JP3447336B2 - Thin film firing element - Google Patents

Thin film firing element

Info

Publication number
JP3447336B2
JP3447336B2 JP21314493A JP21314493A JP3447336B2 JP 3447336 B2 JP3447336 B2 JP 3447336B2 JP 21314493 A JP21314493 A JP 21314493A JP 21314493 A JP21314493 A JP 21314493A JP 3447336 B2 JP3447336 B2 JP 3447336B2
Authority
JP
Japan
Prior art keywords
thin film
oxidant
layer
heat
ignition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21314493A
Other languages
Japanese (ja)
Other versions
JPH0761319A (en
Inventor
一郎 中島
Original Assignee
進工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 進工業株式会社 filed Critical 進工業株式会社
Priority to JP21314493A priority Critical patent/JP3447336B2/en
Publication of JPH0761319A publication Critical patent/JPH0761319A/en
Application granted granted Critical
Publication of JP3447336B2 publication Critical patent/JP3447336B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B3/00Blasting cartridges, i.e. case and explosive
    • F42B3/10Initiators therefor
    • F42B3/12Bridge initiators
    • F42B3/124Bridge initiators characterised by the configuration or material of the bridge

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Bags (AREA)

Abstract

PURPOSE:To obtain a secure firing by current supply by forming a thin film firing element of the agent to be oxidized, of which heat generation part is oxidized quickly with oxygen at a heat generating temperature and which generates the heat at a specified heat quantity or more per unit quantity of oxygen of the generated oxide. CONSTITUTION:As oxidant thin film layers 31, 32, copper oxide thin film at mum of thickness, which is obtained by the reaction spattering of copper as a target and led-in oxygen, and as an agent-to-be-oxidized thin film layer 30, titanium thin film at about 500 mum of thickness obtained by evaporation is used. As a ceramics board 20, aluminum is used, and as a protecting film 40, silicon oxide thin film at about 500mum of thickness is used. A firing element 11 having the laminated structure, which has a heat generation part at a central part of the board 20 and which uses titanium as agent to be oxidized and copper oxide as oxidant and in which a heat generation part of the agent-to-be-oxidized thin film 30 is pinched by the oxidant thin films 31, 32, is formed. When the agent-to-be-oxidized thin film layer of the firing element is electrified with the direct current power, a large spark, which generates the heat at 1000kj/mol or more as a standard for 1 mole of oxygen of the oxide, can be obtained in the non-active gas.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば自動車のエアバ
ッグシステムなどの電気点火装置に用いられる薄膜発火
素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film ignition element used in an electric ignition device such as an automobile air bag system.

【0002】[0002]

【従来の技術】従来の電気点火装置では、火薬に密着さ
せた抵抗体に通電して火薬を加熱することにより、火薬
を爆発させていた。
2. Description of the Related Art In a conventional electric igniter, an explosive powder is exploded by energizing a resistor closely attached to the explosive powder to heat the explosive powder.

【0003】この抵抗体に関して、ニクロム線のような
バルクの材料や厚膜材料を使う技術では、それ自体の熱
容量が大きいことから、例えば自動車のエアバッグシス
テムに要求されるような高速応答性が得られず、また端
子部の接続が熱履歴によって不安定になるなどの欠点が
あった。そのため、抵抗体に薄膜材料を用い、応答性が
よいだけでなく、半導体の製造技術に用いられる製膜技
術やエッチング技術により、多数の小型の発熱素子が同
時に再現性よく作製できるように改善され、例えば、特
開昭64−75896号などでは抵抗体として端子間に
ブリッジさせた薄膜を使用し、応答が速く量産性に優れ
た発熱素子の構造が開示されている。
With respect to this resistor, the technique using a bulk material such as a nichrome wire or a thick film material has a large heat capacity, and therefore has a high-speed response required for an airbag system of an automobile, for example. However, there are drawbacks such as not being obtained and the connection of the terminal portion becoming unstable due to thermal history. Therefore, not only the thin film material is used for the resistor and the response is good, but it is also improved so that many small heating elements can be manufactured at the same time with good reproducibility by the film forming technology and etching technology used in the semiconductor manufacturing technology. For example, Japanese Patent Application Laid-Open No. 64-75896 discloses a structure of a heating element which uses a thin film bridged between terminals as a resistor and has a quick response and excellent mass productivity.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、これら
の薄膜抵抗体を用いた従来技術では、発熱量の不足によ
り抵抗体と火薬との間にスチフニン鉛などの危険な伝爆
薬を使用せねばならず、加工上、また使用時に誤爆の可
能性があるなど安全性に問題がある。さらに、抵抗体の
先端で端子部と抵抗体部に平面性を持たせ、この抵抗体
と共に火薬を押入れ加工するような方法で抵抗体と火薬
との密着性を確保しなければならず、発火の確実性はそ
の物理的な位置関係に左右されるなどの問題がある。そ
こで、本発明は、薄膜抵抗体の持つ高速応答性、量産性
を犠牲にすることなく、点火装置の安全性の向上と発火
の不確実性を改善することを目的とし、例えば自動車の
エアバッグシステムにおける発火素子として、通常の待
機時には安全で、かつ通電により確実な発火が得られる
薄膜発火素子を提供しようとするものである。
However, in the prior art using these thin film resistors, a dangerous explosive such as lead styphnine must be used between the resistor and the gunpowder due to insufficient heat generation. However, there is a problem in safety in terms of processing and the possibility of accidental explosion during use. Furthermore, it is necessary to secure the adhesion between the resistor and the explosive by a method such that the terminal and the resistor are made flat at the tip of the resistor and the explosive is pushed in with this resistor. There is a problem that the certainty of is influenced by its physical positional relationship. Therefore, the present invention aims to improve the safety of the ignition device and improve the uncertainty of ignition without sacrificing the high-speed response and mass productivity of the thin-film resistor. For example, an airbag of an automobile. As an ignition element in a system, it is intended to provide a thin film ignition element which is safe during normal standby and which can be surely ignited by energization.

【0005】[0005]

【課題を解決するための手段】上記の課題を解決するた
めには、伝爆薬の必要性をなくし、それに代え、点火装
置自体に発火機能を持たせることで安全性の確保および
発火の確実性の向上が図れることに着目し、鋭意研究を
重ねたところ、抵抗体として薄膜で構成した被酸化剤を
用いた場合は、通電によるジュール熱以外に酸化による
化学反応の発熱が加わり、発熱量の大きい発火素子が得
られることを見い出した。しかし、被酸化剤だけでは発
火特性が雰囲気の酸素濃度に依存した。そこで、さらに
薄膜で構成した酸化剤を加えて、酸化剤および被酸化剤
をそれぞれの分解温度および酸化温度まで加熱すれば、
酸化剤の分解により発生した酸素で被酸化剤を酸化・燃
焼させることができた。
[Means for Solving the Problems] In order to solve the above problems, the need for an explosive charge is eliminated, and instead, the ignition device itself is provided with an ignition function to ensure safety and ensure ignition. After paying attention to the fact that the oxidant can be improved, the inventors conducted extensive research and found that when an oxidizable agent composed of a thin film was used as the resistor, the heat of the chemical reaction due to oxidation was added in addition to the Joule heat due to energization, and It has been found that a large ignition element can be obtained. However, the ignition characteristics depended on the oxygen concentration in the atmosphere only with the oxidant. Therefore, if an oxidant composed of a thin film is further added to heat the oxidant and the oxidant to their respective decomposition temperatures and oxidation temperatures,
It was possible to oxidize and burn the oxidant with the oxygen generated by the decomposition of the oxidant.

【0006】本発明は、上記知見に基いてなされたもの
で、電気絶縁性基板上に、両側の一対の幅広通電部を幅
狭の発熱部で接続するようにパターニングされてなる抵
抗体薄膜層と、上記発熱部からの熱により発火する発火
層と、を有する薄膜発火素子であって、上記発火層が、
上記発熱部の発熱温度において酸素によって急速酸化さ
れ、生成する酸化物の酸素1mol当りの標準生成熱が
絶対値で1000kJ/mol以上である1層以上の被
酸化剤層と、上記発熱温度において分解し酸素を発生す
る1層以上の酸化剤層と、から成り、少なくとも1層の
上記被酸化剤層と少なくとも1層の上記酸化剤層とが積
層されてなることを特徴とするものである。また、上記
抵抗体薄膜層に被酸化剤からなるものを用いることもで
きる。
The present invention has been made on the basis of the above findings, and a resistor thin film layer formed by patterning on an electrically insulating substrate so as to connect a pair of wide conducting portions on both sides with a narrow heating portion. And a firing layer that is ignited by heat from the heat generating portion, and a thin film firing element having the firing layer,
One or more oxidizable layers that are rapidly oxidized by oxygen at the exothermic temperature of the exothermic part, and have a standard heat of formation per mol of oxygen of 1000 kJ / mol or more in absolute value, and decompose at the exothermic temperature. And one or more oxidant layers that generate oxygen, and at least one oxidant layer and at least one oxidant layer are laminated. Further, the resistor thin film layer may be made of an oxidant.

【0007】上記酸化剤薄膜と被酸化剤薄膜との積層構
造による発火層は従来の抵抗体薄膜からなる発熱部に形
成するようにしてもよい。したがって、本発明は電気絶
縁体上に形成され、通電により所定のジュール熱によっ
て発熱するようにパターニングされた抵抗体薄膜からな
る発熱部上に、上記発熱温度において、特に500〜1
500℃の温度で分解し、酸素を発生する酸化剤薄膜と
該酸化剤から発生する酸素によって急速酸化し、生成す
る酸化物の酸素1mol当たりの標準生成熱が絶対値で100
0kJ/mol以上である被酸化剤薄膜とを積層してなる発火
層を形成してなる薄膜発火素子を提供するものでもあ
る。なお、金属である被酸化剤はもちろん、金属酸化物
においても半導性を持つものが有り、酸化剤層を抵抗体
薄膜との電気絶縁層とすることはできない。このため通
常、上記薄膜層は抵抗体薄膜上に絶縁層を介して形成さ
れる。
The ignition layer having a laminated structure of the oxidant thin film and the oxidant thin film may be formed in the heat generating portion made of a conventional resistor thin film. Therefore, according to the present invention, on the heat generating portion formed of the resistor thin film formed on the electric insulator and patterned so as to generate heat by a predetermined Joule heat when energized, at the above heat generation temperature, particularly 500 to 1
It decomposes at a temperature of 500 ° C and rapidly oxidizes with an oxidizer thin film that generates oxygen and oxygen generated from the oxidizer, and the standard heat of formation per mol of oxygen of the generated oxide is 100 in absolute value.
The present invention also provides a thin film ignition element having an ignition layer formed by laminating an oxidant thin film having a rate of 0 kJ / mol or more. In addition to metal oxidants, some metal oxides have semiconductivity, and the oxidant layer cannot be used as an electrical insulating layer with the resistor thin film. Therefore, the thin film layer is usually formed on the resistor thin film via an insulating layer.

【0008】[0008]

【作用】本発明によれば、通電により所定のジュール熱
が発熱するようにパターニングされた抵抗体薄膜によっ
て加熱可能な温度、特に500〜1500℃の温度にお
いて酸化剤が分解し、その発生する酸素により被酸化剤
が初めて急速酸化され、即ち燃焼するので、動作安定性
に優れる。
According to the present invention, the oxidizer decomposes at a temperature that can be heated by the resistor thin film patterned so as to generate a predetermined Joule heat when energized, particularly at a temperature of 500 to 1500 ° C., and oxygen generated by the oxidizer is decomposed. As a result, the oxidant is rapidly oxidized, that is, burns for the first time, so that the operation stability is excellent.

【0009】酸化剤および被酸化剤を上記のように薄膜
として積層すれば、発火の高速性や素子の量産性などの
従来の利点を損なうことなく雰囲気の酸素濃度によらず
大きな火花が得られ、発熱量のより大きい発火素子が得
られる。
By laminating the oxidizer and the oxidizer as a thin film as described above, a large spark can be obtained regardless of the oxygen concentration of the atmosphere without impairing the conventional advantages such as high-speed ignition and mass productivity of the device. An ignition element having a larger calorific value can be obtained.

【0010】上記被酸化剤薄膜に直接通電することで発
生するジュール熱を利用する、つまり、被酸化剤に抵抗
材料および被酸化剤としての両方の機能を持たせる場合
は積層構造を簡略化することができる。
When the Joule heat generated by directly energizing the oxidant thin film is utilized, that is, when the oxidant has both functions as a resistance material and an oxidant, the laminated structure is simplified. be able to.

【0011】さらに、電子部品としての抵抗体の機能、
たとえば温度係数などが厳しく要求される場合には、上
記積層構造の下地に電気抵抗材料からなる薄膜を設け、
この抵抗薄膜に電流を流してジュール熱を発生させ、こ
の熱により酸化剤および被酸化剤の積層発火膜を加熱
し、発火させるのが好ましい。
Furthermore, the function of the resistor as an electronic component,
For example, when a temperature coefficient is strictly required, a thin film made of an electric resistance material is provided on the base of the above laminated structure,
It is preferable that an electric current be applied to the resistance thin film to generate Joule heat, and this heat heats and ignites the laminated ignition film of the oxidant and the oxidant.

【0012】本発明における酸化剤には、酸化銅(II)
が最適である。本発明における酸化剤は発火点となる温
度を制御するものであり、安定性が要求される。分解温
度があまりに低いものは適さず、また、通電により熱源
となる被酸化剤あるいは抵抗体には融点があり、それ以
上の温度まで酸化剤を加熱することができない。このた
め酸化剤薄膜は500℃〜1500℃程度の温度で分解
する物質が望ましく、酸化銅(II)の分解温度はこの温
度領域内のかなり高温側にあり、その温度付近で急激な
分解が起こる。つまり、酸化銅(II)は加熱により酸素
を放出する材料でありながら、通常の使用温度ではたい
へん安定であり、また、酸化銅(II)薄膜は反応性スパ
ッタリングなどの量産性のある方法で容易に作製できる
利点を有するからである。
The oxidizing agent used in the present invention is copper (II) oxide.
Is the best. The oxidant in the present invention controls the temperature at the ignition point and is required to have stability. A material having a decomposition temperature that is too low is not suitable, and the oxidant or resistor that becomes a heat source by energization has a melting point, and the oxidant cannot be heated to a temperature higher than that. Therefore, the oxidizer thin film is preferably a substance that decomposes at a temperature of about 500 ° C to 1500 ° C, and the decomposition temperature of copper (II) oxide is on the fairly high temperature side in this temperature range, and rapid decomposition occurs near that temperature. . In other words, although copper (II) oxide is a material that releases oxygen when heated, it is very stable at normal operating temperatures, and copper (II) oxide thin films can be easily produced by mass-production methods such as reactive sputtering. This is because it has an advantage that it can be manufactured.

【0013】本発明における被酸化剤には、チタンある
いはジルコニウムが最適である。これらの酸化物の標準
生成熱は大きく、燃焼の際の発熱量が大きい、また抵抗
率も比較的大きい金属材料であり、抵抗材料としても利
用することができるからである。さらに、大気中で容易
に酸化されることもなく、比較的安定に取り扱うことが
でき、その酸化温度が酸化銅(II)の分解温度に近い。
つまり、これらの材料は被酸化剤および抵抗材料として
の特性を満足し、酸化銅(II)と組み合わせて使用すれ
ば、酸化銅(II)の分解により発生した酸素で酸化反応
を起こすのに最適である。また、これらの薄膜も、スパ
ッタリングや蒸着などの量産性のある方法で作製できる
材料である。
Titanium or zirconium is most suitable as the oxidant in the present invention. This is because the standard heat of formation of these oxides is large, the amount of heat generated during combustion is large, and the resistivity is a relatively large metal material, which can also be used as a resistance material. Furthermore, it is not easily oxidized in the atmosphere and can be handled relatively stably, and its oxidation temperature is close to the decomposition temperature of copper (II) oxide.
In other words, these materials satisfy the characteristics as an oxidant and a resistance material, and when used in combination with copper (II) oxide, they are optimal for causing an oxidation reaction with oxygen generated by the decomposition of copper (II) oxide. Is. Further, these thin films are also materials that can be produced by a method with mass productivity such as sputtering or vapor deposition.

【0014】酸化剤としては、上記酸化銅(II)以外に
マンガン、アンチモン、ゲルマニウム、砒素、鉄などの
酸化物のような比較的低温で酸素を放出するものを使用
することができる。以下に代表的な酸化物の分解温度を
示す。なお、表の値は、各酸化物の標準生成エンタルピ
ーΔH°および標準エントロピーΔS°(298.15
°K)から、ΔH°が温度によらないと仮定して、ΔH
°/ΔS°として求められた。
As the oxidizing agent, in addition to the above copper (II) oxide, an oxide such as manganese, antimony, germanium, arsenic or iron which releases oxygen at a relatively low temperature can be used. The decomposition temperatures of typical oxides are shown below. The values in the table are the standard enthalpy of formation ΔH ° and standard entropy ΔS ° of each oxide (298.15).
° K), assuming that ΔH ° does not depend on temperature, ΔH
It was determined as ° / ΔS °.

【0015】[0015]

【表1】 分解反応 分解温度(℃) 6 Mn23 → 4 Mn34 + O2 875 2 GeO2 → 2 GeO + O2 898 As25 →1/2As46 + O2 908 Sb25 →1/2Sb46 + O2 916 4 CuO → 2 Cu2O + O2 1005 2 V25 → 2 V24 + O2 1267 6 Fe23 → 4 Fe34 + O2 1338[Table 1] Decomposition reaction Decomposition temperature (° C) 6 Mn 2 O 3 → 4 Mn 3 O 4 + O 2 875 2 GeO 2 → 2 GeO + O 2 898 As 2 O 5 → 1/2 As 4 O 6 + O 2 908 Sb 2 O 5 → 1/2 Sb 4 O 6 + O 2 916 4 CuO → 2 Cu 2 O + O 2 1005 2 V 2 O 5 → 2 V 2 O 4 + O 2 1267 6 Fe 2 O 3 → 4 Fe 3 O 4 + O 2 1338

【0016】また、被酸化物としても上記チタンおよび
ジルコニウム以外にアルミニウム、マグネシウム、リチ
ウム、ストロンチウム、希土類元素などの酸化物の標準
生成熱の大きな、すなわち燃焼の際の発熱量の大きな元
素を使用することができる。以下に代表的な被酸化剤の
標準生成熱を示す。
Further, as the oxide to be used, besides titanium and zirconium, an element having a large standard heat of formation of an oxide such as aluminum, magnesium, lithium, strontium, and a rare earth element, that is, an element having a large calorific value during combustion is used. be able to. The standard heats of formation of typical oxidants are shown below.

【0017】[0017]

【表2】 酸化物 酸素1mol当たりの標準生成熱 (kJ/mol at 298.15°K) 2TiO −1038 ZrO2 −1101 2/3Al23 −1116 2SrO −1184 2Li2O −1196 2MgO −1203 2/3Sm23 −1215TABLE 2 oxide standard heat of oxygen per 1mol (kJ / mol at 298.15 ° K) 2TiO -1038 ZrO 2 -1101 2 / 3Al 2 O 3 -1116 2SrO -1184 2Li 2 O -1196 2MgO -1203 2 / 3Sm 2 O 3 -1215

【0018】上記酸化剤および被酸化剤の薄膜を積層し
て形成される発火層は少なくとも各1層が積層状態にあ
ればよいが、発火に必要な酸素量を供給し、酸素との接
触面積を極力大きくするために酸化剤薄膜により被酸化
剤薄膜を挟持するようにするのがよい。発火層の動作安
定性を確保するためには保護膜により外気との接触を遮
断するようにするのがよい。
The ignition layer formed by laminating the above-mentioned thin films of the oxidizer and the oxidant may be such that at least one layer is in a laminated state, but the amount of oxygen required for ignition is supplied and the contact area with oxygen is provided. It is preferable that the oxidant thin film be sandwiched between the oxidant thin films in order to maximize the temperature. In order to secure the operational stability of the ignition layer, it is preferable to block the contact with the outside air by a protective film.

【0019】[0019]

【実施例1】図1に、本発明にかかる薄膜発火素子11
の第1実施例の平面図およびそのA−A線断面図を示
す。セラミックス基板20上に両側の幅広通電部31
a,30aを中央部の幅狭な通路をなす発熱部31b,
30bで接続するパターンニングで酸化剤薄膜層31お
よび被酸化剤薄膜層30がこの順に積層されており、被
酸化剤薄膜層30の両側からの通電の際に中央部でジュ
ール熱が集中的に発生するような形状となっている。そ
の発熱部30bの上へそれを覆うようにもう一層の酸化
剤薄膜層32を積層し、最外層には保護膜40が積層さ
れている。
EXAMPLE 1 FIG. 1 shows a thin film ignition element 11 according to the present invention.
The top view of the 1st example of and the AA line sectional view are shown. Wide conductive parts 31 on both sides of the ceramic substrate 20
a and 30a are heat generating portions 31b forming a narrow passage in the central portion,
The oxidant thin film layer 31 and the oxidant thin film layer 30 are laminated in this order by patterning connected by 30b. When electricity is applied from both sides of the oxidant thin film layer 30, Joule heat is concentrated in the central portion. It is shaped so as to occur. Another oxidant thin film layer 32 is laminated on the heat generating portion 30b so as to cover it, and a protective film 40 is laminated on the outermost layer.

【0020】酸化剤薄膜層31および32には、銅をタ
ーゲットとして酸素を導入した反応性スパッタリングに
より製膜したそれぞれ厚さ約1μmの酸化銅薄膜(II)
を用いた。被酸化剤薄膜層30には蒸着により製膜した
厚さ約500nmのチタン薄膜を用いた。セラミックス
基板20にはアルミナを用い、保護膜40には厚さ約5
00nmの酸化珪素薄膜を用いた。
The oxidizer thin film layers 31 and 32 are each formed by reactive sputtering in which oxygen is introduced using copper as a target, and each of them is a copper oxide thin film (II) having a thickness of about 1 μm.
Was used. As the oxidant thin film layer 30, a titanium thin film having a thickness of about 500 nm formed by vapor deposition was used. Alumina is used for the ceramic substrate 20, and the protective film 40 has a thickness of about 5
A silicon oxide thin film of 00 nm was used.

【0021】この結果、基板の中央部に発熱部を持ち、
被酸化剤としてチタンを、酸化剤として酸化銅(II)を
用いて被酸化剤薄膜の発熱部が酸化剤薄膜で挟み込まれ
た形の積層構造を持つ発火素子が得られた。この素子の
被酸化剤薄膜層30に、直流電源を用いて通電すること
で不活性ガス中でも大きな火花が得られた。
As a result, the heat generating portion is provided at the center of the substrate,
Using titanium as an oxidant and copper (II) oxide as an oxidant, a firing element having a laminated structure in which a heat generating portion of the oxidant thin film is sandwiched between the oxidant thin films was obtained. A large spark was obtained even in an inert gas by energizing the oxidant thin film layer 30 of this element with a DC power supply.

【0022】[0022]

【実施例2】図2に、薄膜発火素子の第2実施例を示
す。薄膜発火素子12は、セラミックス基板20上に中
央部でジュール熱が集中的に発生するように両側の幅広
通電部21a、21aを中央部の幅狭な通路をなす発熱
部21bで接続するようにパターンニングされた抵抗体
薄膜層21を設け、絶縁膜22を介してその発熱部21
b上に酸化剤薄膜層31、被酸化剤薄膜層30、酸化剤
薄膜層32がこの順で積層され、外層には、保護膜40
が積層されている。
[Embodiment 2] FIG. 2 shows a second embodiment of the thin film ignition element. In the thin film ignition element 12, the wide current-carrying parts 21a, 21a on both sides are connected by the heat generating part 21b forming a narrow passage in the central part so that Joule heat is concentratedly generated in the central part on the ceramic substrate 20. The patterned resistor thin film layer 21 is provided, and the heat generating portion 21 is provided through the insulating film 22.
The oxidant thin film layer 31, the oxidant thin film layer 30, and the oxidant thin film layer 32 are laminated in this order on the surface b, and the protective film 40 is provided on the outer layer.
Are stacked.

【0023】抵抗体薄膜層21には蒸着により製膜した
ニッケルを用い、絶縁膜22には厚さ約500nmの酸
化珪素膜を用いた。酸化剤薄膜層31および32、被酸
化剤薄膜層30は実施例1と同様の材料と方法で作製し
た。セラミックス基板20および外層の保護膜40も、
実施例1と同じである。この結果、ニッケル薄膜の加熱
層を有し、その上に被酸化剤としてチタンを、酸化剤と
して酸化銅(II)を用いて被酸化剤が酸化剤で挟み込ま
れた形の積層薄膜構造を持つ発火素子が得られた。
Nickel formed by vapor deposition was used for the resistor thin film layer 21, and a silicon oxide film having a thickness of about 500 nm was used for the insulating film 22. The oxidant thin film layers 31 and 32 and the oxidant thin film layer 30 were formed by using the same material and method as in Example 1. The ceramic substrate 20 and the outer protective film 40 are also
This is the same as in the first embodiment. As a result, a nickel thin film heating layer is formed, and titanium is used as an oxidant and copper (II) oxide is used as the oxidant, and the oxidant is sandwiched between the oxidants to form a laminated thin film structure. An ignition element was obtained.

【0024】[0024]

【実施例3および4】実施例1および2において、チタ
ンに代え、ジルコニウムを用い蒸着により厚さ約500
nmのジルコニウム薄膜を形成する以外は同様の材料と
方法を用いて薄膜発火素子を製造した。
Examples 3 and 4 In Examples 1 and 2, zirconium was used in place of titanium, and the thickness was about 500 by vapor deposition.
A thin film ignition element was manufactured using the same material and method except that a zirconium thin film of nm was formed.

【0025】[0025]

【比較例】比較のためニッケル薄膜を用いた従来技術の
薄膜発火素子13も作製した。図3は、この従来技術の
薄膜発火素子を示す。セラミックス基板20上に、中央
部でジュール熱が集中的に発生するようパターンニング
された抵抗体薄膜層21と保護膜層40が積層されてい
る。
[Comparative Example] For comparison, a conventional thin film ignition element 13 using a nickel thin film was also manufactured. FIG. 3 shows this prior art thin film firing element. On the ceramic substrate 20, a resistor thin film layer 21 and a protective film layer 40, which are patterned so that Joule heat is concentratedly generated in the central portion, are laminated.

【0026】実施例2で製造した積層構造を持つ発火素
子12および比較例で製造した従来技術の発火素子13
の抵抗体薄膜層の21に、不活性ガス中で直流電源を用
いて同一の電力を印加したときに発生する火花の大きさ
を発火素子の真横から写真観察した。結果を図4の
(A)および(B)に図示する。従来素子では抵抗体薄
膜が電流破壊を起こしていたが火花はほとんど観察され
ず、積層構造を持つ発火素子では、基板から8mm以上
に及ぶ大きな火花が観察された。
The firing element 12 having the laminated structure manufactured in Example 2 and the conventional firing element 13 manufactured in the comparative example.
The size of the spark generated when the same electric power was applied to the resistor thin film layer 21 of No. 2 in an inert gas by using a DC power source was photographed from the side of the ignition element. The results are shown graphically in Figures 4A and 4B. In the conventional element, the resistor thin film caused current breakdown, but almost no sparks were observed, and in the ignition element having a laminated structure, a large spark of 8 mm or more from the substrate was observed.

【0027】図5は、これらの素子の発火の際の発光量
と応答時間の測定回路を示す。発火素子10には、パル
ス電圧V0が印加され、その際の抵抗値変化がR2に発
生する電圧によってモニタされる。発火素子10で発生
した光は、近接して配置されたフォトトランジスタ50
に検出されオペアンプ51で増幅される。デジタルオシ
ロスコープ52には、R2で発生する電圧とオペアンプ
51の出力が接続されており、R2に発生する電圧をト
リガとしてオペアンプ51の出力を読み取った。
FIG. 5 shows a circuit for measuring the amount of light emission and the response time when these elements are fired. A pulse voltage V0 is applied to the firing element 10, and the change in resistance value at that time is monitored by the voltage generated in R2. The light generated by the ignition element 10 is transmitted to the phototransistor 50 which is arranged in close proximity.
And is amplified by the operational amplifier 51. The voltage generated in R2 and the output of the operational amplifier 51 are connected to the digital oscilloscope 52, and the output of the operational amplifier 51 was read by using the voltage generated in R2 as a trigger.

【0028】図6は、約2Ωの抵抗値を持つそれぞれの
抵抗体薄膜層に立ち上がり時間5μsである−8Vの矩
形波V0を印加し、抵抗体薄膜層を電流破壊させた際の
デジタルオシロスコープ52の出力結果を示したもので
ある。積層構造を持つ発火素子12では、不活性ガス中
でも従来技術の発火素子13に比べはるかに大きい発光
量が観察され、酸化剤薄膜の効果が確認された。また、
ニッケル抵抗体に数層の薄膜層を積層し、発熱部の全熱
容量が大きくなっているにもかかわらず、その応答時間
はニッケル抵抗体の電流破壊における応答時間とほぼ同
様に速かった。
FIG. 6 shows a digital oscilloscope 52 when a thin film of a resistor is subjected to current destruction by applying a rectangular wave V0 of -8 V having a rise time of 5 μs to each of the resistor thin films having a resistance value of about 2Ω. It shows the output result of. In the ignition element 12 having a laminated structure, a much larger amount of light emission was observed than in the conventional ignition element 13 even in an inert gas, and the effect of the oxidant thin film was confirmed. Also,
Despite the fact that several thin film layers were laminated on the nickel resistor and the total heat capacity of the heat generating portion was large, the response time was almost as fast as the response time in the current breakdown of the nickel resistor.

【0029】また、図7は抵抗体薄膜層が電流破壊する
条件で通電し、積層構造を持つ発火素子12および従来
技術の発火素子13の表面温度を赤外線放射温度計で測
定した結果を示す。同一の通電条件でも積層薄膜を追加
した試料の表面温度は高温に達し、表面温度が高温に保
たれる時間も長いことが分かる。
FIG. 7 shows the results of measuring the surface temperature of the firing element 12 having a laminated structure and the firing element 13 of the prior art with an infrared radiation thermometer by energizing under the condition that the resistor thin film layer is destroyed by current. It can be seen that the surface temperature of the sample to which the laminated thin film is added reaches a high temperature and the surface temperature is kept high for a long time even under the same energization condition.

【0030】[0030]

【発明の効果】以上の説明で明らかなように、本発明に
よれば、酸化剤と被酸化剤の積層薄膜構造からなる発火
素子を提供し、その発火素子の安全性、動作安定性を大
きく向上させることができる。これにより薄膜抵抗体を
用いる発火素子の高速応答性、量産性を損なうことなく
より強力な発火を可能にし、例えば自動車のエアバッグ
システムなどの発火素子として使用すれば、その発火の
確実性を増し、伝爆薬などの危険な火薬の必要性をなく
すことで安全性の確保に寄与することができる。
As is apparent from the above description, according to the present invention, there is provided an ignition element having a laminated thin film structure of an oxidant and an oxidant, and the safety and operation stability of the ignition element are increased. Can be improved. This enables more rapid ignition without impairing the high-speed response and mass productivity of the ignition element that uses a thin film resistor.For example, when used as an ignition element for an automobile airbag system, the certainty of the ignition is increased. By eliminating the need for dangerous explosives such as explosives, it can contribute to ensuring safety.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明に係る発火素子の第1実施例を示す
(A)平面図および(B)A−A断面概略図である。
1 (A) is a plan view and FIG. 1 (B) is a schematic cross-sectional view taken along the line AA, showing a first embodiment of an ignition element according to the present invention.

【図2】 本発明に係る発火素子の第2実施例を示す
(A)平面図および(B)A−A断面概略図である。
2 (A) is a plan view and FIG. 2 (B) is a schematic cross-sectional view taken along the line AA, showing a second embodiment of an ignition element according to the present invention.

【図3】 従来の薄膜発火素子の一例を示す(A)平面
図および(B)A−A断面概略図である。
3 (A) is a plan view and FIG. 3 (B) is a schematic cross-sectional view taken along line AA showing an example of a conventional thin film ignition element.

【図4】 (A)本発明に係る発火素子および(B)従
来技術の発火素子の発火の際の火花の大きさを写真観察
した結果の一例の模写図である。
FIG. 4 is a copy diagram of an example of a result of photographic observation of the size of sparks at the time of ignition of (A) the firing element according to the present invention and (B) the firing element of the related art.

【図5】 発火の際の発光量の測定回路である。FIG. 5 is a circuit for measuring the amount of light emitted during ignition.

【図6】 図2および図3の発火素子の発火の際の発光
量の一例を示す図である。
FIG. 6 is a diagram showing an example of the amount of light emitted when the firing element of FIGS. 2 and 3 fires.

【図7】 図6と同じ発火素子の発火の際の表面温度の
一例を示す図である。
FIG. 7 is a diagram showing an example of a surface temperature at the time of ignition of the same ignition element as in FIG.

【符号の説明】 10〜13…発火素子 20…セラミックス基板 21…抵抗体薄膜層 22…絶縁膜 30…被酸化剤薄膜層 31〜32…酸化剤薄膜層 40…保護膜 50…フォトトランジスタ PT501A 51…オペアンプ LF356H 52…デジタルオシロスコープ HP54202A V0…印加電圧 −8V V1…バイアス電圧 −2.5V R0…抵抗器 1kΩ R1…抵抗器 9.1kΩ R2…抵抗器 3.5Ω[Explanation of symbols] 10-13 ... Ignition element 20 ... Ceramics substrate 21 ... Resistor thin film layer 22 ... Insulating film 30 ... Oxidizing agent thin film layer 31-32 ... Oxidizing agent thin film layer 40 ... Protective film 50 ... Phototransistor PT501A 51 ... Operational amplifier LF356H 52 ... Digital oscilloscope HP54202A V0 ... Applied voltage -8V V1 ... Bias voltage -2.5V R0 ... Resistor 1kΩ R1 ... Resistor 9.1kΩ R2: resistor 3.5Ω

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) B60R 21/26 F42B 3/12 F23Q 3/00 ─────────────────────────────────────────────────── ─── Continuation of front page (58) Fields surveyed (Int.Cl. 7 , DB name) B60R 21/26 F42B 3/12 F23Q 3/00

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 電気絶縁性基板上に、両側の一対の幅広
通電部を幅狭の発熱部で接続するようにパターニングさ
れてなる抵抗体薄膜層と、上記発熱部からの熱により発
火する発火層と、を有する薄膜発火素子であって、 上記発火層が、上記発熱部の発熱温度において酸素によ
って急速酸化され、生成する酸化物の酸素1mol当り
の標準生成熱が絶対値で1000kJ/mol以上であ
る1層以上の被酸化剤層と、上記発熱温度において分解
し酸素を発生する1層以上の酸化剤層と、から成り、少
なくとも1層の上記被酸化剤層と少なくとも1層の上記
酸化剤層とが積層されてなる薄膜発火素子。
1. A resistor thin film layer, which is patterned on an electrically insulating substrate so that a pair of wide current-carrying parts on both sides are connected to each other by a narrow heating part, and an ignition which is ignited by heat from the heating part. A thin film ignition element having a layer, wherein the ignition layer is rapidly oxidized by oxygen at a heat generation temperature of the heat generating portion, and a standard heat of formation per 1 mol of oxygen of the generated oxide is 1000 kJ / mol or more in absolute value. And at least one oxidant layer that decomposes at the exothermic temperature to generate oxygen, and at least one oxidant layer and at least one oxidant. A thin film ignition element in which an agent layer is laminated.
【請求項2】 上記抵抗体薄膜層が上記被酸化剤から成
る請求項1記載の薄膜発火素子。
2. The thin film ignition element according to claim 1, wherein the resistor thin film layer comprises the oxidant.
【請求項3】 上記酸化剤薄膜層と、上記被酸化剤薄膜
層とがこの順で上記抵抗体薄膜層上に積層されてなる請
求項1記載の薄膜発火素子。
3. The thin film ignition element according to claim 1, wherein the oxidant thin film layer and the oxidizable thin film layer are laminated in this order on the resistor thin film layer.
【請求項4】 上記発火層が、第2の酸化剤層を有し、
上記被酸化剤層を2つの酸化剤層が挟持してなる請求項
1から3のいずれか一つに記載の薄膜発火素子。
4. The ignition layer has a second oxidant layer,
4. The thin film ignition element according to claim 1, wherein the oxidant layer is sandwiched by two oxidant layers.
【請求項5】 上記酸化剤が酸化銅(II)である一
方、上記被酸化剤がチタン又はジルコニウムである請求
項1から4のいずれか一つに記載の薄膜発火素子。
5. The thin film ignition element according to claim 1, wherein the oxidant is copper (II) oxide, and the oxidant is titanium or zirconium.
JP21314493A 1993-08-27 1993-08-27 Thin film firing element Expired - Fee Related JP3447336B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21314493A JP3447336B2 (en) 1993-08-27 1993-08-27 Thin film firing element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21314493A JP3447336B2 (en) 1993-08-27 1993-08-27 Thin film firing element

Publications (2)

Publication Number Publication Date
JPH0761319A JPH0761319A (en) 1995-03-07
JP3447336B2 true JP3447336B2 (en) 2003-09-16

Family

ID=16634312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21314493A Expired - Fee Related JP3447336B2 (en) 1993-08-27 1993-08-27 Thin film firing element

Country Status (1)

Country Link
JP (1) JP3447336B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE322664T1 (en) * 2000-09-07 2006-04-15 Nknm Ltd ELECTRICAL BRIDGE IGNITOR WITH A MULTI-LAYER BRIDGE AND METHOD OF PRODUCING THIS BRIDGE
WO2006038703A1 (en) * 2004-10-04 2006-04-13 Nipponkayaku Kabushikikaisha Semiconductor bridge circuit apparatus and igniter including the same
EP1933108B1 (en) 2005-09-07 2014-03-26 Nippon Kayaku Kabushiki Kaisha Semiconductor bridge, igniter, and gas generator

Also Published As

Publication number Publication date
JPH0761319A (en) 1995-03-07

Similar Documents

Publication Publication Date Title
JP4746554B2 (en) Semiconductor bridge device and igniter equipped with semiconductor bridge device
US4976200A (en) Tungsten bridge for the low energy ignition of explosive and energetic materials
US6772692B2 (en) Electro-explosive device with laminate bridge
KR100216418B1 (en) Protective device
JP2008507248A5 (en)
US20070056459A1 (en) Titanium semiconductor bridge igniter
US6133146A (en) Semiconductor bridge device and method of making the same
JP3447336B2 (en) Thin film firing element
JP3175051B2 (en) Electric ignition type initiator
US20110226148A1 (en) Physical destruction of electrical device and methods for triggering same
US3994664A (en) Parallel electrical switches
JPS63146380A (en) Positive resistane-temperature coefficient heater
JP4848118B2 (en) Electronic blasting device with laminated electric bridge
WO1994026560A1 (en) Electric ignition device for gas generating device
JP3415094B2 (en) Manufacturing method of exterior coating type electronic component
JP2511538B2 (en) Semiconductor temperature sensor
KR20070033853A (en) Safety element for preventing overcharge of secondary battery and secondary battery combined with safety element
JPH05133699A (en) Electric igniter for gas generating device
JP2537130Y2 (en) Thermal battery
JPH0763891A (en) Catalyst type hydrogen igniter
JPH0545322A (en) Gas detecting apparatus
JPS5885280A (en) Thermal battery
JPH0687426B2 (en) Heating element
JP2003051315A (en) Thermal battery
JPH10170197A (en) Insensitive squib

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080704

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090704

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090704

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100704

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100704

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees