5 is, for example, a conductive substrate formed on the back surface 1b of the polishing pad 1. A voltage is applied to the electrode 5 from the voltage applying section 6. In FIGS. 1 and 2, a negative voltage is applied to the electrode 5. Then, an electric current flows through the polishing pad 1 fixed to the electrode 5.

【0032】電圧印加部6は、半導体基板3(金属膜3
1)と、研磨パッド1の裏面1bに形成された電極5と
の間に、電圧を印加するためのものである。図1及び図
2においては、電圧印加部6は、電極5に負の電圧を印
加している。また、電圧印加部6は、0.1〜10V
(ボルト)の電圧、一般的には数V程度の電圧を印加す
る。
The voltage applying section 6 is provided on the semiconductor substrate 3 (metal film 3
It is for applying a voltage between 1) and the electrode 5 formed on the back surface 1b of the polishing pad 1. In FIG. 1 and FIG. 2, the voltage applying section 6 applies a negative voltage to the electrode 5. In addition, the voltage application unit 6 is 0.1 to 10V.
A voltage of (volt), generally a voltage of about several V is applied.

【0033】リテーナー7は、半導体基板3を保持する
ためのリング状のものであり、半導体基板3の周辺に載
置される。
The retainer 7 has a ring shape for holding the semiconductor substrate 3, and is placed around the semiconductor substrate 3.

【0034】以上説明したように、本実施の形態1によ
る研磨装置は、被研磨物31の凹凸に応じて部分的に電
気伝導率が変動し得る研磨パッド1と、半導体基板3を
研磨パッド1の表面1aに押し付けるための保持板2
と、研磨液41を供給する研磨液供給部4と、研磨パッ
ド1の裏面1aに形成された電極5と、半導体基板3と
電極5との間に電圧を印加するための電圧印加部6を備
えている。ここで、研磨液41は、電解液、砥粒、薬液
成分を含有している。
As described above, in the polishing apparatus according to the first embodiment, the polishing pad 1 whose electric conductivity can be partially changed depending on the unevenness of the object 31 to be polished and the semiconductor substrate 3 are used as the polishing pad 1. Holding plate 2 for pressing against the surface 1a of the
A polishing liquid supply part 4 for supplying the polishing liquid 41, an electrode 5 formed on the back surface 1a of the polishing pad 1, and a voltage application part 6 for applying a voltage between the semiconductor substrate 3 and the electrode 5. I have it. Here, the polishing liquid 41 contains an electrolytic solution, abrasive grains, and a chemical liquid component.

【0035】この研磨装置によれば、化学的機械的研磨
を行うとともに、導電性を有する研磨パッド1を用い、
電圧印加部6によって半導体基板3と電極5との間に電
圧を印加することにより、研磨液41に含まれる電解液
を電気分解して被研磨物31を溶解させる電解研磨を行
う。すなわち、本実施の形態1による研磨装置は、電解
研磨アシストによる化学的機械的研磨を行うことができ
る。従って、研磨レートを向上させることができ、スル
ープットを向上させることができる。
According to this polishing apparatus, chemical mechanical polishing is performed, and the polishing pad 1 having conductivity is used.
By applying a voltage between the semiconductor substrate 3 and the electrode 5 by the voltage application unit 6, electrolytic polishing is performed in which the electrolytic solution contained in the polishing solution 41 is electrolyzed to dissolve the object 31 to be polished. That is, the polishing apparatus according to the first embodiment can perform chemical mechanical polishing with the aid of electrolytic polishing. Therefore, the polishing rate can be improved and the throughput can be improved.

【0036】また、研磨パッド1は弾性材により形成さ
れているため、半導体基板3が保持板2によって研磨パ
ッド1に押し付けられると、半導体基板3上に形成され
た被研磨物31の凹凸に応じて研磨パッド1が変形す
る。具体的には、被研磨物31の凸部31aに対応する
部分の研磨パッド1は、圧縮変形する。この圧縮変形に
よって、導電粒子11同士の接触面積が大きくなり、電
気抵抗値が低くなる(図2の低抵抗領域Aを参照)。従
って、電解研磨を行う際には、低抵抗領域Aに流れる電
流値が高くなり、凸部31aの電解研磨レートが高くな
る。一方、被研磨物31の凹部31bに対応する部分の
研磨パッド1は圧縮変形しないため、上記凸部31aの
場合と比較して、導電粒子11同士の接触面積は小さ
く、電気抵抗値は高い(図2の高抵抗領域Bを参照)。
従って、電解研磨を行う際には、高抵抗領域Bに流れる
電流値は低くなり、凹部31bの電解研磨レートが低く
なる。
Further, since the polishing pad 1 is made of an elastic material, when the semiconductor substrate 3 is pressed against the polishing pad 1 by the holding plate 2, the unevenness of the object 31 to be polished formed on the semiconductor substrate 3 is caused. As a result, the polishing pad 1 is deformed. Specifically, the portion of the polishing pad 1 corresponding to the convex portion 31a of the object to be polished 31 is compressed and deformed. Due to this compressive deformation, the contact area between the conductive particles 11 is increased and the electric resistance value is decreased (see the low resistance region A in FIG. 2). Therefore, when performing electropolishing, the value of the current flowing in the low resistance region A increases, and the electropolishing rate of the convex portions 31a increases. On the other hand, since the polishing pad 1 in the portion corresponding to the concave portion 31b of the object to be polished 31 is not compressed and deformed, the contact area between the conductive particles 11 is small and the electric resistance value is high as compared with the case of the convex portion 31a ( (See high resistance region B in FIG. 2).
Therefore, when performing electropolishing, the value of the current flowing in the high resistance region B becomes low, and the electropolishing rate of the recess 31b becomes low.

【0037】このように、本実施の形態1による研磨装
置によって化学的機械的研磨とともに行われる電解研磨
は、凸部31aの電解研磨レートは高く、凹部31bの
電解研磨レートは低いため、段差緩和性に優れている。
従って、段差緩和性に優れた研磨装置を提供することが
できる。これにより、ディッシングやエロージョンを防
止することができる。さらに、本実施の形態1による研
磨装置は、段差緩和性に優れているため、金属膜を堆積
させる際に、従来のように膜厚を厚くする必要がない。
これにより、研磨時間を短縮することができ、スループ
ットを向上させることができる。
As described above, in the electrolytic polishing performed by the polishing apparatus according to the first embodiment together with the chemical mechanical polishing, the electrolytic polishing rate of the convex portion 31a is high and the electrolytic polishing rate of the concave portion 31b is low. It has excellent properties.
Therefore, it is possible to provide a polishing apparatus having an excellent step reducing property. Thereby, dishing and erosion can be prevented. Further, since the polishing apparatus according to the first embodiment is excellent in the step reducing property, it is not necessary to increase the film thickness when depositing the metal film as in the conventional case.
Thereby, the polishing time can be shortened and the throughput can be improved.

【0038】なお、本実施の形態1による研磨装置にお
いては、研磨液41に砥粒を含有しているが、砥粒を含
有しない研磨液すなわち電解液と薬液成分とからなる研
磨液を用いてもよい。これにより、研磨パッド1の圧力
のみによって研磨を行う化学的研磨と、電解研磨とを併
用することができる。この場合も、段差緩和性に優れた
研磨装置を提供することができる。また、被研磨物41
が化学的機械的研磨によって研磨することが困難な硬い
金属(例えば、Ti,Ta等)であっても、容易に研磨
することができる。
In the polishing apparatus according to the first embodiment, although the polishing liquid 41 contains abrasive grains, a polishing liquid containing no abrasive grains, that is, a polishing liquid composed of an electrolytic solution and a chemical liquid component is used. Good. This makes it possible to use both chemical polishing, which is performed only by the pressure of the polishing pad 1, and electrolytic polishing. Also in this case, it is possible to provide a polishing apparatus having excellent step relaxation property. Also, the object to be polished 41
Even a hard metal (eg, Ti, Ta, etc.) that is difficult to polish by chemical mechanical polishing can be easily polished.

【0039】また、研磨液41に含有される電解液とし
て亜硫酸または硫酸銅水溶液を用いているが、研磨パッ
ド1を腐食せず、且つ被研磨物31を溶解可能な他の電
解液を用いてもよい。
Although an aqueous solution of sulfurous acid or copper sulfate is used as the electrolytic solution contained in the polishing solution 41, another electrolytic solution which does not corrode the polishing pad 1 and can dissolve the object 31 to be polished is used. Good.

【0040】実施の形態2.以下、図1及び図2を参照
して、本実施の形態2による研磨方法について説明す
る。図1に示すように、部分的に電気伝導率が変動し得
る研磨パッド1の表面1aに対して、半導体基板3を保
持板2により押し付けながら、研磨液41を研磨液供給
部4から供給し、半導体基板3上に形成された被研磨物
31の化学的機械的研磨を行う。また、研磨パッド1及
び保持板2は、図示しない回転機構により回転する。こ
こで、研磨液41は、例えば電解液としての亜硫酸また
は硫酸銅水溶液、砥粒としてのSiO2(シリカ),A
23(アルミナ),またはCeO2(セリア)、並び
に薬液成分を含有するものである。また、上記化学的機
械的研磨を行うとともに、半導体基板3と、研磨パッド
1の裏面1bに形成された電極5との間に電圧を印加す
ることにより、上記被研磨物31の電解研磨を行う。
Embodiment 2. Hereinafter, the polishing method according to the second embodiment will be described with reference to FIGS. 1 and 2. As shown in FIG. 1, the polishing liquid 41 is supplied from the polishing liquid supply unit 4 while pressing the semiconductor substrate 3 against the surface 1 a of the polishing pad 1 whose electric conductivity may partially vary by the holding plate 2. Chemical-mechanical polishing of the object to be polished 31 formed on the semiconductor substrate 3 is performed. Further, the polishing pad 1 and the holding plate 2 are rotated by a rotating mechanism (not shown). Here, the polishing liquid 41 is, for example, a sulfurous acid or copper sulfate aqueous solution as an electrolytic solution, and SiO 2 (silica), A as abrasive grains.
It contains 1 2 O 3 (alumina) or CeO 2 (ceria), and a chemical liquid component. Further, the chemical mechanical polishing is performed, and a voltage is applied between the semiconductor substrate 3 and the electrode 5 formed on the back surface 1b of the polishing pad 1 to electrolytically polish the polishing object 31. .

【0041】次に、上記電解研磨について説明する。図
2に示すように、研磨パッド1は、複数の導電粒子11
を含有することにより導電性を有している。そして、電
圧印加部6から半導体基板3(被研磨物31)と電極5
との間に、電圧を印加することにより、研磨パッド1に
電流が流れる。ここで、印加電圧は、0.1〜10V程
度であり、一般的には数V程度である。次いで、上記研
磨パッド1に電流が流れると、半導体基板3(被研磨物
31)と研磨パッド1との間に供給された研磨液41に
電流が加わる。その結果、研磨液41に含有されている
電解液が電気分解し、半導体基板3上に形成された被研
磨物31を溶解する。
Next, the electrolytic polishing will be described. As shown in FIG. 2, the polishing pad 1 includes a plurality of conductive particles 11
By containing, it has conductivity. Then, from the voltage applying section 6 to the semiconductor substrate 3 (workpiece 31) and the electrode 5
An electric current flows through the polishing pad 1 by applying a voltage between and. Here, the applied voltage is about 0.1 to 10 V, and is generally about several V. Next, when an electric current flows through the polishing pad 1, an electric current is applied to the polishing liquid 41 supplied between the semiconductor substrate 3 (object 31 to be polished) and the polishing pad 1. As a result, the electrolytic solution contained in the polishing solution 41 is electrolyzed to dissolve the object to be polished 31 formed on the semiconductor substrate 3.

【0042】次に、段差緩和性について説明する。研磨
パッド1は、例えばウレタン樹脂等の弾性材によって形
成されているため、半導体基板3上に形成された被研磨
物31の凹凸(段差)に応じて変形する(図2参照)。
詳細には、被研磨物31の凸部31aに対応する部分の
研磨パッド1は、圧縮変形するため、導電粒子11同士
の接触面積が大きくなり、電気抵抗値が低くなる(図2
の低抵抗領域A)。従って、低抵抗領域Aに流れる電流
値が高くなる。電解研磨レートは、電解液の分解度すな
わち研磨液41に加わる電流値に比例するため、凸部3
1aの電解研磨レートが高くなる。一方、被研磨物31
の凹部31bに対応する部分の研磨パッド1は圧縮され
ないため、導電粒子11同士の接触面積は小さく、電気
抵抗値は高い(図2の高抵抗領域B)。従って、高抵抗
領域Bに流れる電流値が低くなり、凹部31bの電解研
磨レートが低くなる。このように、上記電解研磨は、被
研磨物31の凸部31aの研磨レートが高く、凹部の研
磨レートが低い。すなわち、この電解研磨は、段差緩和
性に優れている。
Next, the step relaxation property will be described. Since the polishing pad 1 is made of an elastic material such as urethane resin, it is deformed according to the irregularities (steps) of the object 31 to be polished formed on the semiconductor substrate 3 (see FIG. 2).
Specifically, since the polishing pad 1 in the portion corresponding to the convex portion 31a of the object to be polished 31 is compressed and deformed, the contact area between the conductive particles 11 is increased and the electric resistance value is lowered (FIG. 2).
Low resistance region A). Therefore, the current value flowing in the low resistance region A becomes high. The electrolytic polishing rate is proportional to the degree of decomposition of the electrolytic solution, that is, the current value applied to the polishing solution 41.
The electrolytic polishing rate of 1a is increased. On the other hand, the object to be polished 31
Since the polishing pad 1 in the portion corresponding to the concave portion 31b is not compressed, the contact area between the conductive particles 11 is small and the electric resistance value is high (high resistance region B in FIG. 2). Therefore, the value of the current flowing in the high resistance region B becomes low, and the electrolytic polishing rate of the recess 31b becomes low. Thus, in the electrolytic polishing, the polishing rate of the convex portion 31a of the object to be polished 31 is high and the polishing rate of the concave portion is low. That is, this electrolytic polishing is excellent in the step reducing property.

【0043】以上説明したように、本実施の形態2によ
る研磨方法は、電解研磨アシストによる化学的機械的研
磨(以下、第1の研磨方法と称する)である。すなわ
ち、砥粒を含む研磨液41と研磨パッド1による従来の
化学的機械的研磨を行う。それとともに、研磨パッド1
に導電性をもたせ、研磨液41に電解液を含有させ、半
導体基板3と研磨パッド1の裏面1aに形成された電極
5との間に電圧を印加する。これにより、研磨液41に
含有された電解液を電気分解し、被研磨物31としての
金属膜を溶解させることによって電解研磨を行う。この
第1の研磨方法は、化学的機械的研磨のみであった従来
の研磨方法と比較して、高い研磨レートが得られる。従
って、第1の研磨方法を用いることによって、研磨時間
が短縮でき、スループットが向上する。
As described above, the polishing method according to the second embodiment is chemical mechanical polishing (hereinafter referred to as the first polishing method) with the aid of electrolytic polishing. That is, conventional chemical mechanical polishing is performed using the polishing liquid 41 containing abrasive grains and the polishing pad 1. Along with that, polishing pad 1
To have conductivity, the polishing solution 41 contains an electrolytic solution, and a voltage is applied between the semiconductor substrate 3 and the electrode 5 formed on the back surface 1 a of the polishing pad 1. As a result, the electrolytic solution contained in the polishing solution 41 is electrolyzed, and the metal film as the object to be polished 31 is dissolved to perform electrolytic polishing. This first polishing method can obtain a high polishing rate as compared with the conventional polishing method which was only chemical mechanical polishing. Therefore, by using the first polishing method, the polishing time can be shortened and the throughput can be improved.

【0044】また、研磨パッド1は、被研磨物31の凹
凸(段差)に応じて変形し、その変形部分の電気伝導率
が変動する。具体的には、被研磨物31の凸部31aに
対応する部分の研磨パッド1は圧縮変形して、電気伝導
率が高くなる。一方、凹部31bに対応する部分の研磨
パッド1は圧縮変形しないため、上記凸部31aの場合
と比較して、電気伝導率が低くなる。また、電解研磨レ
ートは、研磨パッド1に流れる電流値、すなわち電気伝
導率に比例する。このため、凸部31aの電解研磨レー
トは高く、凹部31bの電解研磨レートは低い。従っ
て、電解研磨は、段差緩和性に優れている。すなわち、
本実施の形態2において、段差緩和性に優れた研磨方法
を実現できる。これにより、ディッシングやエロージョ
ンを防止することができる。また、研磨を行う前に堆積
される金属膜の膜厚を薄くすることができるため、研磨
時間を短縮することができ、スループットを向上させる
ことができる。
Further, the polishing pad 1 is deformed according to the irregularities (steps) of the object 31 to be polished, and the electric conductivity of the deformed portion fluctuates. Specifically, the portion of the polishing pad 1 corresponding to the convex portion 31a of the object to be polished 31 is compressed and deformed, and the electric conductivity is increased. On the other hand, since the polishing pad 1 in the portion corresponding to the concave portion 31b is not compressed and deformed, the electric conductivity is lower than that in the case of the convex portion 31a. The electrolytic polishing rate is proportional to the value of electric current flowing through the polishing pad 1, that is, the electric conductivity. Therefore, the electrolytic polishing rate of the convex portion 31a is high, and the electrolytic polishing rate of the concave portion 31b is low. Therefore, the electropolishing is excellent in the step reducing property. That is,
In the second embodiment, it is possible to realize a polishing method that is excellent in step relaxation property. Thereby, dishing and erosion can be prevented. Moreover, since the thickness of the metal film deposited before polishing can be reduced, the polishing time can be shortened and the throughput can be improved.

【0045】なお、本実施の形態2による研磨方法で
は、電解液、砥粒、薬液成分を含有する研磨液41を用
いているが、砥粒を含有しない研磨液すなわち電解液と
薬液成分とからなる研磨液を用いてもよい。これによ
り、化学的物理的研磨ではなく研磨パッド1の圧力のみ
で研磨する化学的研磨と、電解研磨とを併用する研磨方
法(以下、第2の研磨方法と称する)を実現できる。こ
の第2の研磨方法も、上述した第1の研磨方法(化学的
機械的研磨と電解研磨を併用する方法)と同様に、段差
緩和性に優れている。また、この第2の研磨方法は、電
解研磨を優先的に行うため、化学的機械的研磨によって
は研磨することが困難な硬い金属(例えば、Ti,Ta
等)を、容易に研磨(溶解)することができる。
Although the polishing method according to the second embodiment uses the polishing liquid 41 containing the electrolytic solution, the abrasive grains, and the chemical liquid component, the polishing liquid containing no abrasive grains, that is, the electrolytic solution and the chemical liquid component, is used. You may use the following polishing liquid. This makes it possible to realize a polishing method (hereinafter, referred to as a second polishing method) in which chemical polishing, which is performed only by the pressure of the polishing pad 1, is used instead of chemical physical polishing, and electrolytic polishing is used in combination. This second polishing method is also excellent in step reduction property, like the above-described first polishing method (method of using both chemical mechanical polishing and electrolytic polishing in combination). Further, in the second polishing method, electrolytic polishing is preferentially performed, and therefore hard metal (for example, Ti, Ta) that is difficult to polish by chemical mechanical polishing is used.
Etc.) can be easily polished (dissolved).

【0046】また、第1の研磨方法と、第2の研磨方法
を組み合わせて、被研磨物31を研磨してもよい。この
時、第1の研磨方法を用いて研磨を行った後に、第2の
研磨方法を用いて研磨を行う場合と、その逆の順序で2
つの研磨方法を用いて研磨を行う場合がある。例えば、
半導体基板3上に形成された被研磨物31が、最下層か
ら、例えばTi,Taからなる接着層、例えばTiN,
TaNからなるバリアメタル層、例えばCu,Alから
なる金属膜によって構成される3層構造を有している場
合に、金属膜及びバリアメタル層を第1の研磨方法を用
いて研磨し、接着層を第2の研磨方法を用いて研磨する
ことが考えられる。また、被研磨物31が、バリアメタ
ル層(TiN,TaN)と、その上に形成された金属膜
(Cu,W,Al)とによって構成される場合に、金属
膜を第2の研磨方法を用いて研磨した後、バリアメタル
層を第1の研磨方法を用いて研磨することが考えられ
る。このように、被研磨物31の膜質や膜厚に好適な研
磨方法を選択することによって、効率良く研磨を行うこ
とができる。従って、研磨時間を短縮でき、スループッ
トを向上させることができる。
The object to be polished 31 may be polished by combining the first polishing method and the second polishing method. At this time, the case where the polishing is performed using the first polishing method and then the polishing is performed using the second polishing method, and vice versa.
Polishing may be performed using one polishing method. For example,
The object to be polished 31 formed on the semiconductor substrate 3 is formed from the lowermost layer to an adhesive layer made of, for example, Ti or Ta, such as TiN,
When a barrier metal layer made of TaN, for example, a three-layer structure made of a metal film made of Cu and Al, has a three-layer structure, the metal film and the barrier metal layer are polished by the first polishing method to form an adhesive layer. It is conceivable to polish the above using the second polishing method. Further, when the object to be polished 31 is composed of the barrier metal layer (TiN, TaN) and the metal film (Cu, W, Al) formed thereon, the second polishing method is applied to the metal film. After polishing using the barrier metal layer, it is possible to polish the barrier metal layer using the first polishing method. In this way, by selecting a polishing method suitable for the film quality and film thickness of the object to be polished 31, polishing can be performed efficiently. Therefore, the polishing time can be shortened and the throughput can be improved.

【0047】[0047]

【発明の効果】本発明によれば、化学的機械的研磨と電
解研磨を併用することによって、段差緩和性に優れた研
磨装置、研磨パッド、研磨方法を提供することができ
る。また、従来のように被研磨物の膜厚を厚くする必要
がないため、研磨時間を短縮でき、スループットを向上
させることができる。
According to the present invention, it is possible to provide a polishing apparatus, a polishing pad, and a polishing method which are excellent in step reducing property by using both chemical mechanical polishing and electrolytic polishing. Moreover, since it is not necessary to increase the film thickness of the object to be polished as in the conventional case, the polishing time can be shortened and the throughput can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施の形態による研磨装置および研
磨方法を説明するための断面図である。
FIG. 1 is a cross-sectional view for explaining a polishing apparatus and a polishing method according to an embodiment of the present invention.

【図2】 図1に示した研磨パッドの近傍を拡大した断
面図である。
2 is an enlarged cross-sectional view of the vicinity of the polishing pad shown in FIG.

【符号の説明】[Explanation of symbols]

1 研磨パッド、1a 表面、1b 裏面、2 保持板
(バックプレート)、3 半導体基板、4 研磨液供給
部、5 電極(導電基板)、6 電圧印加部、7 リテ
ーナー、11 導電粒子、31 被研磨物(金属膜)、
31a 凸部、31b 凹部、41 研磨液、A 低抵
抗領域、B 高抵抗領域。
1 polishing pad, 1a front surface, 1b back surface, 2 holding plate (back plate), 3 semiconductor substrate, 4 polishing liquid supply unit, 5 electrode (conductive substrate), 6 voltage applying unit, 7 retainer, 11 conductive particle, 31 polishing target Object (metal film),
31a convex part, 31b concave part, 41 polishing liquid, A low resistance region, B high resistance region.

フロントページの続き (51)Int.Cl.7 識別記号 FI B24B 37/00 B24B 37/00 C H C25F 3/16 C25F 3/16 D (58)調査した分野(Int.Cl.7,DB名) H01L 21/304 B23H 5/08 B24B 37/00 C25F 3/16 Continuation of front page (51) Int.Cl. 7 identification code FI B24B 37/00 B24B 37/00 C H C25F 3/16 C25F 3/16 D (58) Fields investigated (Int.Cl. 7 , DB name) H01L 21/304 B23H 5/08 B24B 37/00 C25F 3/16

Claims (12)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 半導体基板上の被研磨物を研磨する研磨
装置であって、 複数の導電粒子を含有し、前記被研磨物の凹凸に応じて
変形するとともに変形部分の抵抗値が変動す る研磨パッ
ドと、前記 半導体基板を保持するとともに、この半導体基板を
前記研磨パッドの表面に押し付ける保持板と、 前記半導体基板と前記研磨パッドの間に、電解液、砥
粒、及び薬液成分を含有する研磨液を供給する研磨液供
給部と、 前記研磨パッドの裏面に設けられた電極と、 前記半導体基板と、前記電極との間に電圧を印加する電
圧印加部と、 を備え 前記研磨パッドの抵抗値の変動により、前記電解液の分
解度を変動させ ることを特徴とする研磨装置
1. Polishing for polishing an object to be polished on a semiconductor substrate
A device, containing a plurality of conductive particles, according to the unevenness of the object to be polished
A polishing pad resistance of deformation portion that fluctuates with deformed holds the semiconductor substrate, and a holding plate for pressing the semiconductor substrate on the surface of the polishing pad, between the polishing pad and the semiconductor substrate, A voltage is applied between a polishing liquid supply unit that supplies a polishing liquid containing an electrolytic solution, abrasive grains, and a chemical liquid component, an electrode provided on the back surface of the polishing pad, the semiconductor substrate, and the electrode. comprising a voltage application unit, and the variation of the resistance value of the polishing pad, min the electrolyte
Polishing device characterized by varying the degree of solution .
【請求項2】 求項に記載の研磨装置において、 前記導電粒子は、金属膜で被覆された球状のシリコンで
あることを特徴とする研磨装置
The polishing apparatus according to claim 2] Motomeko 1, wherein the conductive particles, the polishing apparatus which is a silicon spherical coated with a metal film.
【請求項3】 求項1又は2に記載の研磨装置におい
て、 前記研磨パッドは、前記被研磨物の凸部に対応して圧縮
変形した部分の抵抗値が低くなり、その部分に流れる電
流値が高くなることを特徴とする研磨装置。
The polishing apparatus according to claim 3] Motomeko 1 or 2, wherein the polishing pad, the resistance value of the portion which is compressed and deformed in response to the convex portion of the workpiece is low, the current flowing in that portion A polishing device characterized by a high value.
【請求項4】 請求項1から3の何れかに記載の研磨装
置において、 前記電圧印加部は、0.1〜10Vの電圧を印加するこ
とを特徴とする研磨装置。
4. The polishing apparatus according to claim 1, wherein the voltage applying section applies a voltage of 0.1 to 10V.
【請求項5】 請求項1から4の何れかに記載の研磨装
置において、 前記研磨液供給部は、前記電解液として亜硫酸または硫
酸銅水溶液を含有する研磨液を供給することを特徴とす
る研磨装置。
5. The polishing apparatus according to claim 1, wherein the polishing liquid supply unit supplies a polishing liquid containing sulfurous acid or a copper sulfate aqueous solution as the electrolytic solution. apparatus.
【請求項6】 請求項1から5の何れかに記載の研磨装
置において、 前記研磨液供給部により供給される研磨液は、砥粒を含
有しないことを特徴とする研磨装置
6. The polishing apparatus according to claim 1, wherein the polishing liquid supplied by the polishing liquid supply unit does not contain abrasive grains .
【請求項7】 分的に電気伝導率が変動し得る研磨パ
ッドの表面に対して半導体基板を押し付けながら、電解
液、砥粒、及び薬液成分を含有する研磨液を半導体基板
と研磨パッドの間に供給し、半導体基板上に形成された
被研磨物の化学的機械的研磨を行うとともに、 前記半導体基板と、前記研磨パッドの裏面に設けられた
電極との間に電圧を印加することにより、前記電解液を
分解して前記被研磨物の電解研磨を行う研磨方法であっ
て、 前記被研磨物の凹凸に応じて前記研磨パッドが変形する
ことにより変形部分の抵抗値が変動し、この抵抗値の変
動により前記電解液の分解度を変動させる ことを特徴と
する研磨方法。
While 7. unit content to pressing the semiconductor substrate against the surface of the polishing pad the electrical conductivity may vary, the electrolytic solution, abrasive grain, and the polishing liquid containing the chemical component of the semiconductor substrate and the polishing pad By supplying a voltage between the semiconductor substrate and the chemical mechanical polishing of the object to be polished formed on the semiconductor substrate, and applying a voltage between the semiconductor substrate and the electrode provided on the back surface of the polishing pad. , The electrolyte
It is a polishing method that decomposes and electrolytically polishes the object to be polished.
The polishing pad is deformed according to the unevenness of the object to be polished.
As a result, the resistance value of the deformed part fluctuates, and this resistance value changes.
The polishing method is characterized in that the degree of decomposition of the electrolytic solution is changed by movement .
【請求項8】 部分的に電気伝導率が変動し得る研磨パ
ッドの表面に対して半導体基板を押し付けながら、電解
液及び薬液成分を含有する研磨液を半導体基板と研磨パ
ッドの間に供給し、半導体基板上に形成された被研磨物
の化学的研磨を行うとともに、 前記半導体基板と、前記研磨パッドの裏面に設けられた
電極との間に電圧を印加することにより、前記電解液を
分解して前記被研磨物の電解研磨を行う研磨方法であっ
て、 前記被研磨物の凹凸に応じて前記研磨パッドが変形する
ことにより変形部分の抵抗値が変動し、この抵抗値の変
動により前記電解液の分解度を変動させる ことを特徴と
する研磨方法
8. The semiconductor substrate is pressed against the surface of the polishing pad whose electric conductivity may partially vary, while supplying a polishing liquid containing an electrolytic solution and a chemical component between the semiconductor substrate and the polishing pad. While chemically polishing an object to be polished formed on a semiconductor substrate, by applying a voltage between the semiconductor substrate and an electrode provided on the back surface of the polishing pad, the electrolytic solution is removed.
It is a polishing method that decomposes and electrolytically polishes the object to be polished.
The polishing pad is deformed according to the unevenness of the object to be polished.
As a result, the resistance value of the deformed part fluctuates, and this resistance value changes.
The polishing method is characterized in that the degree of decomposition of the electrolytic solution is changed by movement .
【請求項9】 求項7又は8に記載の研磨方法におい
て、 前記研磨パッドの圧縮変形部分に対応する前記被研磨物
の電解研磨レートが高くなることを特徴とする研磨方
法。
9. The polishing method according to Motomeko 7 or 8, wherein the polishing method characterized by electropolishing rate of the object to be polished is higher for the compressed and deformed portion of the polishing pad.
【請求項10】 請求項7から9の何れかに記載の研磨
方法において、 前記半導体基板と、前記研磨パッドの裏面に設けられた
電極との間に、0.1〜10Vの電圧を印加して電解研
磨を行うことを特徴とする研磨方法。
10. The polishing method according to claim 7 , wherein a voltage of 0.1 to 10 V is applied between the semiconductor substrate and an electrode provided on the back surface of the polishing pad. A polishing method characterized by performing electrolytic polishing.
【請求項11】 請求項7から10の何れかに記載の研
磨方法において、 前記半導体基板と研磨パッドの間に、前記電解液として
亜硫酸または硫酸銅水溶液を含有する研磨液を供給する
ことを特徴とする研磨方法。
11. The polishing method according to claim 7 , wherein a polishing solution containing sulfurous acid or a copper sulfate aqueous solution as the electrolytic solution is supplied between the semiconductor substrate and the polishing pad. And polishing method.
【請求項12】 請求項に記載の研磨方法において前記被研磨物が、化学的機械的研磨によっては研磨困難
な硬い金属であ ることを特徴とする研磨方法。
12. A polishing method according to claim 8, wherein the workpiece is difficult polishing by chemical mechanical polishing
Polishing method characterized by being a hard metal .
JP2000285401A 2000-09-20 2000-09-20 Polishing apparatus and polishing method Expired - Fee Related JP3453352B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000285401A JP3453352B2 (en) 2000-09-20 2000-09-20 Polishing apparatus and polishing method
KR1020000067579A KR100650079B1 (en) 2000-09-20 2000-11-15 Polishing Apparatus and Polishing Pad Useful In Polishing Apparatus and Polishing Method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000285401A JP3453352B2 (en) 2000-09-20 2000-09-20 Polishing apparatus and polishing method

Publications (2)

Publication Number Publication Date
JP2002093758A JP2002093758A (en) 2002-03-29
JP3453352B2 true JP3453352B2 (en) 2003-10-06

Family

ID=18769481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000285401A Expired - Fee Related JP3453352B2 (en) 2000-09-20 2000-09-20 Polishing apparatus and polishing method

Country Status (2)

Country Link
JP (1) JP3453352B2 (en)
KR (1) KR100650079B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7670468B2 (en) 2000-02-17 2010-03-02 Applied Materials, Inc. Contact assembly and method for electrochemical mechanical processing
US7678245B2 (en) 2000-02-17 2010-03-16 Applied Materials, Inc. Method and apparatus for electrochemical mechanical processing

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7078308B2 (en) 2002-08-29 2006-07-18 Micron Technology, Inc. Method and apparatus for removing adjacent conductive and nonconductive materials of a microelectronic substrate
US7153195B2 (en) 2000-08-30 2006-12-26 Micron Technology, Inc. Methods and apparatus for selectively removing conductive material from a microelectronic substrate
US7129160B2 (en) 2002-08-29 2006-10-31 Micron Technology, Inc. Method for simultaneously removing multiple conductive materials from microelectronic substrates
JP2003311540A (en) * 2002-04-30 2003-11-05 Sony Corp Electrolytic polishing liquid, electrolytic polishing method and method for producing semiconductor device
JP2003311536A (en) * 2002-04-23 2003-11-05 Sony Corp Polishing apparatus and method for polishing
US7153777B2 (en) 2004-02-20 2006-12-26 Micron Technology, Inc. Methods and apparatuses for electrochemical-mechanical polishing
ES2604830B1 (en) * 2016-04-28 2017-12-18 Drylyte, S.L. Process for smoothing and polishing metals by ionic transport by means of free solid bodies, and solid bodies to carry out said process.
ES2682524B2 (en) * 2017-03-20 2022-01-11 Steros Gpa Innovative S L ELECTROPOLISHING APPARATUS
RU2700226C1 (en) * 2018-10-02 2019-09-13 федеральное государственное бюджетное образовательное учреждение высшего образования "Уфимский государственный авиационный технический университет" Method of electropolishing of metal part
ES2734499B2 (en) 2018-11-12 2020-06-03 Drylyte Sl Use of sulfonic acids in dry electrolytes to polish metal surfaces through ion transport
RU2697759C1 (en) * 2019-02-01 2019-08-19 Аскар Джамилевич Мингажев Method of electrochemical treatment of internal channel of metal part and electrode-tool for its implementation
RU2710092C1 (en) * 2019-05-06 2019-12-24 Общество с ограниченной ответственностью "Фирма "Радиус-Сервис" Apparatus for electrochemical treatment of helical tooth profile of inner surface in opening of tubular billet
RU2710086C1 (en) * 2019-10-03 2019-12-24 Мингажев Аскар Джамилевич Method of electrically polishing inner channel of metal part and device for its implementation
RU2722544C1 (en) * 2019-11-06 2020-06-01 Аскар Джамилевич Мингажев Method of turbomachine hollow blade treatment with perforated holes

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5911619A (en) * 1997-03-26 1999-06-15 International Business Machines Corporation Apparatus for electrochemical mechanical planarization
JP3507678B2 (en) * 1997-12-03 2004-03-15 松下電器産業株式会社 Polishing slurry, substrate polishing apparatus and substrate polishing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7670468B2 (en) 2000-02-17 2010-03-02 Applied Materials, Inc. Contact assembly and method for electrochemical mechanical processing
US7678245B2 (en) 2000-02-17 2010-03-16 Applied Materials, Inc. Method and apparatus for electrochemical mechanical processing

Also Published As

Publication number Publication date
KR100650079B1 (en) 2006-11-27
KR20020022522A (en) 2002-03-27
JP2002093758A (en) 2002-03-29

Similar Documents

Publication Publication Date Title
JP3453352B2 (en) Polishing apparatus and polishing method
TW550699B (en) Method of chemical mechanical polishing with high throughput and low dishing
TW536450B (en) Conductive polishing article for electrochemical mechanical polishing
JP2893012B2 (en) Method and apparatus for planarizing a workpiece
US6299741B1 (en) Advanced electrolytic polish (AEP) assisted metal wafer planarization method and apparatus
US6368190B1 (en) Electrochemical mechanical planarization apparatus and method
US6409904B1 (en) Method and apparatus for depositing and controlling the texture of a thin film
US6464855B1 (en) Method and apparatus for electrochemical planarization of a workpiece
US20060194518A1 (en) Methods for planarization of Group VIII metal-containing surfaces using a fixed abrasive article
KR20060013686A (en) Polishing composition and method for polishing a conductive material
JPH10128654A (en) Cmp device and abrasive cloth capable of being used in this cmp device
KR20070104479A (en) Polishing composition and method for polishing a conductive material
KR100408932B1 (en) Abrading method for semiconductor device
US20030217927A1 (en) Long-life workpiece surface influencing device structure and manufacturing method
US20070034502A1 (en) Electrolytic processing apparatus
TWI753605B (en) Pad conditioner and manufacturing method thereof
WO2003060980A2 (en) Methods for planarization of group viii metal-containing surfaces using oxidizing gases
TW200919571A (en) High throughput low topography copper CMP process
US7077975B2 (en) Methods and compositions for removing group VIII metal-containing materials from surfaces
US6875322B1 (en) Electrochemical assisted CMP
JP2003080457A (en) Cutting tool and manufacturing method therefor
US20060272773A1 (en) Semiconductor substrate polishing methods and equipment
JP2003109919A (en) Device and method for polishing and method of manufacturing semiconductor device
KR20040067893A (en) Electrolytic polishing apparatus and polishing method
US20060219572A1 (en) Abrasive Electrolyte

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees