JP3451948B2 - Construction method of seismic retrofit structure - Google Patents

Construction method of seismic retrofit structure

Info

Publication number
JP3451948B2
JP3451948B2 JP19840198A JP19840198A JP3451948B2 JP 3451948 B2 JP3451948 B2 JP 3451948B2 JP 19840198 A JP19840198 A JP 19840198A JP 19840198 A JP19840198 A JP 19840198A JP 3451948 B2 JP3451948 B2 JP 3451948B2
Authority
JP
Japan
Prior art keywords
relative displacement
earthquake
constructing
seismic
underground buried
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19840198A
Other languages
Japanese (ja)
Other versions
JP2000027199A (en
Inventor
洋三 後藤
清 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP19840198A priority Critical patent/JP3451948B2/en
Publication of JP2000027199A publication Critical patent/JP2000027199A/en
Application granted granted Critical
Publication of JP3451948B2 publication Critical patent/JP3451948B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Foundations (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、主として杭や地下
埋設部分を有する耐震補強構造の構築方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention mainly relates to a method of constructing a seismic strengthening structure having piles and underground buried portions.

【0002】[0002]

【従来の技術】構造物の基礎形式は、直接基礎、杭基
礎、ケーソン基礎等に大別されるが、表層近傍の地盤強
度が構造物の重量に比して相対的に小さい場合には、良
質な支持層まで杭を打ち込む杭基礎を採用するととも
に、構造物に一定の地下埋設部分を設けることが多い。
2. Description of the Related Art Foundation types of structures are roughly classified into direct foundations, pile foundations, caisson foundations, etc., but when the ground strength near the surface is relatively small compared to the weight of the structure, In addition to adopting a pile foundation that drives piles up to a good-quality support layer, a structure is often provided with a certain underground buried portion.

【0003】ここで、設計時に用いた地震外力では不十
分であってその見直しが必要となることがあるが、杭自
体に問題がある場合はともかく、杭の健全性に問題がな
いのであれば、構造物、特にその地下埋設部分を耐震補
強することで構造物の健全性を維持できる場合が多い。
そして、耐震補強の際には、構造物の重量をできるだけ
増加させずに強度増大を図るのが望ましく、例えば炭素
繊維シートの巻付けによる補強が効果的である。
Here, there are cases where the external seismic force used at the time of designing is insufficient and needs to be reviewed, but if there is no problem with the soundness of the pile, regardless of the problem with the pile itself. In many cases, the soundness of a structure can be maintained by seismically strengthening the structure, especially its underground buried part.
Then, at the time of earthquake-proof reinforcement, it is desirable to increase the strength without increasing the weight of the structure as much as possible, and for example, reinforcement by winding a carbon fiber sheet is effective.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上述し
たような耐震補強方法では、工事期間中、施設の供用を
中断しなければならないという問題や、耐震補強自体に
コストがかかるという問題を生じていた。
However, the above-mentioned seismic retrofitting method has a problem that the service of the facility must be interrupted during the construction period and that the seismic retrofitting itself is costly. .

【0005】一方、新設の構造物については、上述した
施設供用の問題は生じないが、構造物の重量を抑えつつ
その強度増大を図ることにやはりコストがかかるという
問題に変わりはなく、現状の耐震補強に代わる新たな耐
震補強対策が望まれていた。
On the other hand, with respect to the newly constructed structure, the above-mentioned problems in service of the facility do not occur, but it is still costly to increase the strength while suppressing the weight of the structure. New seismic retrofitting measures to replace seismic retrofitting were desired.

【0006】本発明は、上述した事情を考慮してなされ
たもので、工事期間中に施設の供用を中断することな
く、しかも経済性に優れた耐震補強構造の構築方法を提
供することを目的とする。
The present invention has been made in consideration of the above-mentioned circumstances, and an object thereof is to provide a method for constructing a seismic strengthening structure which does not interrupt the service of the facility during the construction period and is excellent in economic efficiency. And

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、本発明に係る耐震補強構造の構築方法は請求項1に
記載したように、構造物の地下外壁周囲を掘り下げて中
空空間を形成した後、該中空空間に緩衝材を充填して相
対変位吸収領域を構築する耐震補強構造の構築方法であ
って、地震時における前記構造物の地下埋設部分と周辺
地盤との相対変位を前記相対変位吸収領域で吸収するよ
うに構成したものである。
In order to achieve the above object, in the method for constructing a seismic strengthening structure according to the present invention, as described in claim 1, a hollow space is formed by digging around the underground outer wall of the structure. After that, a method for constructing a seismic strengthening structure in which the hollow space is filled with a cushioning material to construct a relative displacement absorption region, wherein the relative displacement between the underground buried portion of the structure and the surrounding ground at the time of an earthquake is the relative displacement. It is configured to absorb in the absorption region.

【0008】また、本発明に係る耐震補強構造の構築方
法は請求項2に記載したように、構造物の周囲の地盤を
攪拌機で掘り下げつつ、該攪拌機の先端から発泡体を注
入攪拌することによって該発泡体を緩衝材とするととも
に、該緩衝材と土粒子との攪拌混合物で相対変位吸収領
域を構築する耐震補強構造の構築方法であって、地震時
における前記構造物の地下埋設部分と周辺地盤との相対
変位を前記相対変位吸収領域で吸収するように構成した
ものである。
Further, according to the method of constructing a seismic strengthening structure of the present invention, as described in claim 2, the ground around the structure is dug down with a stirrer, and the foam is injected and stirred from the tip of the stirrer. A method for constructing a seismic strengthening structure in which the foam is used as a cushioning material, and a relative displacement absorbing region is constructed by a stirring mixture of the cushioning material and soil particles, which is an underground buried portion and the periphery of the structure during an earthquake. The relative displacement with the ground is absorbed by the relative displacement absorption region.

【0009】本発明に係る耐震補強構造の構築方法にお
いては、構造物の地下埋設部分と周辺地盤との間に地震
時における地下埋設部分と周辺地盤との相対変位を吸収
する相対変位吸収領域を設けてあるので、地震時におけ
る側方からの地震入力が小さくなり、その分、構造物全
体に入力する地震エネルギーが減少するとともに、周辺
地盤からの土圧が構造物の地下埋設部分に作用しなくな
るので、構造物の地下埋設部分の部材力が大幅に低減す
る。また、周辺地盤が構造物の地下埋設部分を拘束しな
くなるので、構造物の固有周期が長周期化し、地震波の
卓越周期から外れる、いわば免震効果も期待できる。
In the method for constructing a seismic strengthening structure according to the present invention, a relative displacement absorbing region for absorbing a relative displacement between the underground buried portion and the surrounding ground at the time of an earthquake is provided between the underground buried portion of the structure and the surrounding ground. Since it is provided, the earthquake input from the side at the time of an earthquake will be small, the seismic energy input to the entire structure will be reduced accordingly, and the earth pressure from the surrounding ground will act on the underground buried part of the structure. Since it disappears, the member force of the underground buried part of the structure is significantly reduced. In addition, since the surrounding ground does not constrain the underground buried part of the structure, the natural period of the structure becomes longer, and it is possible to expect a seismic isolation effect, which deviates from the dominant period of seismic waves.

【0010】相対変位吸収領域の構造や形状は任意であ
り、例えば構造物の地下外壁周囲をドライエリアのよう
に中空の空間とすることも考えられるが、かかる相対変
位吸収領域を地下埋設部分と周辺地盤との間に所定の緩
衝材を配置して構成したならば、地震時における構造物
の揺れがかかる緩衝材によって減衰作用を受け、該揺れ
は速やかに収斂する。緩衝材としては、材料自体に変形
吸収能があるゴム、発泡スチロールや発泡ウレタンとい
った発泡体、アスファルト、シリコン、軟弱粘土等はも
ちろんのこと、集合体として変形吸収能を発揮すること
が期待されるもの、例えば埋戻し土、飽和した緩い砂、
軽量土、砂利、砕石なども含まれる。
The structure and shape of the relative displacement absorption region are arbitrary. For example, it is conceivable that the surrounding outer wall of the structure is made into a hollow space like a dry area. If a predetermined cushioning material is arranged between the ground and the surrounding ground, the structure is shaken at the time of an earthquake, and the shock absorbing material damps the structure to quickly converge. As the cushioning material, not only rubber, which has the ability to absorb and deform itself, foam such as styrofoam and urethane, asphalt, silicon, soft clay, etc., but also those which are expected to exert deformation and absorbency as an aggregate , Backfill soil, saturated loose sand, for example
It also includes lightweight soil, gravel, and crushed stone.

【0011】また、緩衝材をどのように配置するかも任
意であり、構造物の地下外壁周囲を掘り下げて中空空間
を形成した後、該中空空間に緩衝材を充填するようにし
てもよいし、アースオーガ等の攪拌機で構造物の周囲の
地盤を掘り下げつつその先端から発泡体を注入攪拌する
ようにしてもよい。
It is also arbitrary how to dispose the cushioning material. After the underground outer wall of the structure is dug down to form a hollow space, the hollow space may be filled with the cushioning material, The foam around the structure may be dug down with a stirrer such as an earth auger and the foam may be injected and stirred from the tip thereof.

【0012】[0012]

【発明の実施の形態】以下、本発明に係る耐震補強構造
の構築方法の実施の形態について、添付図面を参照して
説明する。なお、従来技術と実質的に同一の部品等につ
いては同一の符号を付してその説明を省略する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of a method of constructing a seismic reinforcing structure according to the present invention will be described below with reference to the accompanying drawings. It should be noted that parts and the like which are substantially the same as those of the conventional technique are designated by the same reference numerals and the description thereof is omitted.

【0013】図1は、本実施形態に係る耐震補強構造の
構築方法によって構築された構造物の耐震補強構造を示
したものである。同図でわかるように、本実施形態に係
る構造物の耐震補強構造は、構造物1の地下埋設部分2
と周辺地盤3との間に相対変位吸収領域4を設けてあ
る。
FIG. 1 shows a seismic strengthening structure for a structure constructed by the method for constructing a seismic strengthening structure according to this embodiment. As can be seen in the figure, the seismic retrofit structure of the structure according to the present embodiment has an underground buried portion 2 of the structure 1.
A relative displacement absorbing region 4 is provided between the ground and the surrounding ground 3.

【0014】相対変位吸収領域4は、地下埋設部分2と
周辺地盤3との間に緩衝材5を配置して構成してあり、
地震時における地下埋設部分2と周辺地盤3との相対変
位を吸収するようになっている。
The relative displacement absorption region 4 is constructed by arranging a cushioning material 5 between the underground buried portion 2 and the surrounding ground 3.
It is designed to absorb the relative displacement between the underground buried portion 2 and the surrounding ground 3 during an earthquake.

【0015】緩衝材5は、材料自体に変形吸収能がある
ゴム、発泡スチロールや発泡ウレタンといった発泡体、
アスファルト、シリコン、軟弱粘土等をはじめ、集合体
として変形吸収能を発揮することが期待されるもの、例
えば埋戻し土、飽和した緩い砂、軽量土、砂利、砕石な
どを用いることができる。
The cushioning material 5 is made of rubber, which has the ability to absorb and deform itself, foam such as styrene foam and urethane foam,
In addition to asphalt, silicon, soft clay, etc., it is possible to use one that is expected to exhibit deformation and absorption ability as an aggregate, such as backfilled soil, saturated loose sand, lightweight soil, gravel, crushed stone, and the like.

【0016】本実施形態に係る構造物の耐震補強構造を
構築するにあたっては、構造物1の地下外壁周囲を掘り
下げて中空空間を形成した後、該中空空間に緩衝材5を
充填して相対変位吸収領域4を構築すればよい。
In constructing the structure for earthquake-proof reinforcement of the structure according to the present embodiment, a hollow space is formed by digging around the underground outer wall of the structure 1 and then the hollow space is filled with a buffer material 5 for relative displacement. The absorption region 4 may be constructed.

【0017】本実施形態に係る耐震補強構造の構築方法
においては、構造物1の地下埋設部分2と周辺地盤3と
の間に相対変位吸収領域4を設けてあり、地震時には、
地下埋設部分2と周辺地盤3との相対変位が相対変形吸
収領域4にて吸収されるとともに、相対変形吸収領域4
を構成する緩衝材5のエネルギー吸収機能によって構造
物1の地震による振動エネルギーが吸収される。
In the method of constructing the seismic strengthening structure according to the present embodiment, the relative displacement absorbing region 4 is provided between the underground buried portion 2 of the structure 1 and the surrounding ground 3, and during an earthquake,
The relative displacement between the underground buried portion 2 and the surrounding ground 3 is absorbed in the relative deformation absorption region 4 and the relative deformation absorption region 4
The vibration absorbing energy of the structure 1 absorbs the vibration energy of the structure 1 due to the earthquake.

【0018】以上説明したように、本実施形態に係る耐
震補強構造の構築方法によれば、相対変位吸収領域4に
よって地震時における地下埋設部分2と周辺地盤3との
相対変位が吸収されるので、地震時における側方の周辺
地盤3からの地震入力が小さくなり、その分、構造物1
全体に入力する地震エネルギーが減少するとともに、周
辺地盤3からの土圧が構造物1の地下埋設部分2に作用
しなくなるので、構造物の地下埋設部分2の部材力が大
幅に低減する。また、周辺地盤3が構造物1の地下埋設
部分2を拘束しなくなるので、構造物1の固有周期が長
周期化し、地震波の卓越周期から外れる、いわば免震効
果も期待できる。
As described above, according to the method of constructing the seismic strengthening structure according to the present embodiment, the relative displacement absorption region 4 absorbs the relative displacement between the underground buried portion 2 and the surrounding ground 3 during the earthquake. , Earthquake input from the surrounding ground 3 on the side at the time of an earthquake becomes small, and the structure 1
Since the seismic energy input to the whole is reduced and the earth pressure from the surrounding ground 3 does not act on the underground buried portion 2 of the structure 1, the member force of the underground buried portion 2 of the structure is significantly reduced. Further, since the surrounding ground 3 does not restrain the underground buried portion 2 of the structure 1, the natural period of the structure 1 becomes longer, and it is possible to expect a so-called seismic isolation effect, which deviates from the dominant period of seismic waves.

【0019】言い換えれば、構造物自体の構造断面を大
きくしたり炭素繊維シート等で補強したりすることで構
造物の耐震性能を向上させる従来の考え方とは異なり、
相対変位吸収領域4を設けることで地震入力の低減を図
り、結果的に構造物1の耐震性能を向上させることがで
きる。
In other words, unlike the conventional way of thinking that the seismic performance of a structure is improved by enlarging the structural cross section of the structure itself or reinforcing it with a carbon fiber sheet or the like,
By providing the relative displacement absorption region 4, the seismic input can be reduced, and as a result, the seismic performance of the structure 1 can be improved.

【0020】そのため、設計外力の見直しがあったとし
ても、設計面であれ施工面であれ容易に対応することが
できるとともに、相対変位吸収領域4を構築するのに構
造物1の供用を中断する必要もない。
Therefore, even if the design external force is reviewed, it can be easily dealt with whether it is a design surface or a construction surface, and the service of the structure 1 is suspended to construct the relative displacement absorption region 4. There is no need.

【0021】図2は、本実施形態に係る耐震補強構造の
構築方法によって構築された構造物の耐震補強構造の作
用効果を確認するために行った動的応答解析の結果を示
したグラフであり、相対変形吸収領域4を設けたことに
より、構造物1に作用する地震時水平土圧を大幅に低減
できることがわかる。
FIG. 2 is a graph showing the results of a dynamic response analysis performed to confirm the effect of the seismic reinforcement structure of the structure constructed by the method for constructing the seismic reinforcement structure according to this embodiment. It is understood that the provision of the relative deformation absorption region 4 can significantly reduce the horizontal earth pressure acting on the structure 1 during an earthquake.

【0022】また、構造物1の内部を耐震補強するわけ
ではないので、耐震補強に要するコストを抑えることが
可能である。
Further, since the inside of the structure 1 is not reinforced by earthquake resistance, it is possible to suppress the cost required for the earthquake resistance reinforcement.

【0023】また、本実施形態に係る耐震補強構造の構
築方法によれば、相対変位吸収領域4を地下埋設部分2
と周辺地盤3との間に緩衝材5を配置して構成したの
で、地震時における構造物1の揺れが緩衝材5によって
減衰作用を受け、該揺れを速やかに収斂させることが可
能となる。
Further, according to the method of constructing the seismic strengthening structure according to the present embodiment, the relative displacement absorption region 4 is formed in the underground buried portion 2.
Since the buffer material 5 is arranged between the ground and the surrounding ground 3, the vibration of the structure 1 at the time of an earthquake is attenuated by the buffer material 5, and the vibration can be quickly converged.

【0024】本実施形態では、構造物1の地下外壁周囲
を掘り下げて中空空間を形成した後、該中空空間に緩衝
材5を充填するようにしたが、これに代えて、アースオ
ーガ等の攪拌機で構造物1の周囲の地盤を掘り下げつつ
その先端から発泡体を注入攪拌することによって該発泡
体を緩衝材としてもよい。なお、かかる構成において
は、相対変位吸収領域は、緩衝材である発泡体と土粒子
との攪拌混合物として構成されることになる。
In the present embodiment, after the underground outer wall of the structure 1 is dug down to form a hollow space, the hollow space is filled with the cushioning material 5. However, instead of this, a stirrer such as an earth auger is used. The foam may be used as a cushioning material by digging into the ground around the structure 1 and pouring and stirring the foam from the tip thereof. In this configuration, the relative displacement absorption area is configured as a stirring mixture of the foamed material that is the cushioning material and the soil particles.

【0025】また、本実施形態では、相対変位吸収領域
4を地下埋設部分2と周辺地盤3との間に緩衝材5を配
置して構成したが、これに代えて図3に示すように、構
造物1の地下埋設部分2(地下外壁)の周囲にドライエ
リアのような中空の空間を形成し、これを相対変位吸収
領域21としてもよい。かかる構成においては、緩衝材
による構造物の揺れを減衰させる作用は得られないが、
地震入力の低減を図ることができる点については、上述
した実施形態と何ら変わるものではない。
Further, in the present embodiment, the relative displacement absorption region 4 is constructed by disposing the cushioning material 5 between the underground buried portion 2 and the surrounding ground 3, but instead of this, as shown in FIG. A hollow space such as a dry area may be formed around the underground buried portion 2 (underground outer wall) of the structure 1 and used as the relative displacement absorption region 21. In such a configuration, the effect of damping the vibration of the structure by the cushioning material cannot be obtained,
The point that the seismic input can be reduced is no different from the above-described embodiment.

【0026】また、本実施形態では、相対変位吸収領域
4と周辺地盤3との境界を鉛直面としたが、必ずしも鉛
直面とする必要はなく、例えば図4(a)に示すように、
周辺地盤3に形成された法面32と構造物1の地下埋設
部分2(地下外壁)との間を中空空間とし、これを相対
変位吸収領域31としてもよいし、同図(b)に示すよう
に、周辺地盤3に形成された法面32と構造物1の地下
埋設部分2との間に緩衝材5を充填し、これを相対変位
吸収領域33としてもよい。
Further, in the present embodiment, the boundary between the relative displacement absorption region 4 and the surrounding ground 3 is set to the vertical plane, but it is not always required to be the vertical plane, and for example, as shown in FIG.
A hollow space may be formed between the slope 32 formed on the surrounding ground 3 and the underground buried portion 2 (underground outer wall) of the structure 1, and this may be used as the relative displacement absorption region 31, as shown in FIG. As described above, the cushioning material 5 may be filled between the slope 32 formed in the surrounding ground 3 and the underground buried portion 2 of the structure 1 to form the relative displacement absorbing area 33.

【0027】また、本実施形態では特に言及しなかった
が、周辺地盤が軟弱な場合、地震時において該地盤が相
対変位吸収領域側に崩落する懸念がある。かかる場合に
は、図5に示すように、相対変位吸収領域4、21に対
向する側の周辺地盤3に地中連続壁、鋼板、鋼管矢板等
で構成した土留め壁41を設けたり、図6に示すよう
に、相対変位吸収領域31、33に対向する側の周辺地
盤3の法面に吹付けコンクリート等で構成した地山安定
材42を設けるようにすればよい。
Although not particularly mentioned in the present embodiment, when the surrounding ground is soft, there is a concern that the ground will collapse toward the relative displacement absorption region side during an earthquake. In such a case, as shown in FIG. 5, an earth retaining wall 41 composed of an underground continuous wall, a steel plate, a steel pipe sheet pile, or the like may be provided in the surrounding ground 3 on the side facing the relative displacement absorption areas 4 and 21. As shown in FIG. 6, a ground stabilizer 42 made of shotcrete or the like may be provided on the slope of the surrounding ground 3 on the side facing the relative displacement absorption regions 31, 33.

【0028】かかる構成によれば、地震時における相対
変位吸収領域側への周辺地盤3の崩落はもちろんのこ
と、緩衝材5への過大な土圧発生も未然に防止され、上
述したような相対変位領域を設けたことによる地震入力
の低減等の効果を確実かつ長期的に得ることが可能とな
る。
According to such a structure, not only the peripheral ground 3 is not collapsed to the relative displacement absorption area side at the time of an earthquake but also excessive earth pressure is prevented from being generated on the cushioning material 5, and the relative displacement as described above is prevented. By providing the displacement area, it is possible to reliably and long-term obtain the effect of reducing the earthquake input.

【0029】[0029]

【発明の効果】以上述べたように、本発明に係る耐震補
強構造の構築方法によれば、相対変位吸収領域によって
地震時における地下埋設部分と周辺地盤との相対変位が
吸収される。したがって、地震時における側方からの地
震入力が小さくなり、その分、構造物全体に入力する地
震エネルギーが減少するとともに、周辺地盤からの土圧
が構造物の地下埋設部分に作用しなくなるので、構造物
の地下埋設部分の部材力が大幅に低減する。また、地震
時における構造物の揺れが緩衝材によって減衰作用を受
け、該揺れを速やかに収斂させることが可能となるとい
う効果も奏する。
As described above, according to the method of constructing a seismic strengthening structure according to the present invention, the relative displacement absorbing region absorbs the relative displacement between the underground buried portion and the surrounding ground during an earthquake. Therefore, the earthquake input from the side at the time of an earthquake will be small, and the seismic energy input to the entire structure will be reduced accordingly, and the earth pressure from the surrounding ground will not act on the underground buried part of the structure, The member strength of the underground buried part of the structure is significantly reduced. Further, there is an effect that the vibration of the structure at the time of an earthquake is attenuated by the cushioning material, and the vibration can be quickly converged.

【0030】[0030]

【0031】[0031]

【図面の簡単な説明】[Brief description of drawings]

【図1】本実施形態に係る構造物の耐震補強構造の図で
あり、(a)は鉛直断面図、(b)はA―A線に沿う水平断面
図。
1A and 1B are diagrams of a structure for earthquake-proof reinforcement of a structure according to the present embodiment, where FIG. 1A is a vertical sectional view and FIG. 1B is a horizontal sectional view taken along the line AA.

【図2】本実施形態に係る構造物の耐震補強構造の作用
効果を確認するために行った解析結果を示したグラフ。
FIG. 2 is a graph showing a result of an analysis performed to confirm a function and effect of the seismic strengthening structure for a structure according to the present embodiment.

【図3】変形例に係る構造物の耐震補強構造の鉛直断面
図。
FIG. 3 is a vertical cross-sectional view of a seismic retrofit structure for a structure according to a modification.

【図4】別の変形例に係る構造物の耐震補強構造の鉛直
断面図。
FIG. 4 is a vertical cross-sectional view of a seismic strengthening structure for a structure according to another modification.

【図5】別の変形例に係る構造物の耐震補強構造の鉛直
断面図。
FIG. 5 is a vertical cross-sectional view of an earthquake-proof reinforcing structure for a structure according to another modification.

【図6】別の変形例に係る構造物の耐震補強構造の鉛直
断面図。
FIG. 6 is a vertical sectional view of a seismic retrofit structure for a structure according to another modification.

【符号の説明】[Explanation of symbols]

1 構造物 2 地下埋設部分 3 周辺地盤 4、21、31、33 相対変位吸収領域 5 緩衝材 41 土留め壁 42 地山安定材 1 structure 2 underground part 3 surrounding ground 4, 21, 31, 33 Relative displacement absorption area 5 cushioning material 41 Earth retaining wall 42 Ground stabilization material

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) E02D 27/34 ─────────────────────────────────────────────────── ─── Continuation of the front page (58) Fields surveyed (Int.Cl. 7 , DB name) E02D 27/34

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 構造物の地下外壁周囲を掘り下げて中空
空間を形成した後、該中空空間に緩衝材を充填して相対
変位吸収領域を構築する耐震補強構造の構築方法であっ
て、地震時における前記構造物の地下埋設部分と周辺地
盤との相対変位を前記相対変位吸収領域で吸収するよう
に構成したことを特徴とする耐震補強構造の構築方法。
1. A method for constructing a seismic strengthening structure in which a hollow space is formed by digging around the outer wall of a structure to form a hollow space, and then the hollow space is filled with a cushioning material to construct a relative displacement absorption region, which is a method for constructing a relative earthquake absorption structure during an earthquake. The method for constructing an earthquake-proof reinforcing structure, characterized in that the relative displacement between the underground buried portion of the structure and the surrounding ground is absorbed in the relative displacement absorption region.
【請求項2】 構造物の周囲の地盤を攪拌機で掘り下げ
つつ、該攪拌機の先端から発泡体を注入攪拌することに
よって該発泡体を緩衝材とするとともに、該緩衝材と土
粒子との攪拌混合物で相対変位吸収領域を構築する耐震
補強構造の構築方法であって、地震時における前記構造
物の地下埋設部分と周辺地盤との相対変位を前記相対変
位吸収領域で吸収するように構成したことを特徴とする
耐震補強構造の構築方法。
2. The foam around the structure is dug down with a stirrer while pouring and stirring the foam from the tip of the stirrer to use the foam as a cushioning material, and a stirring mixture of the cushioning material and soil particles. In the method of constructing a seismic strengthening structure for constructing a relative displacement absorption area in, the relative displacement absorption area absorbs the relative displacement between the underground buried portion of the structure and the surrounding ground during an earthquake. A method of constructing a characteristic seismic reinforcement structure.
JP19840198A 1998-07-14 1998-07-14 Construction method of seismic retrofit structure Expired - Fee Related JP3451948B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19840198A JP3451948B2 (en) 1998-07-14 1998-07-14 Construction method of seismic retrofit structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19840198A JP3451948B2 (en) 1998-07-14 1998-07-14 Construction method of seismic retrofit structure

Publications (2)

Publication Number Publication Date
JP2000027199A JP2000027199A (en) 2000-01-25
JP3451948B2 true JP3451948B2 (en) 2003-09-29

Family

ID=16390525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19840198A Expired - Fee Related JP3451948B2 (en) 1998-07-14 1998-07-14 Construction method of seismic retrofit structure

Country Status (1)

Country Link
JP (1) JP3451948B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5779518B2 (en) * 2012-02-14 2015-09-16 光洋自動機株式会社 Seismic isolation structure for underground structures

Also Published As

Publication number Publication date
JP2000027199A (en) 2000-01-25

Similar Documents

Publication Publication Date Title
JP3491671B2 (en) Seismic isolation structure of shield tunnel, construction method thereof, and shield tunnel segment used therefor
JP2980604B1 (en) Vibration isolation foundation structure of building and its construction method
JP2009249999A (en) Construction method for suppressing deformation of filling
JP4565397B2 (en) Seismic reinforcement method for structures
JP3451948B2 (en) Construction method of seismic retrofit structure
JP2007009421A (en) Foundation structure of structure
JP5747458B2 (en) Ground displacement absorption isolation structure
JPH11148143A (en) Aseismatic reinforcing structure of structure
JP3451934B2 (en) Seismic underground structure of structure
JP2000064327A (en) Base isolation structure of structure
JPS62260919A (en) Small pile for reinforcing foundation ground to earthquake
JP3473009B2 (en) Seismic retrofit structure and construction method thereof
JP6685560B2 (en) Foundation structure for wind power generator
JP7333291B2 (en) Foundation foot protection structure and foundation foot protection method
JP2004339894A (en) Aseismic reinforcement structure of pile foundation structure
JPH08184064A (en) Foundation structure of building
JP3858251B2 (en) Seismic reinforcement structure for structures
KR100297436B1 (en) Methods for constructing a backfill of concrete structures
JPH08113959A (en) Reinforcing structure of supporting ground of structure
JP2725516B2 (en) Liquefaction countermeasures for buried structures
JPH0713366B2 (en) Reinforcing pile for sandy ground
JP2005314926A (en) Foundation structure of building and its construction method
JP3613442B2 (en) Seismic isolation structure of structure
JPH0119487B2 (en)
JPH1046619A (en) Foundation structure of construction in sand-layer ground

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030617

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080718

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090718

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100718

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100718

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140718

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees