JP3447183B2 - High frequency composite material with soft magnetism and dielectric properties - Google Patents

High frequency composite material with soft magnetism and dielectric properties

Info

Publication number
JP3447183B2
JP3447183B2 JP25203796A JP25203796A JP3447183B2 JP 3447183 B2 JP3447183 B2 JP 3447183B2 JP 25203796 A JP25203796 A JP 25203796A JP 25203796 A JP25203796 A JP 25203796A JP 3447183 B2 JP3447183 B2 JP 3447183B2
Authority
JP
Japan
Prior art keywords
powder
composite material
composition
alloy powder
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25203796A
Other languages
Japanese (ja)
Other versions
JPH09153405A (en
Inventor
豊 山本
隆夫 水嶋
隆史 畑内
彰宏 牧野
輝芳 久保川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP25203796A priority Critical patent/JP3447183B2/en
Publication of JPH09153405A publication Critical patent/JPH09153405A/en
Application granted granted Critical
Publication of JP3447183B2 publication Critical patent/JP3447183B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • H01F1/26Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated by macromolecular organic substances

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、例えば液晶テレビ
用アンテナ、磁気ヘッドのコア、パルスモータの磁心、
チョークコイルの磁性コア、トランス等の磁気応用分野
に好適に用いることができる軟磁性と誘電性とを有する
高周波用複合材料およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal television antenna, a magnetic head core, a pulse motor magnetic core, and the like.
The present invention relates to a high-frequency composite material having soft magnetism and dielectric property, which can be suitably used in a magnetic application field such as a magnetic core of a choke coil and a transformer, and a manufacturing method thereof.

【0002】[0002]

【従来の技術】近年、電子機器に対する小型軽量化なら
びに高性能化の要求はさらに高まっており、このような
要求を満足するために、電源トランス等のインダクター
の駆動周波数はさらに高周波化されつつある。これらの
対応として、従来の軟磁気特性に加えて、より高い固有
抵抗を有する磁性材料が必要とされていた。
2. Description of the Related Art In recent years, demands for smaller and lighter electronic devices and higher performance have been further increased. In order to meet such demands, the drive frequency of inductors such as power transformers is becoming higher. . In order to deal with these, a magnetic material having a higher specific resistance in addition to the conventional soft magnetic characteristics has been required.

【0003】そこで、本発明者等は、Fe基結晶と、H
f若しくはTaの非晶質が混在するFe-Hf-O系合金
もしくはFe-Ta-O系合金、特願平5−338333
号の組成式がFeabc(Mは希土類元素のうち少な
くとも一種の元素、または、それらの混合物を表す。)
で示される合金が高い固有抵抗を有し、優れた磁気特性
を有するものであることを見い出した。ところが、これ
らの軟磁性合金はスパッタリング法により得られるもの
で、製造した時は薄膜状のものであるがために、それを
液晶テレビのアンテナなどのロッド状のものや、磁気ヘ
ッドのコアやパルスモータの磁心として利用することが
難しいという問題があった。
Therefore, the present inventors have found that Fe-based crystals and H
Fe-Hf-O-based alloy or Fe-Ta-O-based alloy in which f or Ta amorphous is mixed, Japanese Patent Application No. 5-338333
The composition formula of No. is Fe a M b O c (M represents at least one element of rare earth elements or a mixture thereof.)
It has been found that the alloy represented by (1) has a high specific resistance and excellent magnetic properties. However, these soft magnetic alloys are obtained by the sputtering method, and since they are thin films when manufactured, they are rod-shaped such as antennas of liquid crystal televisions, cores and pulse of magnetic heads. There is a problem that it is difficult to use it as a magnetic core of a motor.

【0004】また、従来の磁性材料で最も高周波数まで
使用されていたNiフェライトにあっては、周波数が1
50MHzを超えると急激にQ(コア材の損失特性を示
す。)が低下してしまい、磁心損失が大きくなってしま
う。また、高周波用磁性材料として開発されたマグネッ
トプランバイト型のフェライトにおいても、1GHzで
Q=1となってしまい、数百MHzの高周波領域の損失
において不満を有していた。前記Qは、損失係数(ta
nδ)の逆数であり、この値が大きいほど、高周波材料
として優れていることを示す。さらに、数百MHz以上
の周波数帯で使用する場合には、誘電性をも兼ね備えた
磁性材料が必要とされていた。
The frequency of Ni ferrite used in conventional magnetic materials up to the highest frequency is 1
When it exceeds 50 MHz, Q (which shows the loss characteristic of the core material) is rapidly lowered, and the core loss is increased. In addition, even in the magnet-plumbite type ferrite developed as a magnetic material for high frequencies, Q = 1 at 1 GHz, which is unsatisfactory in the loss in the high frequency region of several hundred MHz. The Q is a loss coefficient (ta
It is the reciprocal of nδ), and the larger this value is, the better the high frequency material is. Further, when used in a frequency band of several hundred MHz or more, a magnetic material having a dielectric property was required.

【0005】そこで本発明者らは、前記磁気特性に優れ
た軟磁性合金について、液晶テレビのアンテナや、磁気
ヘッドのコアあるいはパルスモータの磁心などへの適用
を考慮し、軟磁気特性に優れた合金粉末を誘電損失が小
さい合成樹脂に分散、混練してから成形することを発案
し、所望の形状に成形する試みを行い、本発明に到達し
たのである。
Therefore, the inventors of the present invention have considered the soft magnetic alloy having excellent magnetic characteristics to be applied to an antenna of a liquid crystal television, a core of a magnetic head, a magnetic core of a pulse motor, or the like, and have excellent soft magnetic characteristics. The inventors arrived at the present invention by attempting to shape the alloy powder into a desired shape by dispersing and kneading the alloy powder in a synthetic resin having a small dielectric loss, and then shaping the alloy powder.

【0006】[0006]

【発明が解決しようとする課題】本発明は前記事情に鑑
みてなされたものであり、所望形状に容易に成形でき、
高周波において、優れた軟磁気特性と低誘電損失とを兼
ね備えた軟磁性と誘電性とを有する高周波用複合材料お
よびその製造方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and can be easily formed into a desired shape.
It is an object of the present invention to provide a high frequency composite material having a high soft magnetic property and a low dielectric loss, which has excellent soft magnetic characteristics and low dielectric loss, and a method for producing the same.

【0007】[0007]

【課題を解決するための手段】本発明に係る軟磁性と誘
電性を有する高周波用複合材料は、組成式が、A
(前記組成式中、AはFe,Co,Niの群から選
ばれた少なくとも一種の元素またはそれらの混合物を表
し、MはZrとWから選ばれた少なくとも一種の元素ま
たはそれらの混合物を表す。)で示され、前記Aの組成
範囲aを原子%で45≦a≦65、前記Oの組成範囲c
を原子%で30≦c≦45とした軟磁性合金粉末からな
る軟磁性合金粉末と、合成樹脂からなることを特徴とす
るものである。
A high frequency composite material having soft magnetic properties and dielectric properties according to the present invention has a composition formula of A a M b
O c (in the above composition formula, A represents at least one element selected from the group of Fe, Co and Ni or a mixture thereof, and M represents at least one element selected from Zr and W or a mixture thereof. The composition of A above
The range a in atomic% is 45 ≦ a ≦ 65, and the composition range of O is c
It is characterized by comprising a soft magnetic alloy powder made of a soft magnetic alloy powder having an atomic percentage of 30 ≦ c ≦ 45 and a synthetic resin.

【0008】発明の組成式においてAが、FeとCo
からなり、組成式が、(Fe100−xCo
で表され、xが0<x≦90の範囲であっても良い。
本発明の前記の構造において、前記軟磁性合金粉末の表
面に絶縁層が形成されていても良い
In the composition formula of the present invention, A is Fe and Co.
Consists, composition formula, (Fe 100-x Co x ) a M b
It may be represented by O c , and x may be in the range of 0 <x ≦ 90.
In the above structure of the present invention, an insulating layer may be formed on the surface of the soft magnetic alloy powder .

【0009】[0009]

【0010】[0010]

【0011】[0011]

【0012】本発明に係る高周波用複合材料の製造方法
は、前記の高周波用複合材料の製造方法において、Aの
粉末とMの粉末に代えて液体急冷法により得られたA-
M合金薄帯の粉砕物粉末を用いることを特徴とする方法
である。
The method for producing a high frequency composite material according to the present invention is the same as the method for producing a high frequency composite material as described above, except that A-obtained by a liquid quenching method in place of the A powder and the M powder.
This is a method characterized by using pulverized powder of M alloy ribbon.

【0013】[0013]

【0014】[0014]

【0015】[0015]

【発明の実施の形態】本発明の軟磁性と誘電性とを有す
る高周波用複合材料の製造方法の第一の例を以下に示
す。まず、本発明での組成式がAabcで示される軟
磁性合金粉末の組成になるように各原料を秤量する。こ
こでの原料は、Aの粉末、Mの粉末が用いられる。Aの
粉末としては、Fe,Co,Niの群から選ばれた少な
くとも一種の元素の単体,酸化物,炭化物,炭酸塩,窒
素化物,ホウ化物のうちから選ばれた粉末が用いられ
る。Mの粉末としては、Hf,Zr,W,Ti,V,N
b,Mo,Cr,Mg,Mn,Al,Si,Ca,S
r,Ba,Cu,Ga,Ge,As,Se,Zn,C
d,In,Sn,Sb,Te,Pb,Bi,希土類元素
の群から選ばれた少なくとも一種の元素の単体,酸化
物,炭化物,炭酸塩,窒素化物,ホウ化物のうちから選
ばれた粉末が用いられる。前記希土類元素としては、周
期表の3A族に属するSc,Y,あるいは、La,C
e,Pr,Nd,Pm,Sm,Eu,Gd,Td,D
y,Ho,Er,Tm,Yb,Luなどのランタノイド
の群から選ばれる少なくとも一種の元素またはそれらの
混合物が挙げられる。この際、Aの粉末は粒径が100
μm以下、Mの粉末は粒径が2μm以下のものが望まし
い。
BEST MODE FOR CARRYING OUT THE INVENTION A first example of a method for producing a high frequency composite material having soft magnetism and dielectric properties according to the present invention will be described below. First, each raw material is weighed so that the composition formula in the present invention is the composition of the soft magnetic alloy powder represented by A a M b D c . As the raw material here, A powder and M powder are used. As the powder of A, a powder selected from a simple substance of at least one element selected from the group of Fe, Co and Ni, oxides, carbides, carbonates, nitrides and borides is used. As the powder of M, Hf, Zr, W, Ti, V, N
b, Mo, Cr, Mg, Mn, Al, Si, Ca, S
r, Ba, Cu, Ga, Ge, As, Se, Zn, C
d, In, Sn, Sb, Te, Pb, Bi, powder of at least one element selected from the group of rare earth elements, oxides, carbides, carbonates, nitrides, borides Used. Examples of the rare earth element include Sc, Y, or La, C belonging to Group 3A of the periodic table.
e, Pr, Nd, Pm, Sm, Eu, Gd, Td, D
At least one element selected from the group of lanthanoids such as y, Ho, Er, Tm, Yb and Lu, or a mixture thereof can be mentioned. At this time, the powder of A has a particle size of 100.
It is desirable that the powder of M or less and M has a particle diameter of 2 μm or less.

【0016】次いで、Dのうち、O,C,Nを添加する
場合は、前述のAの粉末とMの粉末とをステンレス鋼製
ポット中に、ポットと同材質のステンレス球と共に封入
し、O,C,Nの群から選ばれた少なくとも一種の元素
の単体ガス,酸化物ガス,炭化物ガスのうちから選ばれ
たDのガスを充満させる。そして、高エネルギ型遊星式
ボールミルを用いて所定時間、粉砕、攪拌するメカニカ
ルアロイングにより、組成式がAabc(前記組成式R
>中、AはFe,Co,Niの群から選ばれた少なくと
も一種の元素またはそれらの混合物を表し、MはHf,
Zr,W,Ti,V,Nb,Mo,Cr,Mg,Mn,
Al,Si,Ca,Sr,Ba,Cu,Ga,Ge,A
s,Se,Zn,Cd,In,Sn,Sb,Te,P
b,Bi,希土類元素の群から選ばれた少なくとも一種
の元素またはそれらの混合物を表し、DはO,C,N,
Bの群から選ばれた少なくとも一種の元素またはそれら
の混合物を表す。また、組成式中、a,b,cは、原子
%で、40≦a<87、0<b≦20、0<c≦50な
る関係を満足するものである。)で示される軟磁性合金
粉末が得られる。なお、前記の組成式において、Aとし
てFeとCoを用い、その際の組成式を(Fe100-x
xabcで表され、組成比を示すxが0<x≦90の
範囲であるように各成分を混合することもできる。この
ような組成とすることで、特に、後述する如くQεの値
を高くすることができ、Qμの周波数特性も優れたもの
にすることができる。メカニカルアロイングの時間は、
2時間以上とするのが好ましく、より好ましくは8〜6
0時間程度とされる。2時間未満であると、bcc構造
もしくはfcc構造、または、これらが混在したAの結
晶の微細化が十分に進んでいないため好ましくない。
Next, in the case of adding O, C and N among D, the powder of A and the powder of M described above are enclosed in a stainless steel pot together with a stainless ball made of the same material as the pot, and O is added. , A gas of at least one element selected from the group of C, N, a gas of D selected from oxide gas, and a carbide gas. Then, by mechanical alloying in which a high energy type planetary ball mill is used for grinding and stirring for a predetermined time, the composition formula is A a M b D c (the above composition formula R
>, A represents at least one element selected from the group of Fe, Co and Ni or a mixture thereof, and M represents Hf,
Zr, W, Ti, V, Nb, Mo, Cr, Mg, Mn,
Al, Si, Ca, Sr, Ba, Cu, Ga, Ge, A
s, Se, Zn, Cd, In, Sn, Sb, Te, P
b, Bi, at least one element selected from the group of rare earth elements or a mixture thereof, and D is O, C, N,
It represents at least one element selected from the group B or a mixture thereof. Further, in the composition formula, a, b, and c satisfy the relations of 40 ≦ a <87, 0 <b ≦ 20, and 0 <c ≦ 50 in atomic%. The soft magnetic alloy powder shown by the above) is obtained. In the above composition formula, Fe and Co are used as A, and the composition formula at that time is (Fe 100-x C
O x ) a M b D c , and the respective components can be mixed so that x representing the composition ratio is in the range of 0 <x ≦ 90. With such a composition, in particular, the value of Qε can be increased and the frequency characteristic of Qμ can be made excellent as described later. The time for mechanical alloying is
It is preferably 2 hours or more, more preferably 8 to 6
It will be about 0 hours. When it is less than 2 hours, the bcc structure or the fcc structure, or the crystal of A in which these are mixed is not sufficiently refined, which is not preferable.

【0017】この例では、粉砕、攪拌をDのガス雰囲気
下で行なっているが、前記DのガスとArガス等の不活
性ガスとの混合ガス雰囲気下で行なうことにより、材料
中の酸素,炭素,窒素量を調整することができる。尚、
粉砕には遊星型ボールミルの他、ロータースピードミル
などの粉砕機械を用いても良い。
In this example, crushing and stirring are carried out in a D gas atmosphere, but by carrying out in a mixed gas atmosphere of the D gas and an inert gas such as Ar gas, oxygen in the material, The amount of carbon and nitrogen can be adjusted. still,
In addition to the planetary ball mill, a crushing machine such as a rotor speed mill may be used for crushing.

【0018】ここで得られた軟磁性合金粉末は、平均結
晶粒径が数nm〜数10nmオーダーのbcc構造のA
の微結晶相が、M,Dを多量に含む非晶質相で取り囲ま
れたような構造を有する平均粒径が1〜2μm程度の凝
集粒子となる。この軟磁性合金粉末は、凝集粒子を構成
するbcc構造もしくはfcc構造、または、これらが
混在したAの微結晶の平均粒径が微細であるため、優れ
た軟磁気特性を示し、また、bcc構造もしくはfcc
構造、またはこれらが混在したAの微結晶が、高抵抗の
非晶質相によって取り囲まれているため、渦電流損失を
小さく押えることができるという特徴がある。
The soft magnetic alloy powder obtained here has an A having a bcc structure with an average crystal grain size on the order of several nm to several tens of nm.
The microcrystalline phase (1) has a structure such that it is surrounded by an amorphous phase containing a large amount of M and D, and becomes an agglomerated particle having an average particle size of about 1 to 2 μm. This soft magnetic alloy powder exhibits excellent soft magnetic characteristics because the bcc structure or fcc structure forming agglomerated particles, or the average grain size of the fine crystals of A in which they are mixed is fine, and the soft magnetic alloy powder has a bcc structure. Or fcc
Since the structure or the microcrystal of A in which these are mixed is surrounded by the amorphous phase of high resistance, there is a feature that the eddy current loss can be suppressed small.

【0019】次に、得られた軟磁性合金粉末を有機溶剤
を溶媒とする合成樹脂液に分散してスラリーを得た後、
このスラリーを3本ロールに繰り返し通して該スラリー
が粉末状になるまで混練し混練物を得る。ここで用いら
れる合成樹脂としては、誘電損失が小さい材料(即ちQ
の大きい材料でQが400以上のもの)が用いられ、例
えば、ポリプロピレン、ポリエチレン、ポリスチレン、
パラフィン、ポリテトラフルオロエチレン、ポリカーボ
ネート、シリコーン樹脂等が挙げられる。この合成樹脂
を溶解させる有機溶剤としては、キシレン、トルエン、
ベンゼン等が挙げられる。
Next, the obtained soft magnetic alloy powder is dispersed in a synthetic resin liquid using an organic solvent as a solvent to obtain a slurry,
This slurry is repeatedly passed through three rolls and kneaded until the slurry becomes powdery to obtain a kneaded product. The synthetic resin used here is a material with a small dielectric loss (that is, Q
With a large Q value of 400 or more), such as polypropylene, polyethylene, polystyrene,
Paraffin, polytetrafluoroethylene, polycarbonate, silicone resin, etc. may be mentioned. As an organic solvent for dissolving this synthetic resin, xylene, toluene,
Examples thereof include benzene.

【0020】合成樹脂への軟磁性合金粉末の添加割合
は、目的とする複合材料の磁性特性と誘電性によって適
宜変更可能であるが、スラリー中の体積割合で50〜8
0vol%程度となるように添加するのが好ましい。軟磁
性合金粉末の体積割合が50vol%未満であると、透
磁率が低くなるという不都合が生じる恐れがあり、一
方、80vol%を超えると射出成形等により成形する
のが困難になるという不都合が生じる恐れがある。
The addition ratio of the soft magnetic alloy powder to the synthetic resin can be appropriately changed depending on the magnetic properties and dielectric properties of the target composite material, but is 50 to 8 by volume in the slurry.
It is preferable to add it so as to be about 0 vol%. If the volume ratio of the soft magnetic alloy powder is less than 50 vol%, the magnetic permeability may be lowered, whereas if it exceeds 80 vol%, it may be difficult to perform molding by injection molding or the like. There is a fear.

【0021】前記軟磁性合金粉末は合成樹脂液に分散、
混練する前に、空気,酸素,窒素,水蒸気のうちから選
択される雰囲気中またはこれらの混合雰囲気中で熱処理
を行うことが望ましい。ここでの加熱温度は、25℃〜
300℃程度、加熱時間は0.5時間〜48時間程度が
好ましい。このようにすると、前記軟磁性合金粉末の表
面に酸化物からなる絶縁層が形成されるので、軟磁性合
金粉末の固有抵抗が上がり、高周波での誘電率をより低
くすることができる。なお、ここでの絶縁層は、酸化膜
に限らず、他の絶縁膜を用いて形成してもよい。
The soft magnetic alloy powder is dispersed in a synthetic resin liquid,
Before kneading, it is desirable to perform heat treatment in an atmosphere selected from air, oxygen, nitrogen, steam or a mixed atmosphere thereof. The heating temperature here is 25 ° C to
The heating time is preferably about 300 ° C. and the heating time is about 0.5 to 48 hours. In this case, the insulating layer made of oxide is formed on the surface of the soft magnetic alloy powder, so that the specific resistance of the soft magnetic alloy powder is increased and the dielectric constant at high frequency can be further lowered. Note that the insulating layer here is not limited to the oxide film and may be formed using another insulating film.

【0022】ついで、上記混練物を乾燥器等に入れて加
熱することにより有機溶剤を蒸発させたのち、プレス成
形機、射出成形機、押出装置等を用いて所望の形状に成
形して成形体を作製する。この後、この成形体を150
〜400℃程度、1時間程度加熱することにより、目的
とする軟磁性と誘電性とを有する高周波用複合材料の成
形体が得られる。なお、成形方法としては、圧縮成形法
以外に、射出成形法、押出成形法を用いることができ
る。
Then, the kneaded product is placed in a drier or the like to heat it to evaporate the organic solvent, and then the product is molded into a desired shape by using a press molding machine, an injection molding machine, an extrusion device or the like. To make. After this, the molded body is
By heating at about 400 ° C. for about 1 hour, a molded product of the intended high frequency composite material having soft magnetism and dielectric properties can be obtained. In addition to the compression molding method, an injection molding method or an extrusion molding method can be used as the molding method.

【0023】次に、本発明の軟磁性と誘電性とを有する
高周波用複合材料の製造方法の第二の例について説明す
る。この第二の例の高周波用複合材料の製造方法が第一
の例の高周波用複合材料の製造方法と異るところは、A
の粉末とMの粉末とを混合後、Dのガス雰囲気中で粉
砕、攪拌するのに代えて、Aの粉末と、Mの粉末と、D
の粉末とを混合後、不活性ガス雰囲気中、あるいはO,
C,Nの群から選ばれた少なくとも一種の元素の単体ガ
ス,酸化物ガス,炭化物ガスのうちから選ばれたDのガ
ス雰囲気中で粉砕、攪拌する点である。前記Dの粉末と
しては、カーボンとBのうちから選ばれた少なくとも一
種または混合物が用いられる。また、この例では、前記
Aの粉末とMの粉末とDの粉末の粉砕、攪拌をDのガス
雰囲気下、またはArガス等の不活性ガス雰囲気下、あ
るいは前記DのガスとArガス等の不活性ガスとの混合
ガス雰囲気下で行なわれ、前記混合ガス雰囲気下で行う
場合には材料中の酸素,炭素,窒素量を調整することが
できる。この第二の例の製造方法によっても、軟磁性と
誘電性とを有する高周波用複合材料が得られる。
Next, a second example of the method for producing a high frequency composite material having soft magnetism and dielectric properties according to the present invention will be described. The manufacturing method of the high frequency composite material of the second example is different from the manufacturing method of the high frequency composite material of the first example in A
After mixing the powder of M and the powder of M, instead of pulverizing and stirring in a gas atmosphere of D, the powder of A, the powder of M, and the powder of D
After mixing with the powder of
This is the point of pulverizing and stirring in a gas atmosphere of D selected from a simple substance gas of at least one element selected from the group of C and N, an oxide gas, and a carbide gas. As the powder of D, at least one selected from carbon and B or a mixture thereof is used. In addition, in this example, the powder of A, the powder of M and the powder of D are crushed and stirred in a gas atmosphere of D or in an inert gas atmosphere such as Ar gas, or when the gas of D and Ar gas are mixed. It is performed in a mixed gas atmosphere with an inert gas. When the mixed gas atmosphere is used, the amounts of oxygen, carbon and nitrogen in the material can be adjusted. Also by the manufacturing method of the second example, a high frequency composite material having soft magnetism and dielectric properties can be obtained.

【0024】次に、本発明の軟磁性と誘電性とを有する
高周波用複合材料の製造方法の第三の例について説明す
る。この第三の例の高周波用複合材料の製造方法が第一
の例または第二の例の高周波用複合材料の製造方法と異
るところは、Aの粉末とMの粉末に代えて液体急冷法に
より得られたA-M合金薄帯の粉砕物粉末を用いる点で
ある。
Next, a third example of the method of manufacturing the high frequency composite material having soft magnetism and dielectric properties of the present invention will be described. The manufacturing method of the high frequency composite material of the third example is different from the manufacturing method of the high frequency composite material of the first example or the second example, except that the liquid quenching method is used instead of the powder of A and the powder of M. The point is to use the pulverized powder of the A-M alloy ribbon obtained by.

【0025】液体急冷法によりA-M合金薄帯を作製す
るには、例えば、高速で回転する冷却された1個のロー
ルの表面にノズルを介してA-M合金溶湯を吹き付ける
単ロール法、2個の接触しながら回転する冷却ロール間
にA-M合金溶湯を噴出する双ロール法などにより製造
することができる。単ロール法では、A-M合金溶湯が
冷却ロールの表面に接触し冷却されてロール接触面(ロ
ール面)と非接触面(自由面)とで表面粗さが異る、厚
みが8〜35μm程度で、幅広、長尺のものが得られ
る。双ロール法では、薄帯の両面がロールに接触し、加
圧冷却されるので、単ロール法よりも厚手のものが得ら
れやすく、表面粗さおよび板厚精度も良好であるが、幅
広、長尺のものが得られにくい。このようにして作製さ
れたA-M合金薄帯は、粉砕されて粉末化された後、高
エネルギ型遊星式ボールミルに投入される。この第三の
例の製造方法によっても、軟磁性と誘電性とを有する高
周波用複合材料が得られる。
To prepare an AM alloy ribbon by the liquid quenching method, for example, a single roll method in which the molten AM alloy is sprayed on the surface of one cooled roll rotating at high speed through a nozzle, It can be manufactured by a twin roll method or the like in which the molten A-M alloy is jetted between two cooling rolls which rotate while contacting each other. In the single roll method, the molten AM alloy comes into contact with the surface of the cooling roll and is cooled, and the surface roughness is different between the roll contact surface (roll surface) and the non-contact surface (free surface), and the thickness is 8 to 35 μm. A wide and long product can be obtained. In the twin roll method, both sides of the ribbon contact the rolls and are cooled under pressure, so thicker ones are easier to obtain than the single roll method, and the surface roughness and plate thickness accuracy are also good, but wide, It is difficult to obtain long ones. The A-M alloy ribbon thus produced is crushed and pulverized, and then put into a high energy planetary ball mill. Also by the manufacturing method of the third example, a high frequency composite material having soft magnetic properties and dielectric properties can be obtained.

【0026】次に、本発明の軟磁性と誘電性とを有する
高周波用複合材料の製造方法の第四の例について説明す
る。この第四の例の高周波用複合材料の製造方法が第一
の例または第二の例の高周波用複合材料の製造方法と異
るところは、Aの粉末とMの粉末と、Dの粉末および/
またはDのガスに加えて液体急冷法により得られたA-
M合金薄帯の粉砕物粉末も用いる点である。この第四の
例の製造方法によっても、軟磁性と誘電性とを有する高
周波用複合材料が得られる。
Next, a fourth example of the method for producing a high frequency composite material having soft magnetism and dielectric properties according to the present invention will be described. The manufacturing method of the high frequency composite material of the fourth example is different from the manufacturing method of the high frequency composite material of the first example or the second example, except that A powder, M powder, D powder and /
Alternatively, in addition to the gas of D, A- obtained by the liquid quenching method
It is also a point that pulverized powder of M alloy ribbon is used. Also by the manufacturing method of the fourth example, a high frequency composite material having soft magnetism and dielectric properties can be obtained.

【0027】前述のようにして製造された高周波用複合
材料にあっては、誘電損失が小さい合成樹脂と、組成式
がAabcで示される軟磁性合金粉末とを複合したこ
とにより、得られる複合材料の固有抵抗が108Ω・c
m以上となるうえ、合成樹脂が有する絶縁体(誘電体)
としての誘電特性と、軟磁性合金粉末が有する軟磁気特
性とを合わせ持つことができ、特に、数百MHz以上の
高周波帯では、磁気特性のみならず、Qが高く、例え
ば、1GHzにおいてQ=30以上となり、従来の磁性
材料が達成できなかった数百MHz〜GHz帯での使用
が可能となる。また、この高周波用複合材料は、軟磁性
合金粉末が合成樹脂に分散されたものであるので、軟磁
性合金粉末のみから構成する場合と比べて、成形が容易
となる。
In the high frequency composite material produced as described above, the synthetic resin having a small dielectric loss and the soft magnetic alloy powder represented by the composition formula A a M b D c are compounded. , The resulting composite material has a resistivity of 10 8 Ω · c
Insulation (dielectric) that synthetic resin has in addition to m or more
And the soft magnetic characteristics of the soft magnetic alloy powder can be combined, and in particular, in a high frequency band of several hundred MHz or more, not only the magnetic characteristics but also the Q is high. For example, at 1 GHz, Q = Since it is 30 or more, it can be used in the several hundred MHz to GHz band, which cannot be achieved by the conventional magnetic material. Further, since the soft magnetic alloy powder is dispersed in the synthetic resin, the composite material for high frequencies is easier to mold than the case where it is composed only of the soft magnetic alloy powder.

【0028】従って、本発明の高周波用複合材料にあっ
ては、従来材の薄膜状のものと比べて、ロッド状などの
所望形状に成形し易いので、液晶テレビのアンテナとし
て、あるいは磁気ヘッドのコアや、トランスのコアとし
て、更には、パルスモータの磁針等のような磁気部品と
して広く適用することができる。また、従来材と比べ
て、高周波において磁気特性が優れ、かつ誘電損失の低
い磁気部品を得ることができ、さらにこれら磁気部品の
小型化を図ることができ、例えば、本発明の高周波用複
合材料を用いて液晶テレビのアンテナを作製すること
で、送受信レベルを向上し、もってアンテナの小型化を
図ることができる。
Therefore, the high-frequency composite material of the present invention can be easily formed into a desired shape such as a rod shape, as compared with the conventional thin-film material, so that it can be used as an antenna of a liquid crystal television or a magnetic head. It can be widely applied as a core, a core of a transformer, and a magnetic component such as a magnetic needle of a pulse motor. Further, compared to the conventional material, it is possible to obtain magnetic parts having excellent magnetic characteristics at high frequencies and low dielectric loss, and further miniaturization of these magnetic parts can be achieved. For example, the high frequency composite material of the present invention By manufacturing an antenna for a liquid crystal television using the, the transmission / reception level can be improved, and the antenna can be downsized.

【0029】[0029]

【実施例】以下、本発明を、実施例および比較例によ
り、具体的に説明するが、本発明はこれらの実施例のみ
に限定されるものではない。 (実施例1)電解鉄(東方亜鉛株式会社製、200メッ
シュパス)11.49gと、酸化ジルコニウム(第1希
元素製、45μmパス)4.61gとを計量し、これら
をステンレス鋼製(SUS304)ポット(内容量17
0ml)に入れた後、O2ガスを0.90g封入し、メニ
カルアロイングを行った。メニカルアロイングは、高エ
ネルギー型遊星ボールミル(栗本鉄工所製)を用い、ポ
ット中には該ポットと同材料のステンレス球(直径4m
m)を238g入れ、遠心加速度100G、自転速度/
公転速度=448rpm/588rpmで、8時間、混
合、粉砕、攪拌を行い、FeaZrbc合金粉末を得た
(ここでのa=55、b=10、c=35)。図1にこ
のFeaZrbc合金粉末の粒子構造を示した電子顕微
鏡写真を示す。
EXAMPLES The present invention will be specifically described below with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples. (Example 1) 11.49 g of electrolytic iron (manufactured by Toho Zinc Co., Ltd., 200 mesh pass) and 4.61 g of zirconium oxide (manufactured by No. 1 rare element, 45 μm pass) were weighed and made of stainless steel (SUS304). Pot (content capacity 17
(0 ml), 0.92 g of O 2 gas was enclosed, and mechanical alloying was performed. For the mechanical alloying, a high energy type planetary ball mill (Kurimoto Iron Works Co., Ltd.) is used, and a stainless steel ball (diameter 4 m) made of the same material as the pot is used in the pot.
m) is put in 238g, centrifugal acceleration 100G, rotation speed /
In the revolution speed = 448rpm / 588rpm, 8 hours, mixing, grinding, the resulting mixture was being stirred, Fe a Zr b O c alloy powder was obtained (a = 55 here, b = 10, c = 35 ). FIG. 1 shows an electron micrograph showing the particle structure of this Fe a Zr b O c alloy powder.

【0030】そして、メニカルアロイングにより得られ
たFeaZrbc合金粉末を、空気中で100℃、2時
間加熱し、表面を酸化させて酸化物からなる絶縁層を形
成した後、ポリスチレン樹脂(キシレンを溶媒として)
を、FeaZrbc合金粉末が体積比で50vol%と
なる量まで加えてスラリーを得た。ついで、このスラリ
ーを三本ロールに繰り返して通し、該スラリーが粉末状
となったところで、混練を終了し、FeaZrbc合金
粉末とポリスチレン樹脂からなる複合粉末を得た。 こ
の後、得られた複合粉末を雰囲気温度80℃の乾燥器中
に12時間入れて乾燥させ、キシレンを蒸発させた。つ
いで、この乾燥させた複合粉末をプレス成形機を用いて
円板状の成形体を作製し、この成形体を150℃で1時
間加熱することにより、外径15mm、厚さ3mmのF
e-Zr-Oポリスチレン樹脂複合材料を得た。図2にこ
のFe-Zr-Oポリスチレン樹脂複合材料の表面の粒子
構造を示した電子顕微鏡写真を示す。
The Fe a Zr b O c alloy powder obtained by the mechanical alloying is heated in air at 100 ° C. for 2 hours to oxidize the surface to form an insulating layer made of an oxide. Polystyrene resin (using xylene as solvent)
Was added to the Fe a Zr b O c alloy powder in an amount of 50 vol% by volume to obtain a slurry. Then, this slurry was repeatedly passed through a three-roll mill, and when the slurry became powdery, kneading was terminated to obtain a composite powder composed of Fe a Zr b O c alloy powder and polystyrene resin. Then, the obtained composite powder was placed in a dryer having an ambient temperature of 80 ° C. for 12 hours to be dried, and xylene was evaporated. Next, a disk-shaped molded body is produced from the dried composite powder by using a press molding machine, and the molded body is heated at 150 ° C. for 1 hour to obtain an F having an outer diameter of 15 mm and a thickness of 3 mm.
An e-Zr-O polystyrene resin composite material was obtained. FIG. 2 shows an electron micrograph showing the particle structure on the surface of this Fe-Zr-O polystyrene resin composite material.

【0031】(実施例2)メニカルアロイングにより得
られたFeaZrbc合金粉末を、空気中で120℃で
4時間加熱し、表面を酸化させて酸化物からなる絶縁層
を形成した以外は前記実施例1と同様にしてFe-Zr-
Oポリスチレン樹脂複合材料を得た。
Example 2 The Fe a Zr b O c alloy powder obtained by the mechanical alloying is heated in air at 120 ° C. for 4 hours to oxidize the surface to form an insulating layer made of an oxide. Fe-Zr- in the same manner as in Example 1 except that
O polystyrene resin composite material was obtained.

【0032】(比較例)従来、最も高周波帯域で使用さ
れている磁性材料として、ページャ用のアンテナ材料に
用いられているNiフェライトがある。そこで、モトロ
ーラ社製のページャ(共鳴周波数172MHz)に使用
されているNiフェライト(組成:Fe23=48mo
l%,NiO=47mol%,SiO2=2mol%,
PbO2=3mol%)から、φ8.0-φ4.0-t1.5
mmのリング状の試料およびφ15.0-t2.0mmの
円板試料を切り出し、比較用の磁性材料を得た。
Comparative Example Conventionally, as a magnetic material used in the highest frequency band, there is Ni ferrite used as an antenna material for pagers. Therefore, Ni ferrite (composition: Fe 2 O 3 = 48mo) used in a Motorola pager (resonance frequency 172 MHz).
1%, NiO = 47 mol%, SiO 2 = 2 mol%,
PbO 2 = 3 mol%) from φ8.0-φ4.0-t1.5
A ring-shaped sample of mm and a disk sample of φ15.0-t2.0 mm were cut out to obtain a magnetic material for comparison.

【0033】(試験1)前記の実施例1〜2で得られた
複合材料、比較例で得られた磁性材料の固有抵抗、透磁
率、磁性体としてのQを調べた。ここでの固有抵抗は、
円板試料の両面にカーボン両面テープ(日新EM株式会
社製)を貼り付け、スーパーメガオームメータ(東亜電
波工業株式会社製、Model SM−9E)を用いて
測定した。透磁率および磁性体としてのQは、円板試料
からそれぞれ、φ8.0-φ4.0-t1.5mmのリング
状の試料、およびφ15.0-t2.0mmの円板試料を
切り出し、マテリアルアナライザー(ヒューレット・パ
ッカード社製、4291A)を用いて周波数1MHz〜
1.8GHzまで測定した。それらの結果を図3〜図6
に示す。
(Test 1) The composite materials obtained in Examples 1 and 2 and the magnetic materials obtained in Comparative Examples were examined for specific resistance, magnetic permeability, and Q as a magnetic material. The specific resistance here is
Carbon double-sided tape (manufactured by Nisshin EM Co., Ltd.) was attached to both sides of the disk sample, and measurement was performed using a super mega ohm meter (Model SM-9E manufactured by Toa Denpa Kogyo Co., Ltd.). For permeability and Q as a magnetic material, a ring-shaped sample of φ8.0-φ4.0-t1.5 mm and a disc sample of φ15.0-t2.0 mm were cut out from a disk sample, and a material analyzer was used. (Hewlett-Packard, 4291A) frequency 1MHz ~
It was measured up to 1.8 GHz. The results are shown in FIGS.
Shown in.

【0034】図3は、誘電率(ε)と周波数との関係を
示したグラフである。図4は、誘電体としてのQ(Q
ε)と周波数との関係を示したグラフである。図5は、
透磁率(μ)と周波数との関係を示したグラフである。
図6は、磁性体としてのQ(Qμ)と周波数との関係を
示したグラフである。
FIG. 3 is a graph showing the relationship between the dielectric constant (ε) and the frequency. FIG. 4 shows Q (Q
It is a graph which showed the relationship between (epsilon) and frequency. Figure 5
6 is a graph showing the relationship between magnetic permeability (μ) and frequency.
FIG. 6 is a graph showing the relationship between Q (Qμ) as a magnetic material and frequency.

【0035】図3に示した結果から明かなように、実施
例1で得られた複合材料は比較例の磁性材料と同様の誘
電性を有し、また、合金粉末の加熱温度を高く、かつ加
熱時間を長くした実施例2の複合材料は、実施例1なら
びに比較例のものと比べて、誘電率が小さいものである
ことが分った。また、図4に示した結果から明かなよう
に、実施例1〜2の複合材料は、約800MHz以上の
高周波数において、比較例の磁性材料よりもQεが大き
く、優れた損失特性を示すことが分った。
As is clear from the results shown in FIG. 3, the composite material obtained in Example 1 has the same dielectric property as the magnetic material of the comparative example, the heating temperature of the alloy powder is high, and It was found that the composite material of Example 2 in which the heating time was lengthened had a smaller dielectric constant than those of Example 1 and Comparative Example. Further, as is clear from the results shown in FIG. 4, the composite materials of Examples 1 and 2 have a larger Q ε and exhibit excellent loss characteristics at a high frequency of about 800 MHz or higher than the magnetic material of the comparative example. I understood.

【0036】また、図5に示した結果から明かなよう
に、実施例1〜2の複合材料は、約800MHz以上の
高周波数において、安定した透磁率を示し、これに対し
て比較例の磁性材料は、周波数が大きくなるにつれて、
透磁率が低下している。また、特に、実施例1の複合材
料は、約1500MHz以上の高周波数において比較例
の磁性材料と比べて、透磁率が大きいことが分った。ま
た、図6に示した結果から明かなように、実施例1〜2
の複合材料は、約400MHz以上の高周波数におい
て、比較例の磁性材料に比べてQμが大きいことが分っ
た。
Further, as is clear from the results shown in FIG. 5, the composite materials of Examples 1 and 2 exhibit stable magnetic permeability at high frequencies of about 800 MHz or higher, while the magnetic properties of the comparative example are high. As the material increases in frequency,
The magnetic permeability is low. Further, it was found that the composite material of Example 1 had a larger magnetic permeability than the magnetic material of Comparative Example at a high frequency of about 1500 MHz or more. In addition, as is clear from the results shown in FIG.
It was found that the composite material (1) had a larger Qμ than the magnetic material of the comparative example at a high frequency of about 400 MHz or higher.

【0037】(試験2)FeaZrbcで示される合金
粉末をシリコーン樹脂に前記実施例1と同様にして分
散、混練後、成形して得られるFe-Zr-Oシリコーン
樹脂複合材料において、Feの原子%を45以上100
以下、Zrの原子%を5以上20以下、Oの原子%を1
5以上45以下の範囲で変化させて試験片とした(サン
プルNo.1〜15)。そして、各試験片において、含
有するFeaZrbcで示される合金粉末の組成比と、
室温で100MHz、500Hzにおけるμ′と、室温
で100MHz、500Hz、1GHzにおけるQμを
調べた。その測定結果を表1ならびに図7〜図11に示
す。
(Test 2) In an Fe-Zr-O silicone resin composite material obtained by dispersing, kneading and molding an alloy powder represented by Fe a Zr b O c in a silicone resin in the same manner as in Example 1 above. , Fe atomic% 45 or more 100
Below, the atomic% of Zr is 5 or more and 20 or less, and the atomic% of O is 1
Test pieces were prepared by changing the range of 5 or more and 45 or less (Sample Nos. 1 to 15). Then, in each test piece, the composition ratio of the alloy powder represented by Fe a Zr b O c contained,
The μ ′ at 100 MHz and 500 Hz at room temperature and the Qμ at 100 MHz, 500 Hz and 1 GHz at room temperature were examined. The measurement results are shown in Table 1 and FIGS.

【0038】[0038]

【表1】 [Table 1]

【0039】図7は、各Fe-Zr-Oシリコーン樹脂複
合材料ならびにFeシリコーン樹脂複合材料において、
含有するFeaZrbcで示される合金粉末の組成比
と、室温で100MHzおけるμ′を示す三角組成図で
あり、図7において、組成比を示す各ポイント(・)の
上部に付してある値がμ′である。図8は、各Fe-Z
r-Oシリコーン樹脂複合材料ならびにFeシリコーン
樹脂複合材料において、含有するFeaZrbcで示さ
れる合金粉末の組成比と、室温で100MHzおけるQ
μを示す三角組成図であり、図8において、組成比を示
す各ポイント(・)の上部に付してある値がQμであ
る。
FIG. 7 shows the composition of each Fe-Zr-O silicone resin composite material and Fe silicone resin composite material.
FIG. 8 is a triangular composition diagram showing the composition ratio of the contained alloy powder represented by Fe a Zr b O c and μ ′ at 100 MHz at room temperature, and is added to the upper part of each point (•) showing the composition ratio in FIG. 7. The given value is μ '. Fig. 8 shows each Fe-Z
In the r—O silicone resin composite material and the Fe silicone resin composite material, the composition ratio of the alloy powder represented by Fe a Zr b O c and the Q at 100 MHz at room temperature
FIG. 9 is a triangular composition diagram showing μ, and the value attached to the upper part of each point (·) showing the composition ratio in FIG. 8 is Qμ.

【0040】図9は、各Fe-Zr-Oシリコーン樹脂複
合材料ならびにFeシリコーン樹脂複合材料において、
含有するFeaZrbcで示される合金粉末の組成比
と、室温で500MHzおけるμ′を示す三角組成図で
あり、図9において、組成比を示す各ポイント(・)の
上部に付してある値がμ′である。図10は、各Fe-
Zr-Oシリコーン樹脂複合材料ならびにFeシリコー
ン樹脂複合材料において、含有するFeaZrbcで示
される合金粉末の組成比と、室温で500MHzおける
Qμを示す三角組成図であり、図10において、組成比
を示す各ポイント(・)の上部に付してある値がQμで
ある。図11は、各Fe-Zr-Oシリコーン樹脂複合材
料ならびにFeシリコーン樹脂複合材料において、含有
するFeaZrbcで示される合金粉末の組成比と、室
温で1GHzおけるQμを示す三角組成図であり、図1
1において、組成比を示す各ポイント(・)の上部に付
してある値がQμである。
FIG. 9 shows the composition of each Fe-Zr-O silicone resin composite material and Fe silicone resin composite material.
FIG. 10 is a triangular composition diagram showing the composition ratio of the contained alloy powder represented by Fe a Zr b O c and μ ′ at 500 MHz at room temperature, which is added to the upper part of each point (•) showing the composition ratio in FIG. 9. The given value is μ '. Fig. 10 shows each Fe-
FIG. 11 is a triangular composition diagram showing the composition ratio of the alloy powder represented by Fe a Zr b O c and the Qμ at 500 MHz at room temperature in the Zr—O silicone resin composite material and the Fe silicone resin composite material. The value attached to the upper part of each point (•) indicating the composition ratio is Qμ. FIG. 11 is a triangular composition diagram showing the composition ratio of the alloy powder represented by Fe a Zr b O c contained in each Fe-Zr-O silicone resin composite material and the Fe silicone resin composite material and the Qμ at 1 GHz at room temperature. And Figure 1
1, the value attached to the upper part of each point (•) indicating the composition ratio is Qμ.

【0041】表1ならびに図7〜図11から明かなよう
に、本発明の実施例品であるサンプルNo.1〜13の
Fe-Zr-Oシリコーン樹脂複合材料は、比較例品のサ
ンプルNo.14〜15のFeシリコーン樹脂複合材料
と比べて、100MHz、500MHz、1GHzにお
いて、Qμが大きいことが分った。次に、図8と図10
に示す結果から鑑みると、100MHzの周波数でQμ
≧100とするためには、Aの組成範囲aを原子%で4
9≦a≦87の範囲とすることが好ましく、500MH
zの周波数でQμ≧40とするためには、原子%で45
≦a≦65の範囲とすることがさらに好ましい。また、
100MHzの周波数でQμ≧120とするためには、
Mの組成範囲bを原子%で3≦b≦12の範囲とするの
が好ましい。更に、100MHzの周波数でQμ≧10
0とするためには、Oの組成範囲cを原子%で10≦c
≦50の範囲とすることが好ましく、500MHzの周
波数にて、Qμ≧40とするためには、原子%で30≦
c≦45の範囲とすることが好ましい。
As is clear from Table 1 and FIGS. 7 to 11, the Fe-Zr-O silicone resin composite materials of the sample Nos. 1 to 13 of the example of the present invention are the sample No. of the comparative example. It was found that the Qμ was larger at 100 MHz, 500 MHz, and 1 GHz than the Fe silicone resin composite material of 14 to 15. Next, FIG. 8 and FIG.
Considering the results shown in, Q μ at a frequency of 100 MHz
In order to make ≧ 100, the composition range a of A is 4 in atomic%.
The range of 9 ≦ a ≦ 87 is preferable, and 500 MH
To make Q μ ≧ 40 at the frequency of z, 45
It is more preferable to set the range of ≦ a ≦ 65. Also,
To make Q μ ≧ 120 at the frequency of 100 MHz,
The composition range b of M is preferably in the range of 3 ≦ b ≦ 12 in atomic%. Furthermore, at a frequency of 100 MHz, Q μ ≧ 10
In order to obtain 0, the composition range c of O in atomic% is 10 ≦ c
It is preferable that the range is ≦ 50, and in order to satisfy Q μ ≧ 40 at a frequency of 500 MHz, 30% in atomic%
The range of c ≦ 45 is preferable.

【0042】(試験3)Feabcで示される合金粉
末をシリコーン樹脂に前記実施例1と同様にして分散、
混練後、成形して得られるFe-W-Oシリコーン樹脂複
合材料において、Feの原子%を55以上75以下、W
の原子%を5以上20以下、Oの原子%を15以上35
以下の範囲でそれぞれ変化させて試験片とした(サンプ
ルNo.16〜25)。そして、各試験片において、含
有するFeabcで示される合金粉末の組成比と、室
温で1GHzにおけるQμを調べた。その測定結果を表
2ならびに図12に示す。
(Test 3) An alloy powder represented by Fe a W b O c was dispersed in a silicone resin in the same manner as in Example 1 above.
In the Fe-W-O silicone resin composite material obtained by kneading and molding, the atomic% of Fe is 55 or more and 75 or less, W
Atomic% of 5 to 20 and O atomic% of 15 to 35
The test pieces were made by changing them in the following ranges (Sample Nos. 16 to 25). Then, in each test piece, the composition ratio of the contained alloy powder represented by Fe a W b O c and the Qμ at 1 GHz at room temperature were examined. The measurement results are shown in Table 2 and FIG.

【0043】[0043]

【表2】 [Table 2]

【0044】図12は、各Fe-W-Oシリコーン樹脂複
合材料において、含有するFeabcで示される合金
粉末の組成比と、室温で1GHzおけるQμを示す三角
組成図であり、図12において、組成比を示す各ポイン
ト(・)の上部に付してある値がQμである。
FIG. 12 is a triangular composition diagram showing the composition ratio of the alloy powder represented by Fe a W b O c and the Qμ at 1 GHz at room temperature in each Fe-W-O silicone resin composite material, In FIG. 12, the value attached to the upper part of each point (•) indicating the composition ratio is Qμ.

【0045】表1〜2ならびに図12から明かなよう
に、本発明の実施例品であるサンプルNo.16〜25
のFe-W-Oシリコーン樹脂複合材料は、比較例品のサ
ンプルNo.14〜15のFeシリコーン樹脂複合材料
と比べて、1GHzにおいて、Qμが大きいことが分っ
た。
As is apparent from Tables 1 and 2 and FIG. 12, sample Nos. 16 to 25, which are examples of the present invention.
It was found that the Fe-W-O silicone resin composite material of No. 2 has a larger Qμ at 1 GHz, as compared with the Fe silicone resin composite materials of Comparative Example samples Nos. 14 to 15.

【0046】(実例3) 電解鉄(東方亜鉛株式会社製、200メッシュパス)
9.860gと、酸化ジルコニウム(第1希元素製、4
5μmパス)4.944gと、ジルコニウム2.196g
を計量し、これらをステンレス鋼製(SUS304)ポ
ット(内容量170ml)に入れた後、不活性ガスを封
入し、メニカルアロイングを行った。メニカルアロイン
グは、高エネルギー型遊星ボールミル(栗本鉄工所製)
を用い、ポット中には該ポットと同材料のステンレス球
(直径4mm)を238g入れ、遠心加速度100G、
自転速度/公転速度=448rpm/588rpmに
て、8時間、混合、粉砕、撹拌を行い、Fe55Zr
2025合金粉末を得た。図13に、実例3で得られ
たFe55Zr2025合金粉末のX線回折試験の結
果を示す。
( Example 3) Electrolytic iron (manufactured by Toho Zinc Co., Ltd., 200 mesh pass)
9.860 g and zirconium oxide (made by No. 1 rare element, 4
5μm pass) 4.944g and zirconium 2.196g
Were weighed and put in a stainless steel (SUS304) pot (internal volume: 170 ml), and then an inert gas was sealed therein, and a mechanical alloying was performed. Mental alloying is a high-energy planetary ball mill (Kurimoto Iron Works)
238 g of stainless steel balls (diameter 4 mm) made of the same material as the pot were put in the pot, and the centrifugal acceleration was 100 G,
Rotation speed / revolution speed = 448 rpm / 588 rpm, mixing, crushing, and stirring were performed for 8 hours, and Fe 55 Zr
20 O 25 alloy powder was obtained. FIG. 13 shows the result of the X-ray diffraction test of the Fe 55 Zr 20 O 25 alloy powder obtained in Example 3.

【0047】(実例4) 電解鉄(東方亜鉛株式会社製、200メッシュパス)1
3.044gと、酸化ジルコニウム(第1希元素製、4
5μmパス)2.398gとを計量し、これらをステン
レス鋼製(SUS304)ポット(内容量170ml)
に入れた後、Oガスを1.577gを封入し、メニカ
ルアロイングを行った。メニカルアロイングは、高エネ
ルギー型遊星ボールミル(栗本鉄工所製)を用い、ポッ
ト中には該ポットと同材料のステンレス球(直径4m
m)を238g入れ、遠心加速度100G、自転速度/
公転速度=448rpm/588rpmで、8時間、混
合、粉砕、撹拌を行い、Fe60Zr35合金粉末
を得た。実例4で得られたFe60Zr35合金粉
末のX線回折試験の結果を図13に合わせて示す。
( Example 4) Electrolytic iron (manufactured by Toho Zinc Co., Ltd., 200 mesh pass) 1
3.044 g and zirconium oxide (made by No. 1 rare element, 4
5μm pass) 2.398g and weigh these, stainless steel (SUS304) pot (internal volume 170ml)
Then, 1.577 g of O 2 gas was enclosed, and mechanical alloying was performed. For the mechanical alloying, a high energy type planetary ball mill (Kurimoto Iron Works Co., Ltd.) is used, and a stainless steel ball (diameter 4 m) made of the same material as the pot is used in the pot.
m) is put in 238g, centrifugal acceleration 100G, rotation speed /
Fe 60 Zr 5 O 35 alloy powder was obtained by mixing, pulverizing, and stirring at orbital speed = 448 rpm / 588 rpm for 8 hours. The result of the X-ray diffraction test of the Fe 60 Zr 5 O 35 alloy powder obtained in Example 4 is also shown in FIG. 13.

【0048】図13に示したX線回折試験の結果から明
かなように、実例3のFe55Zr2025合金粉末
と、実例4のFe60Zr35合金粉末とは、異る
原料を用いてメカニカルアロイングにより得られたもの
であるが、類似したX線回析パターンを示すことが分
る。
[0048] As is clear from the results of X-ray diffraction test shown in FIG. 13, and Fe 55 Zr 20 O 25 alloy powder instances 3, the Fe 60 Zr 5 O 35 alloy powder illustrative 4, IL raw material It can be seen that it shows a similar X-ray diffraction pattern, although it was obtained by mechanical alloying with.

【0049】(実例5〜9) 電解鉄(東方亜鉛株式会社製、200メッシュパス)
7.935gと、酸化ハフニウム(株式会社高純度化学
研究所製、2μm)9.065gを計量し、これらをス
テンレス鋼製(SUS304)ポット(内容量170m
l)に入れた後、不活性ガスを封入し、メカニルアロイ
ングの時間を0.5時間、2時間、8時間、16時間、
60時間を変更して、混合、粉砕、撹拌を行い、Fe
Hf合金粉末(ここでのa=54.9、b=1
1、c=34.1であった。)を得た。
( Examples 5 to 9) Electrolytic iron (manufactured by Toho Zinc Co., Ltd., 200 mesh pass)
7.935 g and hafnium oxide (manufactured by Kojundo Chemical Laboratory Co., Ltd., 2 μm) 9.065 g were weighed, and these were made in a stainless steel (SUS304) pot (capacity 170 m).
l) and then filled with an inert gas, and the mechanyl alloying time is 0.5 hours, 2 hours, 8 hours, 16 hours,
Change the 60 hours, it carried out mixing, grinding, stirring, Fe a
Hf b O c alloy powder (here, a = 54.9, b = 1
1, c = 34.1. ) Got.

【0050】ここでのメニカルアロイングは、高エネル
ギー型遊星ボールミル(栗本鉄工所製)を用い、ポット
中には該ポットと同材料のステンレス球(直径4mm)
を238g入れ、遠心加速度100G、自転速度/公転
速度=448rpm/588rpmとした。メカニカル
アロイングの時間を0.5時間としたときに得られたも
のを実例5のFeHf合金粉末、メカニカルア
ロング時間を2時間としたときに得られたものを実例
のFeHf合金粉末、メカニカルアロングの時
間を8時間としたときに得られたものを実例7のFe
Hf合金粉末、メカニカルアロングの時間を16
時間としたときに得られたものを実例8のFeHf
合金粉末、メカニカルアロングの時間を60時間と
したときに得られたものを実例9のFeHf
金粉末とした。実例5〜9で得られたFe-Hf-O合金
粉末のX線回折試験の結果を図14に示す。
For the mechanical alloying here, a high energy type planetary ball mill (Kurimoto Iron Works Co., Ltd.) was used, and a stainless steel ball (diameter 4 mm) made of the same material as the pot was used in the pot.
238 g was put into the solution, and the centrifugal acceleration was 100 G and the rotation speed / revolution speed was 448 rpm / 588 rpm. The Fe a Hf b O c alloy powder of Example 5 was obtained when the mechanical alloying time was 0.5 hours, and the example 6 was obtained when the mechanical alloying time was 2 hours.
Of Fe a Hf b O c alloy powder, Fe a instances 7 those obtained when 8 hours time mechanical alongs
Hf b O c alloy powder, mechanical along time 16
The result obtained when the time is set is Fe a Hf b of Example 8.
The Fe a Hf b O c alloy powder of Example 9 was obtained by setting the O c alloy powder and the mechanical alloying time to 60 hours. The results of the X-ray diffraction test of the Fe-Hf-O alloy powders obtained in Examples 5 to 9 are shown in Fig. 14.

【0051】図14に示した結果から明かなように、メ
カニカルアロイングの時間が異る以外は同一条件でFe
aHfbc合金粉末を作製した場合、メカニカルアロイ
ングの時間が長くなる程、Hf,OがFe中に取り込ま
れ、2θ=55゜付近、並びに2θ=100゜のピーク
が小さくなり、より合金化が進んでいることが分る。
As is clear from the results shown in FIG. 14, Fe under the same conditions except that the mechanical alloying time is different.
When an a Hf b O c alloy powder is produced, Hf and O are taken into Fe as the mechanical alloying time increases, and the peaks at 2θ = 55 ° and 2θ = 100 ° become smaller, It can be seen that alloying is progressing.

【0052】(実施例10)Co粉末とFe粉末をアー
ク溶解して原料とするとともに、石英ノズルを備えたる
つぼとその下方に設置されたCuロールを真空雰囲気中
に設置した構成の液体急冷装置を用いた液体急冷法によ
り、真空度3×10-5Torr、Ar分圧50cmHg、石
英ノズルからの射出圧力0.4kgf/cm2、Cuロー
ル回転数3000rpmの条件でFe-Co系の種々の
組成の合金薄帯を製造し、これらを粉砕してFe-Co
合金粉末を得、このFe-Co合金粉末にHf粉末、H
fO2粉末、CoO粉末等を混合してメカニカルアロイ
ングを行った。メカニカルアロイングに用いた装置と混
練条件は実施例1と同等とした。
(Embodiment 10) A liquid quenching apparatus having a structure in which Co powder and Fe powder are arc-melted as raw materials, and a crucible equipped with a quartz nozzle and a Cu roll installed below the crucible are installed in a vacuum atmosphere. By a liquid quenching method using a vacuum of 3 × 10 −5 Torr, an Ar partial pressure of 50 cmHg, a quartz nozzle injection pressure of 0.4 kgf / cm 2 , and a Cu roll rotation speed of 3000 rpm. The alloy ribbon of the composition is manufactured, and these are crushed to make Fe-Co.
An alloy powder was obtained, and Hf powder and H were added to this Fe-Co alloy powder.
Mechanical alloying was performed by mixing fO 2 powder, CoO powder and the like. The apparatus used for mechanical alloying and the kneading conditions were the same as in Example 1.

【0053】図15は、前述の製造方法で得られたCo
-Fe-Hf-O系の各組成のメカニカルアロイ処理粉末
試料(以後、Co-Fe-Hf-O系MA粉末試料と略称
する。)のX線回折パターンを示し、図16は、Co粉
末とFe粉末を混合したものをアーク溶解後液体急冷し
て得られた薄帯を粉砕して得たCo-Fe粉末試料のX
線回折パターンを示し、図17は、図16に示すX線回
折パターンを示すCo-Fe粉末試料を用いて得られた
メカニカルアロイ処理粉末試料(以後、Co-Fe-Hf
-O(Co-FeRQ)MA粉末試料と略称する。)のX
線回折パターンを示す。 図15に示すメカニカルアロ
イ粉末試料(Co-Fe-Hf-O系MA粉末試料)の構
造は、Co-Fe-Hf-O系の場合、Fe(bcc)、
Fe(bcc)+HfO2、Co(fcc)+HfO2
Co(fcc)+HfO2+CoHfの4つの回折パタ
ーンに分類できる。また、bcc構造もしくはfcc構
造、または、これらが混在していることも考えられるこ
れらの図から傾向を見ると、原料にHfO2を用いない
場合は、Fe(bcc)の回折パターンを示し、原料に
Fe粉末を用いない場合には、Co(fcc)+HfO
2、Co(fcc)+HfO2+CoHfの回折パターン
を示している。図17に示すメカニカルアロイ処理粉末
試料(Co-Fe-Hf-O(Co-FeRQ)MA粉末試
料)の場合においても同様の傾向があり、Fe(bc
c)、Fe(bcc)+HfO2の回折パターンが得ら
れた。
FIG. 15 shows the Co obtained by the above-mentioned manufacturing method.
FIG. 16 shows an X-ray diffraction pattern of a mechanical alloy treated powder sample of each composition of —Fe—Hf—O system (hereinafter, abbreviated as Co—Fe—Hf—O system MA powder sample). X of Co-Fe powder sample obtained by crushing a ribbon obtained by arc-melting a mixture of Fe powder and quenching the liquid.
FIG. 17 shows a line diffraction pattern, and FIG. 17 shows a mechanical alloy-treated powder sample (hereinafter, Co-Fe-Hf) obtained by using the Co-Fe powder sample having the X-ray diffraction pattern shown in FIG.
It is abbreviated as -O (Co-FeRQ) MA powder sample. ) X
A line diffraction pattern is shown. The structure of the mechanical alloy powder sample (Co-Fe-Hf-O-based MA powder sample) shown in FIG. 15 is Fe (bcc) in the case of Co-Fe-Hf-O-based,
Fe (bcc) + HfO 2 , Co (fcc) + HfO 2 ,
It can be classified into four diffraction patterns of Co (fcc) + HfO 2 + CoHf. The bcc structure, the fcc structure, or a mixture thereof may be considered, and the tendency is seen from these figures, a diffraction pattern of Fe (bcc) is shown when HfO 2 is not used as a raw material. If Fe powder is not used for Co (fcc) + HfO
2 shows the diffraction patterns of Co (fcc) + HfO 2 + CoHf. In the case of the mechanical alloy treated powder sample (Co-Fe-Hf-O (Co-FeRQ) MA powder sample) shown in FIG. 17, there is a similar tendency, and Fe (bc
c), Fe (bcc) + HfO 2 diffraction patterns were obtained.

【0054】なお、図16に示す液体急冷粉砕Co-F
e粉末試料の結晶構造を見ると、Feに対するCoの比
率が75%〜85%の場合、FeとCoの両方の回折線
が得られ、85%以上の場合はCoのみの回折パターン
を示している。これ以外の組成ではFeのみの回折パタ
ーンを示した。しかしながら、これらの粉末を用いてメ
カニカルアロイを行った図17に示すCo-Fe-Hf-
O(Co-FeRQ)MA粉末試料では、Fe(bc
c)、Fe(bcc)+HfO2の回折パターンを示し
ている。この結果は、Coの比率が高い組成のCo-F
e粉末の構造がメカニカルアロイ処理の間に変化したこ
とを示しており、メカニカルアロイ処理中に、ポット、
ボールからのFeの侵入、Coのポット、ボールへの付
着が生じて影響を受けたものと考えられる。
The liquid rapidly crushed Co-F shown in FIG.
Looking at the crystal structure of the e powder sample, when the ratio of Co to Fe is 75% to 85%, both the diffraction lines of Fe and Co are obtained, and when it is 85% or more, the diffraction pattern of only Co is shown. There is. In the other compositions, a diffraction pattern of only Fe was shown. However, Co-Fe-Hf- shown in FIG.
In the O (Co-FeRQ) MA powder sample, Fe (bc
c) and Fe (bcc) + HfO 2 diffraction patterns. This result shows that Co-F with a high Co ratio is used.
e shows that the structure of the powder changed during the mechanical alloy treatment, and during the mechanical alloy treatment, the pot,
It is considered that Fe was invaded from the ball, Co was attached to the pot, and adhered to the ball.

【0055】図18〜図25は、Co-Fe-Hf-O系
MA粉末試料とCo-Fe-Hf-O(Co-FeRQ)M
A粉末試料を用いて樹脂複合体試料を形成し、それらの
試料の磁気特性を測定した結果を示す。ここで樹脂複合
体試料を作製するには、前記のCo-Fe-Hf-O系M
A粉末試料とCo-Fe-Hf-O(Co-FeRQ)MA
粉末試料をそれぞれシリコン樹脂に50vol%になるよ
うに添加し、それぞれの樹脂複合体試料を作製した。
18 to 25 show Co-Fe-Hf-O type MA powder samples and Co-Fe-Hf-O (Co-FeRQ) M.
The resin composite sample was formed using the A powder sample, and the results of measuring the magnetic properties of these samples are shown. Here, in order to prepare a resin composite sample, the above-mentioned Co-Fe-Hf-O-based M
A powder sample and Co-Fe-Hf-O (Co-FeRQ) MA
The powder samples were added to the silicon resin so as to be 50 vol% to prepare respective resin composite samples.

【0056】図18は、周波数50MHzにおける、各
組成のCo-Fe-Hf-O系MA粉末樹脂複合体試料の
透磁率の実数部(μ')の値を示し、図20は、周波数
50MHzにおける、各組成のCo-Fe-Hf-O(C
o-FeRQ)MA粉末樹脂複合体試料の透磁率の実数
部(μ')の値を示す。Co-Fe-Hf-O系MA粉末樹
脂複合体試料のμ'は、酸素量の低下に伴い増加し、F
eの組成が10原子%の時に高くなる傾向を示した。こ
れに対し、Co-Fe-Hf-O(Co-FeRQ)MA粉
末樹脂複合体試料のCoの組成が50〜60原子%付近
でピークの3.8を示した。
FIG. 18 shows the value of the real part (μ ′) of the magnetic permeability of the Co—Fe—Hf—O type MA powder resin composite sample of each composition at a frequency of 50 MHz, and FIG. 20 shows the value at a frequency of 50 MHz. , Co-Fe-Hf-O (C
The value of the real part (μ ′) of the magnetic permeability of the o-FeRQ) MA powder resin composite sample is shown. Μ'of the Co-Fe-Hf-O-based MA powder resin composite sample increases with a decrease in oxygen content,
When the composition of e was 10 atomic%, it tended to increase. On the other hand, the Co composition of the Co-Fe-Hf-O (Co-FeRQ) MA powder resin composite sample showed a peak of 3.8 at around 50 to 60 atomic%.

【0057】図19は、Co-Fe-Hf-O系MA粉末
樹脂複合体試料のf(Qμ=100)の結果を示し、図
21は、Co-Fe-Hf-O(Co-FeRQ)MA粉末
樹脂複合体試料のf(Qμ=100)の結果を示す。f
(Qμ=100)の値は、Co-Fe-Hf-O系MA粉
末樹脂複合体試料においてはCo60Hf1030
組成で496MHzであるのに対し、Co-Fe-Hf-
O(Co-FeRQ)MA粉末樹脂複合体試料において
は、Co50Fe10Hf1030の組成で650M
Hzとなり、Fe-Hf-O系MA粉末樹脂複合体試料の
値である約260MHzに比べ飛躍的に向上した。これ
ら2つの系に共通して言えることは、酸素の組成が高
く、Feの組成が低い領域で良い結果を示している点で
ある。
FIG. 19 shows the results of f (Q μ = 100) of the Co-Fe-Hf-O type MA powder resin composite sample, and FIG. 21 shows Co-Fe-Hf-O (Co-FeRQ). The result of f (Q μ = 100) of the MA powder resin composite sample is shown. f
The value of (Q μ = 100) is 496 MHz for the composition of Co 60 Hf 10 O 30 in the Co—Fe—Hf—O type MA powder resin composite sample, whereas the value of Co—Fe—Hf-
O (Co-FeRQ) In MA powder resin complex samples, 650M with the composition of Co 50 Fe 10 Hf 10 O 30
Hz, which is a dramatic improvement over the value of about 260 MHz, which is the value of the Fe-Hf-O-based MA powder resin composite sample. What can be said in common to these two systems is that good results are shown in a region where the oxygen composition is high and the Fe composition is low.

【0058】図22は、周波数fが50MHzにおけ
る、各組成のCo-Fe-Hf-O系MA粉末樹脂複合体
試料の透磁率のε'の値を示し、図24は、周波数fが
50MHzにおける、各組成のCo-Fe-Hf-O(C
o-FeRQ)MA粉末樹脂複合体試料のε'の値を示
す。また、図23は、周波数fが50MHzにおける、
各組成のCo-Fe-Hf-O系MA粉末樹脂複合体試料
の透磁率のQεの値を示し、図25は、周波数fが50
MHzにおける、各組成のCo-Fe-Hf-O(Co-F
eRQ)MA粉末樹脂複合体試料のQεの値を示す。C
o-Fe-Hf-O系MA粉末樹脂複合体試料のε'は酸素
の割合が低くなると値が小さくなる傾向を示した。Qε
はCo60Fe10Hf1020の組成で56.2の最大値を
示した。
FIG. 22 shows the value of ε'of the magnetic permeability of the Co-Fe-Hf-O type MA powder resin composite sample of each composition at the frequency f of 50 MHz, and FIG. 24 shows the value at the frequency f of 50 MHz. , Co-Fe-Hf-O (C
The value of ε'of the o-FeRQ) MA powder resin composite sample is shown. In addition, in FIG. 23, when the frequency f is 50 MHz,
The values of Qε of the magnetic permeability of the Co-Fe-Hf-O-based MA powder resin composite samples of the respective compositions are shown.
Co-Fe-Hf-O (Co-F of each composition in MHz
The value of Qε of the eRQ) MA powder resin composite sample is shown. C
The value of ε'of the o-Fe-Hf-O-based MA powder resin composite sample tended to decrease as the proportion of oxygen decreased. Qε
Shows the maximum value of 56.2 in the composition of Co 60 Fe 10 Hf 10 O 20 .

【0059】[0059]

【発明の効果】以上説明したように本発明の軟磁性と誘
電性とを有する高周波用複合材料は、誘電損失が小さい
合成樹脂と、組成式がA で示され、MをZr
またはWとし、前記Aの組成範囲aを原子%で45≦a
≦65、前記Oの組成範囲cを原子%で30≦c≦45
とした軟磁性合金粉末とを複合したものであるので、得
られる複合材料の固有抵抗が10Ω・cm程度以上と
なるうえ、合成樹脂が有する絶縁体(誘電体)としての
誘電特性と、軟磁性合金粉末が有する軟磁気特性とを合
わせ持つことができ、特に、数百MHz以上の高周波帯
では、磁気特性のみならず、Qが高く、例えば、1GH
zにおいてQ=30以上となり、従来の磁性材料が達成
できなかった数百MHz〜GHz帯での使用が可能とな
る。また、この高周波用複合材料は、軟磁性合金粉末が
合成樹脂に分散されたものであるので、軟磁性合金粉末
のみから構成する場合と比べて、成形が容易となる。
Composite material for a high frequency having a soft magnetic and dielectric properties of the present invention described above, according to the present invention includes a small synthetic resin dielectric loss, the composition formula is represented by A a M b O c, a M Zr
Alternatively, W is set, and the composition range a of A is 45% by atomic%.
≦ 65, the composition range c of O is 30% in atomic% and 30 ≦ c ≦ 45.
The composite resistance of the obtained composite material is about 10 8 Ω · cm or more, and the dielectric properties of the synthetic resin as an insulator (dielectric) are It can have the soft magnetic characteristics of the soft magnetic alloy powder, and in particular, in the high frequency band of several hundred MHz or more, not only the magnetic characteristics but also the high Q, for example, 1 GH
In z, Q = 30 or more, and it is possible to use in the several hundred MHz to GHz band, which cannot be achieved by the conventional magnetic material. Further, since the soft magnetic alloy powder is dispersed in the synthetic resin, the composite material for high frequencies is easier to mold than the case where it is composed only of the soft magnetic alloy powder.

【0060】従って、本発明の高周波用複合材料にあっ
ては、従来材の薄膜状のもと比べ、ロッド状などの所望
形状に成形し易いので、液晶テレビのアンテナとして、
あるいは磁気ヘッドのコアや、トランスのコアとして、
更には、パルスモータの磁針等のような磁気部品として
広く適用することができる。また、従来材と比べて、高
周波において磁気特性が優れ、かつ、誘電損失の低い磁
気部品を得ることができ、さらにこれら磁気部品の小型
化を図ることができ、例えば、本発明の高周波用複合材
料を用いて液晶テレビのアンテナを作製することで、送
受信レベルを向上し、もってアンテナの小型化を図るこ
とができる。また、本発明の製造方法にあっては、前述
のような誘電損失が小さい合成樹脂と、組成式が前述の
で示される軟磁性合金粉末とを複合した、
軟磁性と誘電性とを有する高周波用複合材料の製造に好
適に用いることができる。
Therefore, the high-frequency composite material of the present invention can be easily formed into a desired shape such as a rod shape as compared with the thin film shape of the conventional material.
Or as the core of a magnetic head or the core of a transformer,
Further, it can be widely applied as a magnetic component such as a magnetic needle of a pulse motor. Further, it is possible to obtain magnetic parts having excellent magnetic properties at high frequencies and low dielectric loss as compared with conventional materials, and further miniaturization of these magnetic parts can be achieved. By manufacturing an antenna for a liquid crystal television by using the material, the transmission / reception level can be improved and the antenna can be downsized. Further, in the production method of the present invention, the synthetic resin having a small dielectric loss as described above and the soft magnetic alloy powder having the composition formula represented by A a M b O c are compounded.
It can be suitably used for producing a high frequency composite material having soft magnetism and dielectric properties.

【0061】次に、前記の組成式において、AとしてF
eとCoを用い、その際の組成式を(Fe100−x
MはZrまたはW)で表され、組成
比を示すxが0<x≦90の範囲であるように各成分を混
合することもできる。このような組成とすることで、特
に、Qεの値を向上させ、Qμの周波数特性をより良く
することができる。
Next, in the above composition formula, A is F
Using e and Co, the composition formula in that case is (Fe 100-x C
o x) a M b O c (M is represented by Zr or W), can also be x indicating the composition ratio mixing the components to be in the range of 0 <x ≦ 90. With such a composition, in particular, the value of Qε can be improved and the frequency characteristic of Qμ can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例1で得られたFeZr合金粉
末の粒子構造を示した電子顕微鏡写真である。
FIG. 1 is an electron micrograph showing a particle structure of a Fe a Zr b O c alloy powder obtained in Example 1.

【図2】 実施例1で得られたFe-Zr-Oポリスチレ
ン樹脂複合材料の表面の粒子構造を示した電子顕微鏡写
真である。
FIG. 2 is an electron micrograph showing a particle structure on the surface of the Fe—Zr—O polystyrene resin composite material obtained in Example 1.

【図3】 誘電率(ε)と周波数との関係を示したグラ
フである。
FIG. 3 is a graph showing the relationship between dielectric constant (ε) and frequency.

【図4】 誘電体としてのQ(Qε)と周波数との関係
を示したグラフである。
FIG. 4 is a graph showing the relationship between Q (Qε) as a dielectric and frequency.

【図5】 透磁率(μ)と周波数との関係を示したグラ
フである。
FIG. 5 is a graph showing the relationship between magnetic permeability (μ) and frequency.

【図6】 磁性体としてのQ(Qμ)と周波数との関係
を示したグラフである。
FIG. 6 is a graph showing the relationship between Q (Qμ) as a magnetic material and frequency.

【図7】 各Fe-Zr-Oシリコーン樹脂複合材料なら
びにFeシリコーン樹脂複合材料において、含有するF
Zrで示される合金粉末の組成比と、室温で
100MHzおけるμ′を示す三角組成図である。
FIG. 7: F contained in each Fe-Zr-O silicone resin composite material and Fe silicone resin composite material
FIG. 3 is a triangular composition diagram showing a composition ratio of an alloy powder represented by e a Zr b O c and μ ′ at 100 MHz at room temperature.

【図8】 各Fe-Zr-Oシリコーン樹脂複合材料なら
びにFeシリコーン樹脂複合材料において、含有するF
Zrで示される合金粉末の組成比と、室温で
100MHzおけるQμを示す三角組成図である。
FIG. 8: F contained in each Fe—Zr—O silicone resin composite material and Fe silicone resin composite material
FIG. 3 is a triangular composition diagram showing a composition ratio of an alloy powder represented by e a Zr b O c and Qμ at 100 MHz at room temperature.

【図9】 各Fe-Zr-Oシリコーン樹脂複合材料なら
びにFeシリコーン樹脂複合材料において、含有するF
Zrで示される合金粉末の組成比と、室温で
500MHzおけるμ′を示す三角組成図である。
FIG. 9: F contained in each Fe-Zr-O silicone resin composite material and Fe silicone resin composite material
FIG. 3 is a triangular composition diagram showing a composition ratio of an alloy powder represented by e a Zr b O c and μ ′ at 500 MHz at room temperature.

【図10】 各Fe-Zr-Oシリコーン樹脂複合材料、
ならびにFeシリコーン樹脂複合材料において、含有す
るFeZrで示される合金粉末の組成比と、室
温で500MHzおけるQμを示す三角組成図である。
FIG. 10: Fe-Zr-O silicone resin composite material,
FIG. 3 is a triangular composition diagram showing the composition ratio of the alloy powder represented by Fe a Zr b O c contained in the Fe silicone resin composite material and the Qμ at 500 MHz at room temperature.

【図11】 各Fe-Zr-Oシリコーン樹脂複合材料、
ならびにFeシリコーン樹脂複合材料において、含有す
るFeZrで示される合金粉末の組成比と、室
温で1GHzおけるQμを示す三角組成図である。
FIG. 11: Fe-Zr-O silicone resin composite material,
FIG. 3 is a triangular composition diagram showing the composition ratio of the alloy powder represented by Fe a Zr b O c contained in the Fe silicone resin composite material and the Qμ at 1 GHz at room temperature.

【図12】 各Fe-W-Oシリコーン樹脂複合材料にお
いて、含有するFeで示される合金粉末の組
成比と、室温で1GHzおけるQμを示す三角組成図で
ある。
FIG. 12 is a triangular composition diagram showing the composition ratio of the alloy powder represented by Fe a W b O c contained in each Fe—W—O silicone resin composite material and the Qμ at 1 GHz at room temperature.

【図13】 実施例3のFe55Zr2025合金粉
末と、実施例4のFe60Zr35合金粉末のX線
回折試験の結果を示す図である。
13 is a diagram showing the results of an X-ray diffraction test of the Fe 55 Zr 20 O 25 alloy powder of Example 3 and the Fe 60 Zr 5 O 35 alloy powder of Example 4. FIG.

【図14】 実施例5〜9で得られたFe-Hf-O合金
粉末のX線回折試験の結果を示す図である。
FIG. 14 is a diagram showing the results of an X-ray diffraction test of Fe—Hf—O alloy powders obtained in Examples 5-9.

【図15】 図15は、Co-Fe-Hf-O系MA粉末
試料のX線回折パターンを示す図である。
FIG. 15 is a diagram showing an X-ray diffraction pattern of a Co—Fe—Hf—O-based MA powder sample.

【図16】 Co粉末とFe粉末を液体急冷して得られ
た薄帯を粉砕して得たCo-Fe粉末試料のX線回折パ
ターンを示す図である。
FIG. 16 is a view showing an X-ray diffraction pattern of a Co—Fe powder sample obtained by pulverizing a ribbon obtained by rapidly cooling Co powder and Fe powder by liquid.

【図17】 図16に示すX線回折パターンを示すCo
-Fe粉末試料を用いて得られたCo-Fe-Hf-O(C
o-FeRQ)MA粉末試料のX線回折パターンを示す
図である。
FIG. 17 is a Co showing the X-ray diffraction pattern shown in FIG.
-Fe-Hf-O (C
It is a figure which shows the X-ray-diffraction pattern of the o-FeRQ) MA powder sample.

【図18】 周波数50MHzにおける、各組成のCo
-Fe-Hf-O系MA粉末樹脂複合体試料の透磁率の実
数部の値を示す図である。
FIG. 18: Co of each composition at a frequency of 50 MHz
It is a figure which shows the value of the real part of the magnetic permeability of a -Fe-Hf-O type MA powder resin composite sample.

【図19】 Co-Fe-Hf-O系MA粉末樹脂複合体
試料のf(Qμ=100)の結果を示す図である。
FIG. 19 is a diagram showing the results of f (Q μ = 100) of a Co—Fe—Hf—O-based MA powder resin composite sample.

【図20】 周波数50MHzにおける、各組成のCo
-Fe-Hf-O(Co-FeRQ)MA粉末樹脂複合体試
料の透磁率の実数部の値を示す図である。
FIG. 20: Co of each composition at a frequency of 50 MHz
It is a figure which shows the value of the real part of the magnetic permeability of a -Fe-Hf-O (Co-FeRQ) MA powder resin composite sample.

【図21】 Co-Fe-Hf-O(Co-FeRQ)MA
粉末樹脂複合体試料のf(Qμ=100)の結果を示す
図である。
FIG. 21: Co-Fe-Hf-O (Co-FeRQ) MA
It is a figure which shows the result of f ( Qmicro = 100) of a powder resin complex sample.

【図22】 周波数fが50MHzにおける、各組成の
Co-Fe-Hf-O系MA粉末樹脂複合体試料の透磁率
のε'の値を示す図である。
FIG. 22 is a diagram showing a value of ε ′ of magnetic permeability of a Co—Fe—Hf—O-based MA powder resin composite sample of each composition at a frequency f of 50 MHz.

【図23】 周波数fが50MHzにおける、各組成の
Co-Fe-Hf-O系MA粉末樹脂複合体試料の透磁率
のQεの値を示す図である。
FIG. 23 is a diagram showing a value of Qε of magnetic permeability of a Co—Fe—Hf—O-based MA powder resin composite sample of each composition at a frequency f of 50 MHz.

【図24】 周波数fが50MHzにおける、各組成の
Co-Fe-Hf-O(Co-FeRQ)MA粉末樹脂複合
体試料のε'の値を示す図である。
FIG. 24 is a diagram showing a value of ε ′ of a Co—Fe—Hf—O (Co—FeRQ) MA powder resin composite sample of each composition at a frequency f of 50 MHz.

【図25】 周波数fが50MHzにおける、各組成の
Co-Fe-Hf-O(Co-FeRQ)MA粉末樹脂複合
体試料のQεの値を示す図である。
FIG. 25 is a diagram showing the values of Qε of Co-Fe-Hf-O (Co-FeRQ) MA powder resin composite sample of each composition at a frequency f of 50 MHz.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 牧野 彰宏 東京都大田区雪谷大塚町1番7号 アル プス電気株式会社内 (72)発明者 久保川 輝芳 東京都大田区雪谷大塚町1番7号 アル プス電気株式会社内 (56)参考文献 特開 昭64−28301(JP,A) 特開 平6−316748(JP,A) 特開 平3−10001(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01F 1/12 - 1/38 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Akihiro Makino 1-7 Yukiya Otsuka-cho, Ota-ku, Tokyo Alps Electric Co., Ltd. (72) Teruyoshi Kubogawa 1-7 Otsuka-cho, Yukiya, Ota-ku, Tokyo Al (56) References JP 64-28301 (JP, A) JP 6-316748 (JP, A) JP 3-10001 (JP, A) (58) Fields investigated (58) Int.Cl. 7 , DB name) H01F 1/12-1/38

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 組成式がA (前記組成式中、AはFe,Co,Niの群から選ばれ
た少なくとも一種の元素またはそれらの混合物を表し、
MはZrとWから選ばれた少なくとも一種の元素または
それらの混合物を表す。)で示され、前記Aの組成範囲
aを原子%で45≦a≦65、前記Oの組成範囲cを原
子%で30≦c≦45とした軟磁性合金粉末と、合成樹
脂とからなることを特徴とする軟磁性と誘電性とを有す
る高周波用複合材料。
1. A composition formula is A a M b O c (wherein A represents at least one element selected from the group consisting of Fe, Co and Ni, or a mixture thereof,
M represents at least one element selected from Zr and W or a mixture thereof. ), The composition range of A above
a in atomic% is 45 ≦ a ≦ 65, and the O composition range c
A high-frequency composite material having a soft magnetic property and a dielectric property, which is composed of a soft magnetic alloy powder having a child content of 30 ≦ c ≦ 45 and a synthetic resin.
【請求項2】 前記Aが、FeとCoからなり、組成式
が、 (Fe100−xCo で表され、xが0<x≦90であることを特徴とする請求
記載の軟磁性と誘電性とを有する高周波用複合材
料。
2. A is composed of Fe and Co, a composition formula is represented by (Fe 100-x Co x ) a M b O c , and x is 0 <x ≦ 90. A high frequency composite material having soft magnetic properties and dielectric properties according to claim 1 .
【請求項3】 前記軟磁性合金粉末の表面に絶縁層が形
成されていることを特徴とする請求項1または2に記載
の軟磁性と誘電性とを有する高周波用複合材料。
3. A composite material for a high frequency having a soft magnetic and dielectric properties according to claim 1 or 2, wherein an insulating layer on the surface of the soft magnetic alloy powder is formed.
JP25203796A 1995-09-25 1996-09-24 High frequency composite material with soft magnetism and dielectric properties Expired - Fee Related JP3447183B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25203796A JP3447183B2 (en) 1995-09-25 1996-09-24 High frequency composite material with soft magnetism and dielectric properties

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-246516 1995-09-25
JP24651695 1995-09-25
JP25203796A JP3447183B2 (en) 1995-09-25 1996-09-24 High frequency composite material with soft magnetism and dielectric properties

Publications (2)

Publication Number Publication Date
JPH09153405A JPH09153405A (en) 1997-06-10
JP3447183B2 true JP3447183B2 (en) 2003-09-16

Family

ID=26537768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25203796A Expired - Fee Related JP3447183B2 (en) 1995-09-25 1996-09-24 High frequency composite material with soft magnetism and dielectric properties

Country Status (1)

Country Link
JP (1) JP3447183B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109983550A (en) * 2016-11-24 2019-07-05 山阳特殊制钢株式会社 The Magnaglo used under high frequency and the magnetic resin composition containing it

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101589443A (en) * 2007-01-23 2009-11-25 国立大学法人东北大学 Composite magnetic body, its manufacturing method, circuit substrate using the same, and electronic device using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109983550A (en) * 2016-11-24 2019-07-05 山阳特殊制钢株式会社 The Magnaglo used under high frequency and the magnetic resin composition containing it
US11276516B2 (en) 2016-11-24 2022-03-15 Sanyo Special Steel Co., Ltd. Magnetic powder for high-frequency applications and magnetic resin composition containing same

Also Published As

Publication number Publication date
JPH09153405A (en) 1997-06-10

Similar Documents

Publication Publication Date Title
Ohnuma et al. High‐frequency magnetic properties in metal–nonmetal granular films
US11145448B2 (en) Soft magnetic alloy powder, dust core, and magnetic component
US10513760B2 (en) Method for producing magnetic material
US5755986A (en) Soft-magnetic dielectric high-frequency composite material and method for making the same
Ohnuma et al. Magnetostriction and soft magnetic properties of (Co 1− x Fe x)–Al–O granular films with high electrical resistivity
EP0302355B1 (en) Fe-base soft magnetic alloy powder and magnetic core thereof and method of producing same
EP3537461A1 (en) Soft magnetic alloy powder, dust core, and magnetic component
Ikeda et al. Multilayer nanogranular magnetic thin films for GHz applications
Liu et al. Complex permittivity, permeability and electromagnetic wave absorption of α-Fe/C (amorphous) and Fe2B/C (amorphous) nanocomposites
EP3581672A2 (en) Soft magnetic alloy and magnetic device
CN110033917B (en) Soft magnetic alloy and magnetic component
JP2003257763A (en) Manufacturing method for rare earth permanent magnet
JPH0574618A (en) Manufacture of rare earth permanent magnet
EP0251233A1 (en) Anisotropic rare earth magnet material and production process thereof
JP3447183B2 (en) High frequency composite material with soft magnetism and dielectric properties
JP4601907B2 (en) High frequency magnetic material powder, high frequency magnetic component using the same, and manufacturing method
JP3135665B2 (en) Magnetic materials and bonded magnets
JPH07135106A (en) Magnetic core
JP3779404B2 (en) Permanent magnet materials, bonded magnets and motors
EP0342922A2 (en) Fe-based soft magnetic alloy and dust core made therefrom
JPH0768604B2 (en) Fe-based magnetic alloy
WO2006011389A1 (en) METHOD FOR PRODUCING RE-Ba-Cu-O OXIDE SUPERCONDUCTOR
Kohmoto et al. Preparation of 6.5 wt% Si-Fe by mechanical alloying
JPH0982522A (en) Uniaxial magnetic anisotropic film
JP7457815B2 (en) Alloy compositions, alloy powders, alloy ribbons, inductors and motors

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030617

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070704

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080704

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080704

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090704

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees