JP3448941B2 - Chip-shaped solid electrolytic capacitors - Google Patents

Chip-shaped solid electrolytic capacitors

Info

Publication number
JP3448941B2
JP3448941B2 JP03498294A JP3498294A JP3448941B2 JP 3448941 B2 JP3448941 B2 JP 3448941B2 JP 03498294 A JP03498294 A JP 03498294A JP 3498294 A JP3498294 A JP 3498294A JP 3448941 B2 JP3448941 B2 JP 3448941B2
Authority
JP
Japan
Prior art keywords
anode
lead frame
capacitor element
lead
solid electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP03498294A
Other languages
Japanese (ja)
Other versions
JPH07245244A (en
Inventor
一美 内藤
徹 沢口
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to JP03498294A priority Critical patent/JP3448941B2/en
Publication of JPH07245244A publication Critical patent/JPH07245244A/en
Application granted granted Critical
Publication of JP3448941B2 publication Critical patent/JP3448941B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、チップ状の固体電解コ
ンデンサに関する。 【0002】 【従来の技術】従来のチップ状固体電解コンデンサは、
表面に誘電体酸化皮膜層を有するアルミニウム、タンタ
ル、ニオブ等の弁作用金属からなる板状の陽極基体の一
部を陽極部とし、残部に半導体層、及び導電体層を順次
形成して陰極部としたコンデンサ素子を形成し、次いで
このコンデンサ素子とリードフレームに図3、図4のよ
うに接続している。図3はコンデンサ素子2とリードフ
レーム1の接続関係を示した平面図であり、図4はその
断面図である。リードフレームの互いに向き合った凸部
1a、1bに各々、前記コンデンサ素子2の陽極部3と
陰極部4を載置し、前者は熔接等で後者は銀ペースト等
で、リードフレーム1の凸部に電気的、機械的に接続し
た後、外装樹脂で封止成形を行って製作されている。こ
のようにして作製されたチップ状固体電解コンデンサ
は、容量、もれ電流値(以下、LCと略す)等の測定を
行い合格したものを製品としている。 【0003】 【発明が解決しようとする課題】前述したコンデンサ素
子の陰極部は、アルミニウム箔等の陽極基体の表面に半
導体層および導電体層が積層されているため陽極部より
も厚みが厚くなっている。従って、この厚みの差は該コ
ンデンサ素子をリードフレームに接続する場合に、陽極
部とリードフレーム間に隙間を生じさせる原因となり、
この結果陽極部とリードフレームとの接続に無理な応力
を及ぼすことになる。それゆえ、作製したチップ状固体
電解コンデンサのLC値が上昇することがしばしばあっ
た。 【0004】このような隙間の存在を防ぐために隙間と
同程度の厚みのスペーサーを入れることや、隙間分を考
慮した段差フレームを使用することが考えられるが、前
述したコンデンサ素子の陰極部の厚みは微妙に変化する
ため高度な管理が困難であり、その結果、寸法が固定し
たスペーサーや段差フレームでは得策ではないという問
題点があった。またスペーサー、段差フレームの使用は
コストアップ要因ともなる。 【0005】 【課題を解決するための手段】本発明は前述した課題を
解決するためになされたもので、その要旨は、弁作用を
有し表面に誘電体酸化皮膜層が形成された板状の陽極基
体の一部を陽極部とし、残部に半導体層、その上に導電
体層を順次形成して陰極部とし、次いでリードフレーム
の陰極リード引出し部と陽極リード引出し部とにそれぞ
れ前記コンデンサ素子の陰極部と陽極部を接続して、外
装樹脂で封止成形したチップ状固体電解コンデンサにお
いて、コンデンサ素子をリードフレームに対して陽極部
側下りに傾斜させて載置接続したチップ状固体電解コン
デンサである。 【0006】以下、本発明について詳細に説明する。本
発明において固体電解コンデンサの陽極として用いられ
る弁作用を有する陽極基体としては、例えばアルミニウ
ム、タンタル、及びこれらを基質とする合金等、弁作用
を有する金属がいずれも使用できる。そして、陽極基体
の形状としては、平板状の箔や板が挙げられる。又、弁
作用金属箔の表面は、エッチングによって実表面積が増
加されていてもよい。陽極基体の表面に設ける誘電体酸
化皮膜層は、弁作用金属の表面部分に設けられた弁作用
金属自体の酸化物層であっても良く、あるいは弁作用金
属箔の表面上に設けられた他の誘電体酸化物の層であっ
ても良いが、特に弁作用金属自体の酸化物からなる層で
あることが望ましい。 【0007】本発明では、表面に誘電体酸化皮膜層が形
成された平板状の陽極基体の端部の一区画に陽極部を設
けており、陽極部とした以外の残りの誘電体酸化皮膜層
上に半導体層を形成させているが、半導体層の種類には
特に制限は無く、従来公知の半導体層が使用できる。そ
の中でもとりわけ本願出願人の出願による二酸化鉛また
は二酸化鉛と硫酸鉛からなる半導体層(特開昭62−2
56423号公報、特開昭63−51621号公報)が
作製した固体電解コンデンサの高周波性能が良好なため
に好ましい。又、テトラチオテトラセンとクロラニルの
錯体を半導体層として形成させる方法(特開昭62−2
9123号公報)や複素5員環高分子化合物にドーパン
トをドープした電導性高分子化合物からなる半導体層
(特開昭60−37114号公報)もその一例である。 【0008】そしてこのような半導体層上には、例えば
カーボンペーストおよび/または銀ペースト等の従来公
知の導電ペーストや半田等の溶融金属を直接又は導電ペ
ースト上に積層して導電体層を順次形成して陰極部を構
成している。また本発明では前述した陽極部と半導体層
並びに導電体層との境界面に絶縁性樹脂により、はち巻
き状に絶縁樹脂帯を形成しておいてもよい。次に、この
ように陰極部まで形成されたコンデンサ素子をリードフ
レームに接続する方法を説明する。図1及び図2はコン
デンサ素子2をリードフレーム1に接続した状態を示す
平面図および断面図である。図1および図2において、
コンデンサ素子2の陽極部3と陰極部4とがリードフレ
ーム1の陽極リード引出し部1aと陰極リード引出し部
1bとにそれぞれ載置されていて、陽極部は熔接、導電
ペースト、半田等で接続し、一方、陰極部は導電ペース
ト、半田等の導電材5で接続されているが、本発明にお
いては、コンデンサ素子をリードフレームに対して陽極
部側下りに傾斜させて載置することを特徴としている。 【0009】陽極部側下りに傾斜させて載置する方法と
して、例えば、前述した陰極部4を導電材5でリードフ
レームの陰極リード引出し部1bに載置接続する場合
に、導電材の量を陽極部側に近いリードフレームの陰極
リード引出し部の先端側を少なく、根元側を多くするこ
とにより導電材の付着量に差をつける方法が挙げられ
る。導電材は、一般にディスペンサーのような付着装置
でリードフレームに滴下されるが、リードフレームへの
付着量は、任意に機械的に管理できるため、前述したよ
うな導電材の付着量の差を容易に実現することができ
る。コンデンサ素子をリードフレームに対して傾斜させ
る程度はコンデンサ素子の陽極部がリードフレームの陽
極リード引出し部上に載置する程度であり、これ以上に
傾斜させると陽極部がリードフレームによって破損する
ため好ましくない。また傾斜させる程度が小さすぎる
と、陽極部がリードフレームに載置せず前述したように
陽極部とリードフレームの間に隙間が生じてこれらの接
続に無理な応力を発生させて好ましくない。 【0010】リードフレームに接続されたコンデンサ素
子は、エポキシ樹脂等の外装樹脂によリ、トランスファ
ー成形機などで封止成形を行った後、リードフレームの
凸部をコンデンサ素子の近辺で切断してチップ状の固体
電解コンデンサとしている。 【0011】 【作用】コンデンサ素子とリードフレームとの載置接続
を陽極側下りに傾斜させることにより、コンデンサ素子
の陽極部とリードフレーム間に隙間が生じなくなり、接
続時の無理な応力発生がおさえられる。 【0012】 【実施例】以下、実施例及び比較例を示して本発明を更
に詳しく説明する。 実施例1 りん酸とりん酸アンモニウム水溶液中で化成処理して表
面に誘電体酸化皮膜層を形成した45μF/cm2 のア
ルミニウムエッチング箔(以下、化成箔と称する)の小
片5mm×3mmのうち2mm×3mmの部分を陽極部
とし、残り3mm×3mmの部分を酢酸鉛三水和物2.
4モル/lの水溶液と過硫酸アンモニウム4.0モル/
l水溶液の混合液に浸漬し、60℃で20分放置し、二
酸化鉛と硫酸鉛からなる半導体層を形成した。このよう
な操作を3回行った後、半導体層上にカーボンペースト
及び銀ペーストを順に積層して導電体層を形成し、固体
電解コンデンサ素子を作製した。このコンデンサ素子の
陽極部と、導電体層を設けた陰極部との厚みの差は0.
1mm乃至0.3mmであった。一方、別に用意した厚
さ0.1mmのリードフレームの互いに対向した陽極お
よび陰極リード引出し部に前述したコンデンサ素子の陽
極部と陰極部を各々載置するにあたり、陰極リード引出
し部の先端側と根元側に銀ペーストで約0.05mm乃
至0.1mmの付着高さに差がつくように予め付着設定
しておき、コンデンサ素子をリードフレームに対して傾
斜させて載置し、前者は熔接で後者は付着設定した銀ペ
ーストのみで接続した。このようにしてリードフレーム
の接続したコンデンサ素子をエポキシ樹脂でトランスフ
ァー成形して7mm×4mm×3mmの角型形状のチッ
プ状固体電解コンデンサを作製した。 【0013】実施例2〜4 実施例1で半導体層に積層する導電体層の厚みを変化さ
せ、陽極部と陰極部の厚みの差を表1に示した大きさに
し、さらに、リードフレームの陰極リード引出し部の先
端側と根元側に付着させる銀ペーストに表1に併記した
付着高さの差を生じるようにした以外は、実施例1と同
様にしてコンデンサ素子をリードフレームに対して斜め
に載置接続し外装してチップ状固体電解コンデンサを作
製した。 【0014】比較例1〜4 実施例1〜4で、コンデンサ素子をリードフレームに載
置接続する場合に、陽極部側下りに傾斜させずコンデン
サ素子をリードフレームに平行に載置接続した以外は実
施例1〜4と同様にしてチップ状固体電解コンデンサを
作製した。以上作製したコンデンサの電気性能及びLC
値が0.5μA(10V)以下の個数を表2に示した。
尚、電気性能はn=30点の平均値である。また、これ
まで単層の固体電解コンデンサを例にとって本発明の内
容を具体的に説明してきたが、本発明は積層のチップ状
固体電解コンデンサにも適用できることはいうまでもな
い。 【0015】 【表1】 【0016】 【表2】【0017】 【発明の効果】本発明のチップ状固体電解コンデンサ
は、コンデンサ素子がリードフレームに対して陽極部側
下りに傾斜して載置接続しているので、陽極部とリード
フレームとの接続に無理な応力が働かずLC値が良好で
ある。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a chip-shaped solid electrolytic capacitor. [0002] A conventional chip-shaped solid electrolytic capacitor is
A part of a plate-shaped anode substrate made of a valve metal such as aluminum, tantalum or niobium having a dielectric oxide film layer on the surface is used as an anode part, and a semiconductor layer and a conductor layer are sequentially formed on the remaining part to form a cathode part. Then, the capacitor element is connected to the lead element and the capacitor element as shown in FIGS. FIG. 3 is a plan view showing a connection relationship between the capacitor element 2 and the lead frame 1, and FIG. 4 is a sectional view thereof. The anode section 3 and the cathode section 4 of the capacitor element 2 are mounted on the facing projections 1a and 1b of the lead frame, respectively. The former is welded or the like and the latter is made of silver paste or the like. After electrical and mechanical connection, it is manufactured by performing encapsulation with an exterior resin. The chip-shaped solid electrolytic capacitor manufactured in this manner is a product that has passed the measurement of the capacity, leakage current value (hereinafter abbreviated as LC), and the like. The cathode part of the above-mentioned capacitor element is thicker than the anode part because the semiconductor layer and the conductor layer are laminated on the surface of the anode base such as aluminum foil. ing. Therefore, this thickness difference causes a gap between the anode part and the lead frame when the capacitor element is connected to the lead frame,
As a result, excessive stress is applied to the connection between the anode part and the lead frame. Therefore, the LC value of the manufactured chip-shaped solid electrolytic capacitor often rises. In order to prevent the existence of such a gap, it is conceivable to insert a spacer having the same thickness as that of the gap or to use a stepped frame in consideration of the gap. However, there is a problem in that it is not advisable to use a spacer having a fixed size or a stepped frame, because it is delicately changed, so that it is difficult to perform advanced management. In addition, the use of the spacer and the stepped frame causes a cost increase. SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and its gist is to provide a plate-like structure having a valve action and having a dielectric oxide film layer formed on the surface. A part of the anode substrate is used as an anode part, a semiconductor layer is formed on the remaining part, and a conductor layer is sequentially formed thereon to serve as a cathode part. Then, the capacitor element is provided in each of a cathode lead extraction part and an anode lead extraction part of a lead frame. In the chip-shaped solid electrolytic capacitor which is connected to the cathode part and the anode part and sealed and molded with the exterior resin, the chip-shaped solid electrolytic capacitor is mounted and connected with the capacitor element inclined down to the anode part side with respect to the lead frame. It is. Hereinafter, the present invention will be described in detail. In the present invention, as the anode base having a valve action used as the anode of the solid electrolytic capacitor, any metal having a valve action such as aluminum, tantalum, and alloys using these as a substrate can be used. The shape of the anode substrate may be a flat foil or plate. The actual surface area of the surface of the valve metal foil may be increased by etching. The dielectric oxide film layer provided on the surface of the anode substrate may be an oxide layer of the valve action metal itself provided on the surface portion of the valve action metal, or may be an oxide layer provided on the surface of the valve action metal foil. May be used, but it is particularly preferable that the layer is made of an oxide of the valve metal itself. According to the present invention, the anode portion is provided in one section of the end portion of the plate-shaped anode substrate having the dielectric oxide film layer formed on the surface, and the remaining dielectric oxide film layer other than the anode portion is provided. Although a semiconductor layer is formed thereon, the type of the semiconductor layer is not particularly limited, and a conventionally known semiconductor layer can be used. Among them, a semiconductor layer composed of lead dioxide or lead dioxide and lead sulfate, filed by the applicant of the present invention (JP-A-62-2
JP-A-56423 and JP-A-63-51621) are preferable because the high frequency performance of the solid electrolytic capacitor produced is good. Also, a method of forming a complex of tetrathiotetracene and chloranil as a semiconductor layer (JP-A-62-2
9123) and a semiconductor layer made of a conductive polymer compound obtained by doping a dopant into a 5-membered heterocyclic polymer compound (JP-A-60-37114) are also examples. On such a semiconductor layer, a known conductive paste such as a carbon paste and / or a silver paste or a molten metal such as a solder is directly or laminated on the conductive paste to form a conductor layer sequentially. Thus, the cathode portion is formed. Further, in the present invention, an insulating resin band may be formed in a spiral shape on the boundary surface between the above-described anode portion, the semiconductor layer, and the conductor layer using an insulating resin. Next, a method of connecting the capacitor element formed up to the cathode portion to the lead frame will be described. 1 and 2 are a plan view and a sectional view showing a state where the capacitor element 2 is connected to the lead frame 1. FIG. 1 and 2,
The anode part 3 and the cathode part 4 of the capacitor element 2 are placed on the anode lead lead-out part 1a and the cathode lead lead-out part 1b of the lead frame 1, respectively. The anode part is connected by welding, conductive paste, solder or the like. On the other hand, the cathode portion is connected by a conductive material 5 such as a conductive paste or solder, but the present invention is characterized in that the capacitor element is mounted so as to be inclined downward to the anode portion side with respect to the lead frame. I have. As a method of mounting the cathode part 4 at a downward inclination on the anode side, for example, when the above-described cathode part 4 is placed and connected to the cathode lead lead-out part 1b of the lead frame with the conductive material 5, the amount of the conductive material is reduced. There is a method in which the amount of the conductive material adhered is made different by reducing the tip side of the cathode lead lead-out part of the lead frame near the anode part side and increasing the base side. The conductive material is generally dropped onto the lead frame by a deposition device such as a dispenser, but the amount of the conductive material deposited on the lead frame can be controlled mechanically arbitrarily. Can be realized. The degree to which the capacitor element is inclined with respect to the lead frame is such that the anode part of the capacitor element is placed on the anode lead lead-out part of the lead frame, and if the inclination is more than this, the anode part is damaged by the lead frame, which is preferable. Absent. On the other hand, if the degree of the inclination is too small, the anode portion is not placed on the lead frame, and a gap is formed between the anode portion and the lead frame, as described above. [0010] The capacitor element connected to the lead frame is sealed with a transfer molding machine or the like using an exterior resin such as epoxy resin, and then the protruding portion of the lead frame is cut near the capacitor element. It is a chip-shaped solid electrolytic capacitor. The mounting connection between the capacitor element and the lead frame is tilted downward on the anode side, so that no gap is formed between the anode part of the capacitor element and the lead frame, thereby suppressing excessive stress generation during connection. Can be The present invention will be described below in more detail with reference to examples and comparative examples. Example 1 2 mm out of a small 5 mm × 3 mm piece of a 45 μF / cm 2 aluminum etching foil (hereinafter referred to as a chemical conversion foil) having a dielectric oxide film layer formed on the surface by a chemical conversion treatment in an aqueous solution of phosphoric acid and ammonium phosphate. 1. A portion of 3 mm × 3 mm was used as an anode portion, and the remaining portion of 3 mm × 3 mm was a lead acetate trihydrate.
4 mol / l aqueous solution and 4.0 mol / l ammonium persulfate
Then, it was immersed in a mixed solution of 1 aqueous solution and left at 60 ° C. for 20 minutes to form a semiconductor layer composed of lead dioxide and lead sulfate. After such an operation was performed three times, a carbon paste and a silver paste were sequentially laminated on the semiconductor layer to form a conductor layer, thereby producing a solid electrolytic capacitor element. The difference between the thickness of the anode part of this capacitor element and the thickness of the cathode part provided with the conductor layer is 0.
It was 1 mm to 0.3 mm. On the other hand, when placing the anode part and the cathode part of the above-mentioned capacitor element on the anode and cathode lead extraction parts facing each other of a separately prepared lead frame having a thickness of 0.1 mm, respectively, the tip side and the base of the cathode lead extraction part It is set in advance so that there is a difference in the adhesion height of about 0.05 mm to 0.1 mm with silver paste on the side, and the capacitor element is placed at an angle to the lead frame, and the former is welded by the latter. Was connected only with the silver paste set for adhesion. In this way, the capacitor element connected to the lead frame was transfer-molded with epoxy resin to produce a square chip-shaped solid electrolytic capacitor of 7 mm × 4 mm × 3 mm. Examples 2 to 4 In Example 1, the thickness of the conductor layer laminated on the semiconductor layer was changed so that the difference between the thickness of the anode and the thickness of the cathode was set to the size shown in Table 1. The capacitor element was slanted with respect to the lead frame in the same manner as in Example 1 except that the difference in adhesion height shown in Table 1 was caused in the silver paste adhered to the tip side and the base side of the cathode lead lead-out portion. The chip-shaped solid electrolytic capacitor was fabricated by mounting and connecting to a chip. Comparative Examples 1 to 4 In Examples 1 to 4, when the capacitor element was mounted and connected to the lead frame, the capacitor element was mounted and connected in parallel to the lead frame without tilting downward on the anode side. A chip-shaped solid electrolytic capacitor was produced in the same manner as in Examples 1 to 4. Electrical performance and LC of the capacitor fabricated above
Table 2 shows the number having a value of 0.5 μA (10 V) or less.
The electric performance is an average value of n = 30 points. Although the content of the present invention has been specifically described above by taking a single-layer solid electrolytic capacitor as an example, it goes without saying that the present invention can also be applied to a laminated chip-shaped solid electrolytic capacitor. [Table 1] [Table 2] According to the solid electrolytic capacitor chip of the present invention, since the capacitor element is mounted and connected to the lead frame so as to be inclined downward toward the anode, the connection between the anode and the lead frame is established. The LC value is good because excessive stress does not work.

【図面の簡単な説明】 【図1】リードフレームにコンデンサ素子を載置した状
態を示す本発明の一例を示す平面図である。 【図2】リードフレームにコンデンサ素子を載置した状
態を示す本発明の一例を示す断面図である。 【図3】従来のコンデンサ素子をリードフレームの接続
した状態を示す平面図である。 【図4】従来のコンデンサ素子をリードフレームに接続
した状態を示す断面図である。 【符号の説明】 1 リードフレーム 1a リードフレームの凸部 1b リードフレームの凸部 2 コンデンサ素子 3 陽極部 4 陰極部 5 導電材
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a plan view showing an example of the present invention showing a state where a capacitor element is mounted on a lead frame. FIG. 2 is a cross-sectional view showing an example of the present invention showing a state where a capacitor element is mounted on a lead frame. FIG. 3 is a plan view showing a state where a conventional capacitor element is connected to a lead frame. FIG. 4 is a cross-sectional view showing a state where a conventional capacitor element is connected to a lead frame. [Description of Signs] 1 Lead frame 1a Projection 1b of lead frame Projection 2 of lead frame 2 Capacitor element 3 Anode 4 Cathode 5 Conductive material

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01G 9/012 H01G 9/04 Continuation of the front page (58) Field surveyed (Int.Cl. 7 , DB name) H01G 9/012 H01G 9/04

Claims (1)

(57)【特許請求の範囲】 【請求項1】 弁作用を有し表面に誘電体酸化皮膜層が
形成された板状の陽極基体の一部を陽極部とし、残部に
半導体層、その上に導電体層を順次形成して陰極部と
し、次いでリードフレームの陰極リード引出し部と陽極
リード引出し部とにそれぞれ前記コンデンサ素子の陰極
部と陽極部を接続して、外装樹脂で封止成形したチップ
状固体電解コンデンサにおいて、コンデンサ素子をリー
ドフレームに対して陽極部側下りに傾斜させて載置接続
することを特徴とするチップ状固体電解コンデンサ。
(57) [Claims 1] A part of a plate-shaped anode substrate having a valve action and having a dielectric oxide film layer formed on its surface is used as an anode part, and the remaining part is a semiconductor layer. The cathode layer and the anode section of the capacitor element were connected to the cathode lead extraction section and the anode lead extraction section of the lead frame, respectively, and formed by sealing with an exterior resin. A chip-shaped solid electrolytic capacitor in which a capacitor element is mounted and connected to a lead frame by inclining downward with respect to an anode portion side with respect to a lead frame.
JP03498294A 1994-03-04 1994-03-04 Chip-shaped solid electrolytic capacitors Expired - Lifetime JP3448941B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03498294A JP3448941B2 (en) 1994-03-04 1994-03-04 Chip-shaped solid electrolytic capacitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03498294A JP3448941B2 (en) 1994-03-04 1994-03-04 Chip-shaped solid electrolytic capacitors

Publications (2)

Publication Number Publication Date
JPH07245244A JPH07245244A (en) 1995-09-19
JP3448941B2 true JP3448941B2 (en) 2003-09-22

Family

ID=12429361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03498294A Expired - Lifetime JP3448941B2 (en) 1994-03-04 1994-03-04 Chip-shaped solid electrolytic capacitors

Country Status (1)

Country Link
JP (1) JP3448941B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MXPA00001238A (en) * 1998-06-11 2005-07-13 Showa Denko Kk Sheet capacitor element and laminated solid electrolytic capacitor.
JP4868054B2 (en) * 1999-12-10 2012-02-01 株式会社村田製作所 Multilayer solid electrolytic capacitor

Also Published As

Publication number Publication date
JPH07245244A (en) 1995-09-19

Similar Documents

Publication Publication Date Title
US7320924B2 (en) Method of producing a chip-type solid electrolytic capacitor
JP4878103B2 (en) Manufacturing method of chip-type solid electrolytic capacitor
US7149077B2 (en) Solid electrolytic capacitor with face-down terminals, manufacturing method of the same, and lead frame for use therein
JP2003163138A (en) Solid electrolytic capacitor and its manufacturing method
TW200403700A (en) Thin surface mounted type solid electrolytic capacitor
US8587927B2 (en) Solid electrolytic condensers and methods for preparing the same
JP3557564B2 (en) Multilayer solid electrolytic capacitors
JP4392960B2 (en) Method for manufacturing tantalum electrolytic capacitor
JP3448941B2 (en) Chip-shaped solid electrolytic capacitors
CN109300689B (en) Molded surface-mounted ceramic dielectric capacitor with anti-skid groove and preparation method thereof
EP2105938B1 (en) Solid electrolytic capacitor device and manufacturing method of the same
JP3441088B2 (en) Method for manufacturing solid electrolytic capacitor
JP2005019923A (en) Chip-shape solid electrolytic capacitor
JP3191411B2 (en) Method for manufacturing solid electrolytic capacitor
JP2003142335A (en) Thin solid electrolytic capacitor and manufacturing method therefor
JP2867514B2 (en) Chip type solid electrolytic capacitor
JP3505763B2 (en) Chip-shaped solid electrolytic capacitor
JP3433490B2 (en) Chip-shaped solid electrolytic capacitors
JP3129033B2 (en) Chip-shaped solid electrolytic capacitor
JP3932191B2 (en) Solid electrolytic capacitor
JP3441095B2 (en) Solid electrolytic capacitors
JP3208875B2 (en) Chip-shaped solid electrolytic capacitor and its manufacturing method
JP3185405B2 (en) Solid electrolytic capacitors
JP3546451B2 (en) Method for manufacturing solid electrolytic capacitor
JPH04284617A (en) Manufacture of solid electrolytic capacitor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090711

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 10

EXPY Cancellation because of completion of term