JP3443719B2 - Dynamic balance measuring machine - Google Patents

Dynamic balance measuring machine

Info

Publication number
JP3443719B2
JP3443719B2 JP28730695A JP28730695A JP3443719B2 JP 3443719 B2 JP3443719 B2 JP 3443719B2 JP 28730695 A JP28730695 A JP 28730695A JP 28730695 A JP28730695 A JP 28730695A JP 3443719 B2 JP3443719 B2 JP 3443719B2
Authority
JP
Japan
Prior art keywords
vibration
measured
dynamic balance
measuring machine
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28730695A
Other languages
Japanese (ja)
Other versions
JPH09126936A (en
Inventor
尚司 上村
雅夫 翫
豊次 伊藤
義雄 岩村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP28730695A priority Critical patent/JP3443719B2/en
Publication of JPH09126936A publication Critical patent/JPH09126936A/en
Application granted granted Critical
Publication of JP3443719B2 publication Critical patent/JP3443719B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Testing Of Balance (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は回転体の動バランス測定
機に関し、高速回転するポリゴンミラー等に好適に用い
られる動バランス測定機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention measures the dynamic balance of a rotating body.
Related to machine relates to the dynamic balance measurement device suitably used for a polygon mirror or the like rotating at a high speed.

【0002】[0002]

【従来の技術】軽量で高速回転するポリゴンミラーも、
特開平4−172227号公報に記載しているような、
タイヤ用の縦型2面動バランス測定機すなわち、上部に
タイヤ装着手段を有する下部のモータのケースの上下2
箇所をコイルバネ等で片持ち状に機体固定部に連結する
と共に、連結面を一致させて同じく上下2箇所で両者を
ロードセルやムービングコイル等のケースの振動センサ
ーを介し連結して、モータ軸やタイヤの位置マークを検
出する位相センサーとモータの回転速度及び振動センサ
ーの情報からタイヤの上下2面の最大振れ量とその位相
角とを求める測定機と同様の測定機により、動バランス
を測定している。
2. Description of the Related Art Polygon mirrors that are lightweight and rotate at high speed
As described in JP-A-4-172227,
Vertical two-sided dynamic balance measuring machine for tires, that is, upper and lower sides of a lower motor case having tire mounting means on the upper side 2
The parts are connected to the machine body fixing part in a cantilever manner with a coil spring, etc., and the connecting surfaces are made to coincide with each other and the two parts are connected at the upper and lower parts via a vibration sensor of the case such as a load cell or a moving coil, so that the motor shaft and the tire are connected. The dynamic balance is measured with the same measuring machine that obtains the maximum amount of shake and the phase angle of the two upper and lower surfaces of the tire from the information of the phase sensor that detects the position mark of There is.

【0003】その動バランス測定機では、コイルバネが
ポリゴンミラーよりずっと重量の大きいモータ等を片持
ちで支持するためにバネ定数の大きなものになること
や、さらにポリゴンミラーを使用時と同じの高速で回転
するために摩擦抵抗の少ない動圧軸受で構成されている
場合は、動圧軸受で形成される空気層が微小振動を吸収
することことにより、高感度の振動センサーを用いない
ことには微小な不釣り合い量を測定することができない
という問題がある。また、振動センサーにモータケース
と機体固定部の連結方向の力だけでなく、それに直角方
向の力も加わるため、バランス測定に不必要な力の成
分も含めた測定を行ってしまい、測定が不正確になり易
いという問題もある。
In the dynamic balance measuring machine, the coil spring has a large spring constant in order to support a motor or the like, which is much heavier than a polygon mirror, in a cantilever manner, and at the same high speed as when the polygon mirror is used. If the bearing is composed of a dynamic pressure bearing that has low frictional resistance to rotate, the air layer formed by the dynamic pressure bearing absorbs minute vibrations, which makes it difficult to use a highly sensitive vibration sensor. There is a problem in that it is not possible to measure such an unbalanced amount. Moreover, not only the force in the connecting direction of the motor case and the machine body fixed part but also the force in the perpendicular direction is applied to the vibration sensor, so the measurement including the component of the force unnecessary for the dynamic balance measurement is performed, and the measurement is unsuccessful. Another problem is that it tends to be accurate.

【0004】それに対して、ポリゴンミラー装着手段と
ポリゴンミラーを回転させるモータを備えた駆動基板部
をコロ等で一方向に水平移動可能に支承したり、あるい
は上記駆動基板部を上方の機体固定部のモータ回転軸中
心を中心とする正方形の4頂点位置から4本の等長吊り
紐で水平に吊り下げたりして、駆動基板部の重量がモー
タ回転軸中心に直角な方向の振動に及ぼす影響をできる
だけ軽減するようにした動バランス測定機も知られてい
る。しかし、このような測定機は静バランスの測定機で
あって、バランスは測定できない。
On the other hand, a driving board portion provided with a polygon mirror mounting means and a motor for rotating the polygon mirror is supported by a roller or the like so as to be horizontally movable in one direction, or the driving board portion is fixed to an upper body fixing portion. Influence of the weight of the drive board on the vibration in the direction perpendicular to the center of the motor rotation axis, such as hanging horizontally with four equal-length hanging strings from the four vertexes of the square centering on the center of the motor rotation axis There is also known a dynamic balance measuring machine which is designed to reduce as much as possible. However, such a measuring machine is a static balance measuring machine and cannot measure dynamic balance.

【0005】一方、例えば上述の動バランス測定機によ
って回転体のバランス調整のための一定半径位置に付加
すべき重り重量と位置位相角を与えるベクトル[M]を
求めることができる。しかし[M]が与えられても付加
すべき重り重量が大きいときや、付加位置が前回の付加
位置と同じであるときは、一定半径位置の一点を与える
位相角位置に重りを付けることはできなくて、広がった
位置に付けるようになるから、1回の与えられた[M]
に基づく動バランス調整で十分な動バランスを取るのは
困難であり、何回も動バランス測定とその結果に基づく
動バランス調整を繰り返すことになって、動バランス調
整に手間が掛かり易いという問題があった。
On the other hand, for example, the above-mentioned dynamic balance measuring machine can determine the vector [M] which gives the weight weight and the position phase angle to be added to the constant radius position for balance adjustment of the rotating body. However, even if [M] is given, if the weight to be added is large, or if the addition position is the same as the previous addition position, it is not possible to add a weight to the phase angle position that gives one point of the constant radius position. Instead, it will be attached to the spread position, so once given [M]
It is difficult to obtain a sufficient dynamic balance by adjusting the dynamic balance based on, and the dynamic balance measurement and the dynamic balance adjustment based on the result are repeated many times, which makes it difficult to adjust the dynamic balance. there were.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上述の従来
の動バランス測定機における問題を解消するためになさ
れたものであり、ポリゴンミラーのような軽量で、しか
も動圧式の軸受を用いて高速回転する回転体の微小な不
釣り合い量まで正確に測定できる動バランス測定機の提
を目的とする。
[SUMMARY OF THE INVENTION The present invention has been made to solve the problems in the conventional dynamic balancing machines described above, a lightweight, such as a polygon mirror, yet using Bearing pressure Te and purpose to provide dynamic balancing machines which can accurately measure up small unbalance of the rotating body rotating at a high speed.

【0007】[0007]

【課題を解決するための手段】本発明は、上部に被測定
体を着脱自在に装着して回転させる駆動基板部と、該駆
動基板部の下部に一体に垂下状態に設けられて前記回転
の中心線に直角方向の振動を検出するための被検出部分
を有する振動検出板部と、該振動検出板部と前記振動方
向に直角方向の左右の機体固定部とを上下に離れた2箇
所で連結する前記振動方向に直角の板バネと、前記被検
出部分の前記振動を検出する振動センサーと、被測定体
の回転位相を検出する回転位相センサーと、該回転位相
センサーと前記振動センサーの出力情報に基いて被測定
体の最大振れ量とその位相角度に関する情報を算出する
演算手段を備えたことを特徴とする動バランス測定機の
第1発明の構成によって前記目的を達成する。
SUMMARY OF THE INVENTION According to the present invention, there is provided a drive board portion on which an object to be measured is detachably mounted and rotated, and a lower portion of the drive board portion, which is integrally provided in a suspended state, for the rotation. A vibration detecting plate portion having a detected portion for detecting vibration in a direction perpendicular to the center line, and the vibration detecting plate portion and left and right machine body fixing portions in a direction perpendicular to the vibration direction at two locations separated vertically. A leaf spring that is perpendicular to the vibration direction to be connected, a vibration sensor that detects the vibration of the detected portion, a rotation phase sensor that detects the rotation phase of the measured object, and outputs of the rotation phase sensor and the vibration sensor. to achieve the pre-Symbol purpose by the maximum deflection amount and structure of the first invention of dynamic balancing machines, characterized in that it comprises a calculating means for calculating information related to the phase angle of the object to be measured based on the information.

【0008】[0008]

【作用】すなわち、本発明の動バランス測定機において
は、上部に被測定体を装着して回転させる駆動基板部
が、下部の回転中心線に直角方向の振動を検出するため
の被検出部分を有する振動検出板部を、検出する振動方
向に直角方向の左右の機体固定部に、上下に離れた2箇
所で振動方向に直角な板バネにより支持されているか
ら、被測定体に回転中心に対する不釣り合いがあると、
振動検出板部の被検出部分が敏感に効率よく不釣り合い
重量のある位相角で最大に振れて、それを検出する振動
センサーと回転位相センサーの情報に基づき演算手段が
正確な被測定体の不釣り合い量とその位相角に関する情
報を与える。この測定機で振動検出板部の被検出部分と
振動センサーとを上下2箇所に設けることによって、被
測定体の上下2面等任意の部分の動バランスを測定する
ことができる。
In other words, in the dynamic balance measuring machine of the present invention , the drive substrate portion on which the measured object is mounted and rotated is provided with the detected portion for detecting the vibration in the direction perpendicular to the lower rotation center line. The vibration detection plate part is supported by the leaf springs that are perpendicular to the vibration direction at the two left and right body fixing parts that are perpendicular to the vibration direction to be detected. If there is a disproportion,
The detected part of the vibration detection plate is sensitively and efficiently unbalanced and shakes the maximum at a phase angle with weight, and the calculation means accurately detects the deviation of the measured object based on the information of the vibration sensor and the rotation phase sensor that detect it. Gives information about the balance and its phase angle. By providing the detected portion of the vibration detecting plate and the vibration sensor at the upper and lower portions with this measuring device, the dynamic balance of any portion such as the upper and lower two surfaces of the measured object can be measured.

【0009】[0009]

【0010】[0010]

【実施例】以下図示例によって本発明を説明する。The present invention will be described below with reference to the drawings.

【0011】図1は発明の動バランス測定機の1例を
示す概要斜視図、図2は発明動バランス測定機の駆動
基板部の例を示す部分断面図、図3は動バランス調整機
の1例を示す概要斜視図、図4は動バランス調整機によ
るバランス調整の例を示す被調整体の平面図、図5は動
バランス調整機によるバランス調整の例を示す被調整体
の部分斜視図、図6は動バランス調整機によるバランス
調整の他の例を示す被調整体の平面図である。
[0011] Figure 1 is schematic perspective view showing an example of a dynamic balance measuring machine of the present invention, FIG. 2 is a partial sectional view showing an example of a driving substrate of the present invention the dynamic balancing machine, FIG. 3 is dynamic balancing machine FIG. 4 is a plan view of an adjusted object showing an example of balance adjustment by a dynamic balance adjuster, and FIG. 5 is an adjusted object showing an example of balance adjustment by a dynamic balance adjuster. FIG. 6 is a partial perspective view of the body, and FIG. 6 is a plan view of the body to be adjusted showing another example of balance adjustment by the dynamic balance adjuster.

【0012】図1において、1は、上部に回転体である
被測定体Pを回転自在に装着する例えば図2に詳細を示
した被測定体装着手段101と、装着された被測定体P
を矢印方向に回転させるモータ120とを有する駆動基
板部、2は、駆動基板部1の下部に一体に垂下状態に設
けられて、被測定体Pの回転の中心線に直角方向の振動
を検出するための被検出部分21、22を上下に離して
有する振動検出板部、3、4は、振動検出板部2の振動
方向に直角の方向に左右の機体固定部7、8と振動検出
板部2とを上部で連結している振動検出板部2の振動方
向に直角の板バネ、5、6は、同じく左右の機体固定部
7、8と振動検出板部2とを下部で連結している板バ
ネ、9、10は、振動検出板部2の被検出部分21、2
2の加速度あるいは振れ量と言った振れ情報を出力する
例えば加速度ピックアップあるいはムービングコイル等
を用いた振動センサーであり、それらの出力する振れ情
報は、それぞれ回転に同期した成分のみを通してそれ以
外の成分やノイズは除去するフィルタ回路を必要に応じ
て含む増幅回路11、12を介してマイクロコンピュー
タを用いた制御装置14に入力される。
In FIG. 1, reference numeral 1 designates an object-to-be-measured mounting means 101, whose details are shown in FIG.
The drive board unit 2 having a motor 120 for rotating in the direction of the arrow is provided integrally with a lower portion of the drive board unit 1 in a suspended state, and detects vibration in a direction perpendicular to the rotation center line of the measured object P. The vibration detecting plate portions 3, 4 having the detected portions 21, 22 separated from each other in the vertical direction are the right and left body fixing portions 7, 8 and the vibration detecting plate in the direction perpendicular to the vibration direction of the vibration detecting plate portion 2. The leaf springs 5 and 6 perpendicular to the vibration direction of the vibration detecting plate portion 2 connecting the portion 2 to the upper portion also connect the left and right body fixing portions 7 and 8 and the vibration detecting plate portion 2 at the lower portion. The leaf springs 9 and 10 are the detected portions 21, 2 of the vibration detection plate portion 2.
2 is a vibration sensor using, for example, an acceleration pickup or a moving coil, which outputs shake information such as acceleration or shake amount, and the shake information output from these sensors passes only components synchronized with the rotation and other components. The noise is input to the control device 14 using a microcomputer via the amplifier circuits 11 and 12 including a filter circuit for removing the noise as necessary.

【0013】13は、被測定体Pに設けた基準位置マー
クP1又は被測定体Pを回転させる軸等に設けた基準位
置マークの検出信号を制御装着14に出力する例えば発
光素子と光電変換素子とからなる回転位相センサー、1
5は、制御装置14に測定機の駆動制御情報や振動セン
サー9、10や回転位相センサー13からの入力の演算
制御情報及びスタート信号等を出力する操作パネル、1
6は、制御装置14の入出力制御情報や演算結果等のデ
ィスプレーである。
Reference numeral 13 denotes a reference position mark P1 provided on the object P to be measured or a reference position mark detection signal provided on a shaft for rotating the object P to be output to the control mounting 14, for example, a light emitting element and a photoelectric conversion element. Rotational phase sensor consisting of 1
Reference numeral 5 denotes an operation panel for outputting drive control information of the measuring machine, calculation control information input from the vibration sensors 9 and 10 and the rotation phase sensor 13 and a start signal to the control device 1.
Reference numeral 6 is a display of input / output control information of the control device 14 and calculation results.

【0014】図2において図1と同一符号は同一機能部
材を示し、図2の例の動バランス測定機は、駆動基板部
1の被測定体装着手段101を、駆動基板部1に垂直に
支持固定された芯軸102と、芯軸102に順次嵌着さ
れる下スラスト軸受103、ラジアル軸受105及び上
スラスト軸受109と、芯軸102の上端面に設けたネ
ジ穴に螺合してワッシャー118を介し上スラスト軸受
109、ラジアル軸受105及び下スラスト軸受103
の重なりを締め付け固定する締めネジ119とから成る
ものとし、被測定体Pを、上下スラスト軸受109、1
03間でラジアル軸受105の外径に嵌装される内径が
1〜7μm程度の間隙を保ち、長さも上下スラスト軸受
109、103との間に同様の間隙を生じさせる長さの
カラー107と、カラー107の外径に嵌着した状態で
一体的に設けられて下面側に多数のマグネット125を
周方向に配設している被動部114と、カラー107の
外径に嵌装されてカラー107の外径に設けられたネジ
に螺合するような固定部材117により被動部114に
押し付けられカラー107に固定される多数の反射面1
15を外周に形成されたポリゴンミラー116とから成
るものとしている。図2のような駆動基板部1は、被測
定体Pを装着してステータコイル124により被動部1
14と一体のカラー107やポリゴンミラー116等を
回転させると、下スラスト軸受103の上面に周方向に
分布して形成した多数の渦巻き状の深さが数μmの動圧
発生用溝121が下スラスト軸受103とカラー107
や被動部114との間隙に外周側から中心方向に流れて
カラー107や被動部114を浮かした後、ラジアル軸
受105とカラー107の間隙を上昇してカラー107
と上スラスト軸受109の間隙を中心側から外周方向へ
と吹き抜ける空気流が発生して、それにより被動部11
4からポリゴンミラー116までの回転体を摩擦抵抗少
なく2〜3×104rpmの高速回転をさせることがで
きる。すなわち、上下スラスト軸受109、103及び
ラジアル軸受105とカラー107の間は動圧軸受を形
成している。これら動圧軸受構成部材は金属好ましくは
摩耗耐久性に優れることからセラミックスの何れかで形
成され、または軽量安価で容易に得られる樹脂で形成す
ることもできる。
In FIG. 2, the same reference numerals as those in FIG. 1 indicate the same functional members. In the dynamic balance measuring machine of the example of FIG. 2, the object-to-be-measured mounting means 101 of the driving board portion 1 is vertically supported by the driving board portion 1. The fixed core shaft 102, the lower thrust bearing 103, the radial bearing 105, and the upper thrust bearing 109 that are sequentially fitted to the core shaft 102, and the washer 118 screwed into the screw hole provided in the upper end surface of the core shaft 102. Through the upper thrust bearing 109, the radial bearing 105 and the lower thrust bearing 103.
Of the upper and lower thrust bearings 109, 1
03, the collar 107 fitted to the outer diameter of the radial bearing 105 maintains a gap of about 1 to 7 μm, and the length also has a collar 107 having a length that produces a similar gap between the upper and lower thrust bearings 109 and 103, The driven portion 114 integrally provided in a state fitted to the outer diameter of the collar 107 and having a large number of magnets 125 arranged in the circumferential direction on the lower surface side, and the collar 107 fitted to the outer diameter of the collar 107. A large number of reflecting surfaces 1 that are pressed against the driven part 114 and fixed to the collar 107 by a fixing member 117 that is screwed into a screw provided on the outer diameter of
15 is composed of a polygon mirror 116 formed on the outer periphery. The drive board unit 1 as shown in FIG. 2 is mounted with the measured object P and is driven by the stator coil 124.
When the collar 107 integrated with 14 and the polygon mirror 116 are rotated, a large number of spiral-shaped dynamic pressure generating grooves 121 having a depth of several μm formed in the upper surface of the lower thrust bearing 103 in the circumferential direction are lowered. Thrust bearing 103 and collar 107
After the collar 107 and the driven portion 114 are floated by flowing in the gap between the collar 107 and the driven portion 114 from the outer peripheral side, the gap between the radial bearing 105 and the collar 107 is raised to raise the collar 107.
An airflow is blown through the gap between the upper thrust bearing 109 and the upper thrust bearing 109 from the center side toward the outer peripheral direction, whereby the driven part 11
The rotating body from 4 to the polygon mirror 116 can be rotated at a high speed of 2 to 3 × 10 4 rpm with a low frictional resistance. That is, a dynamic pressure bearing is formed between the upper and lower thrust bearings 109 and 103, the radial bearing 105 and the collar 107. These dynamic pressure bearing constituent members may be formed of any one of ceramics, preferably metal, which is excellent in wear durability, or may be formed of a resin that is lightweight, inexpensive and easily obtained.

【0015】図2の例に限らず、動圧発生用溝121を
下スラスト軸受103のみに設けるだけでなく、ラジア
ル軸受105と下スラスト軸受103、或いはラジアル
軸受105と下スラスト軸受103及び上スラスト軸受
109に形成してもよいし、上スラスト軸受109を省
略してワッシャー118が直接ラジアル軸受105を押
さえて固定すると共にカラー107の上端面に対向する
ものでもよいし、被測定体装着手段101が動圧軸受を
形成しない単なるメタル軸受やボールベアリングを用い
るものでもよい。
Not only in the example of FIG. 2, not only the dynamic pressure generating groove 121 is provided only in the lower thrust bearing 103, but also the radial bearing 105 and the lower thrust bearing 103, or the radial bearing 105 and the lower thrust bearing 103 and the upper thrust. It may be formed on the bearing 109, the upper thrust bearing 109 may be omitted, and the washer 118 may directly press and fix the radial bearing 105 and may be opposed to the upper end surface of the collar 107. However, a simple metal bearing or a ball bearing which does not form a dynamic pressure bearing may be used.

【0016】以上のような被測定体装着手段101を備
えた図1の測定機による動バランス測定は以下のように
行われる。
The dynamic balance measurement by the measuring machine of FIG. 1 having the above-mentioned object mounting means 101 is carried out as follows.

【0017】駆動基板部1の被測定体装着手段101に
前述のように被測定体Pを装着して、操作パネル15で
回転数や演算プログラム等を指定した後スタートさせる
ことにより、被測定体Pが制御装置14に制御される駆
動基板部1側のステータコイル124と被動部114側
のマグネット125とから成るモータ120によって使
用回転数に回転させられ、被測定体Pに不釣り合いがあ
ると振動検出板部2がそれを支持している板バネ3〜6
の面に直角で回転中心線に直角の方向に振動する。振動
センサー9、10が振動検出板部2の2箇所の被検出部
分21、22の振動をそれぞれ検出して増幅回路11、
12を介し振れ情報を制御装置14に入力するととも
に、回転位相センサー13が基準位置マークP1を検出
したタイミング情報を制御装置14に入力する。それに
よって制御装置14の信号処理装置部分が、振れ情報と
タイミング情報及び不図示のモータ駆動パルスカウンタ
ーやロータリーエンコーダ等の与える被測定体Pの回転
速度情報から、被検出部分21、22の最大振れ量とそ
れらの基準位置マークP1からの位相角度によって与え
られる振れベクトル[A1]、[A2]を求めて記憶す
る。
The object to be measured P is mounted on the object to be measured mounting means 101 of the drive board unit 1 as described above, and the number of revolutions and the calculation program are designated on the operation panel 15 and then the apparatus is started to start the object to be measured. When P is rotated to the operating speed by the motor 120 including the stator coil 124 on the drive substrate 1 side and the magnet 125 on the driven part 114 side, which is controlled by the control device 14, the measured object P is unbalanced. The leaf springs 3 to 6 supported by the vibration detection plate portion 2
It oscillates in the direction perpendicular to the plane of and perpendicular to the center of rotation. The vibration sensors 9 and 10 detect the vibrations of the two detected portions 21 and 22 of the vibration detection plate 2, respectively, and the amplification circuit 11
The shake information is input to the control device 14 via 12, and the timing information at which the rotational phase sensor 13 detects the reference position mark P1 is input to the control device 14. As a result, the signal processing device portion of the control device 14 determines the maximum shake of the detected portions 21 and 22 from the shake information, the timing information, and the rotation speed information of the measured object P provided by a motor drive pulse counter (not shown) or a rotary encoder. The shake vectors [A 1 ] and [A 2 ] given by the quantities and their phase angles from the reference position mark P1 are obtained and stored.

【0018】次に、被測定体Pの上面のバランス調整重
りを付加する回転中心から一定半径位置に重りの重量と
付加位置位相が与えるベクトル[U1]の重りを付加し
て、上述と同様に被検出部分21、22の最大振れ量と
それらの基準位置マークP1からの位相角度によって与
えられる振れベクトル[B11]、[B21]を求めて記憶
する。また次に、被測定体Pの下面のバランス調整重り
を付加する回転中心から一定半径位置に重りの重量と付
加位置位相が与えるベクトル[U2]の重りを付加し
て、同様に被検出部分21、22の最大振れ量とそれら
の基準位置マークP1からの位相角度によって与えられ
る振れベクトル[B12]、[B22]を求めて、
([B11]−[A1])/[U1]=[α11]、
([B21]−[A2])/[U1]=[α21]、
([B12]−[A1])/[U2]=[α12]、
([B22]−[A2])/[U2]=[α22]により、付
加重りによる振れの補正係数ベクトル[α11]、
[α21]、[α12]、[α22]を求め、下記式から被測
定体Pの動バランス調整のために上下2面の不釣り合い
量である、それぞれ一定半径位置に付加すべき重り重量
と位置位相角を与えるベクトル[M1]、[M2]を求め
る。
Next, the weight of the weight and the weight of the vector [U 1 ] given by the additional position phase are added at a constant radius position from the center of rotation to which the balance adjustment weight of the upper surface of the object to be measured P is added, and the same as above. Then, the shake vectors [B 11 ] and [B 21 ] given by the maximum shake amounts of the detected portions 21 and 22 and their phase angles from the reference position mark P1 are obtained and stored. Next, the weight of the weight and the weight of the vector [U 2 ] given by the additional position phase are added at a constant radius position from the center of rotation to which the balance adjustment weight of the measured object P is added, and the detected portion is similarly added. The shake vectors [B 12 ] and [B 22 ] given by the maximum shake amounts of 21 and 22 and their phase angles from the reference position mark P1 are obtained,
([B 11 ]-[A 1 ]) / [U 1 ] = [α 11 ],
([B 21 ]-[A 2 ]) / [U 1 ] = [α 21 ],
([B 12 ]-[A 1 ]) / [U 2 ] = [α 12 ],
By ([B 22 ]-[A 2 ]) / [U 2 ] = [α 22 ], a shake correction coefficient vector [α 11 ] due to an additional weight,
21 ], [α 12 ] and [α 22 ] are calculated, and the weights to be added to the constant radius positions, which are the unbalanced amounts of the upper and lower two surfaces, for adjusting the dynamic balance of the measured object P from the following equations. The vectors [M 1 ] and [M 2 ] that give the weight and the position phase angle are obtained.

【0019】[0019]

【数1】 [Equation 1]

【0020】このベクトル[M1]、[M2]は被測定体
Pの動バランスを正確に調整できる付加すべき重り重量
と位置位相角を与える。図2の被測定体Pにはベクトル
[M1]、[M2]の情報に基づき後述のように動バラン
ス調整機によってバランス重りを付加するための円周溝
116a、114aが設けられている。加重量によって
バランスを取る代わりに減重量によってバランスを取る
場合は、位置位相角をπ進めて加重量を減重量にすれば
よい。
The vectors [M 1 ] and [M 2 ] give the weight weight and the position phase angle to be added which can accurately adjust the dynamic balance of the object P to be measured. The object P to be measured in FIG. 2 is provided with circumferential grooves 116a and 114a for adding a balance weight by a dynamic balance adjuster as described later based on the information of the vectors [M 1 ] and [M 2 ]. . In the case of balancing by weight reduction instead of weight balancing, the position phase angle may be advanced by π to reduce the weight.

【0021】図3において、30は、回転体の被調整体
Qが着脱される例えば上端面にネジ穴またはボルトを有
する装着軸とワッシャー及び締め付けネジまたはナット
からなる回転バランスの得易い着脱手段31と、着脱手
段31の前記装着軸を回動させて被調整体Qをその回転
軸周りに回動させるモータや減速機等の回動手段を有す
る被調整体回動部、32は、着脱手段31に取り付けた
被調整体Qの表面に例えば紫外線硬化樹脂液や熔融樹脂
液または溶解樹脂液のような液状体をノズル33aから
吐出して付着させ、紫外線照射や冷却または乾燥により
固化させる加重手段33と、加重手段33を移動させて
ノズル33aの吐出口位置を被調整体回動の半径方向に
変位させる図示例の送りネジとナットまたはラックとピ
ニオンの組み合わせあるいは液圧プランジャー等からな
る半径方向移動手段34を有する加重分布部、35は、
被調整体Qの表面の加重すべき位置R,θと重量Mの情
報すなわち例えば前述のベクトル[M1]または[M2
と言った不釣合情報と、被調整体Qの基準回転位相マー
クQ1を検出する基準マークセンサー36の検出情報と
を入力されて、被調整体回動部30の回動手段の回動と
加重分布部32の移動手段34の移動並びに加重手段3
3のノズル33aからの液状体の吐出を制御するマイク
ロコンピュータを用いた制御装置である。
In FIG. 3, reference numeral 30 denotes an attaching / detaching means 31 for easily obtaining a rotational balance, which is composed of, for example, a mounting shaft having a screw hole or a bolt on an upper end surface thereof to which the body to be adjusted Q of the rotating body is attached and detached, and a washer and a tightening screw or a nut. And 32. The object rotating part having a rotating means such as a motor or a speed reducer for rotating the mounting shaft of the attaching / detaching means 31 to rotate the body Q to be adjusted around the rotating shaft, 32 is the attaching / detaching means. A weighting means for ejecting a liquid material such as an ultraviolet curable resin liquid, a molten resin liquid or a dissolved resin liquid from the nozzle 33a to adhere it to the surface of the body to be adjusted Q attached to 31 and to solidify it by ultraviolet irradiation, cooling or drying. 33 and a combination of a feed screw and a nut or a rack and a pinion of the illustrated example for moving the weighting means 33 to displace the discharge port position of the nozzle 33a in the radial direction of the rotation of the body to be adjusted. Alternatively weighted distribution portion having a radial moving means 34 consisting of a hydraulic plunger, etc., 35,
Information of the positions R and θ to be weighted on the surface of the body to be adjusted Q and the weight M, that is, for example, the above-mentioned vector [M 1 ] or [M 2 ]
The unbalanced information and the detection information of the reference mark sensor 36 for detecting the reference rotation phase mark Q1 of the object to be adjusted Q are input, and the turning means and the weight distribution of the turning means of the object turning part 30 are input. Movement of moving means 34 of section 32 and weighting means 3
3 is a control device using a microcomputer for controlling the discharge of the liquid material from the nozzle 33a.

【0022】図示例の被調整体Qは回転中心から半径R
の位置に、図2の被測定体Pの円周溝116aまたは1
14aと同様の、動バランス調整用の重りを付着させる
半径方向幅2rの円周溝Q2を設けられているものであ
るから、制御装置35は、不図示の操作パネルによる指
示に従って加重手段33のノズル33aを円周溝Q2の
半径R位置に移動させたら、後は移動手段34を停止さ
せたまま、例えば先に作用の項で述べたようなベクトル
[M1]の加重量M、加重位置位相角θを操作パネルに
よって入力されていた場合、M/m=n+s(mは一点
に付加したと見なし得る一点から均等に分布する範囲の
所定加重であるが、図示例では半径方向は円周溝Q2の
溝幅で規制されるから、周方向の左右の分布の均等を保
持できる範囲の所定重量であって、周方向左右の広がり
が片側略r以下となる重量とするのが好ましい、nは0
又は正整数、sは真小数)のnの値によって、以下のよ
うな制御を行う。
The object to be adjusted Q in the illustrated example has a radius R from the center of rotation.
At the position of the circular groove 116a or 1 of the measured object P of FIG.
Since a circular groove Q2 having a radial width 2r for attaching a weight for dynamic balance adjustment is provided similarly to 14a, the control device 35 controls the weighting means 33 according to an instruction from an operation panel (not shown). After the nozzle 33a is moved to the radius R position of the circumferential groove Q2, the moving means 34 is stopped while the nozzle 33a is moved, for example, the weight M and the weighted position of the vector [M 1 ] as described in the section of the action. When the phase angle θ is input through the operation panel, M / m = n + s (m is a predetermined weight within a range evenly distributed from one point that can be regarded as being added to one point, but in the illustrated example, the radial direction is the circumference. Since it is regulated by the groove width of the groove Q2, it is preferable that the weight is a predetermined weight within a range in which the distribution in the left and right in the circumferential direction can be kept uniform and the spread in the left and right in the circumferential direction is approximately r or less on one side. Is 0
Alternatively, the following control is performed according to the value of n, which is a positive integer and s is a decimal number.

【0023】nが0のときは、θの位置にs×mの加
重、nが1のときは、θ±2r/Rの2位置にそれぞれ
m/2とθの位置にm(1−cos2r/R)+m×s
の加重、nが2のときは、θ±r/Rの2位置にそれぞ
れmとθの位置に2m(1−cosr/R)+m×sの
加重、nが3のときは、θ±r/Rの2位置にそれぞれ
mとθ±2r/Rの2位置にそれぞれm/2とθの位置
に2m(1−cosr/R)+m(1−cos2r/
R)+m×sの加重を行うように、加重手段33のノズ
ル33aによる液状体の吐出量と被調整体回動部30の
回動手段による回動とを制御する。
When n is 0, the position of θ is weighted by s × m, and when n is 1, the positions of θ ± 2r / R are m / 2 and m (1-cos2r). / R) + m × s
, When n is 2, the weight is 2m (1-cosr / R) + m × s at two positions of θ ± r / R and at the positions of θ ± r / R, and when n is 3, θ ± r M at the two positions of / R and 2 at the two positions of θ ± 2r / R and 2m (1-cosr / R) + m (1-cos2r / at the positions of m / 2 and θ, respectively.
The discharge amount of the liquid material by the nozzle 33a of the weighting means 33 and the rotation by the rotating means of the adjusted body rotating portion 30 are controlled so as to perform the weighting of R) + m × s.

【0024】図4は上述のnが3のときの制御によって
バランス調整の加重が行われた被調整体Qの表面を示し
ており、2面バランス調整で裏面側のベクトル[M2
も入力されていた場合は、裏面側にも同様にバランス調
整の加重が行われることになる。この加重調整によっ
て、動バランスの非常に優れた回転体を得ることができ
る。しかし加重調整はこの例に限らず、図5(A)に示
したように円周溝Q2に連続分布の加重を行うように制
御するものでも、図5(B)に示したように平らな被調
整体Qの表面に円弧状連続分布の加重を行うように制御
するものでも同様の効果を得ることができる。
FIG. 4 shows the front surface of the body to be adjusted Q which has been weighted for balance adjustment by the control when n is 3, and the vector [M 2 ] on the back surface side is obtained by the two-side balance adjustment.
If is also input, the balance adjustment is similarly weighted on the back side. By this weight adjustment, it is possible to obtain a rotating body having an excellent dynamic balance. However, the weight adjustment is not limited to this example, and even if the circumferential groove Q2 is controlled so as to perform weighting of continuous distribution as shown in FIG. 5 (A), it is flat as shown in FIG. 5 (B). The same effect can be obtained by controlling the surface of the object to be adjusted Q so as to apply a circular arc-shaped continuous distribution.

【0025】また本発明の動バランス調整機は、加重調
整するものに限らず、加重手段33を穿孔径2rのエン
ドミルを用いるミーリングヘッドに替えて、図5(C)
に示したように平らな被調整体Qの表面に深さhの円弧
状溝を掘削するか、あるいは先に作用の項で述べたよう
な半径Rの円周方向に分布する直径2rの円窪みを掘削
する制御を行うものでもよい。
Further, the dynamic balance adjusting machine of the present invention is not limited to the one for adjusting the weight, and the weighting means 33 is replaced with a milling head using an end mill having a hole diameter of 2r.
As shown in Fig. 5, an arcuate groove having a depth h is excavated on the flat surface of the object to be adjusted Q, or a circle having a diameter 2r distributed in the circumferential direction with a radius R as described in the section of the action. The control for excavating the depression may be performed.

【0026】なお、例えば図5(A)の連続分布の場合
は、付加すべき重量Mに相当する樹脂の円周溝Q2を埋
める円弧長さsがs≒M/2ρrh(ρは樹脂の単位体
積当たり重量、rとhは円周溝Q2の溝幅の1/2と深
さ)となるから、先にノズル33aをθ±2r/Rの位
置からそれぞれ外側に(s−2r)/2の円弧長だけ相
対回動させて円周溝Q2に樹脂の充填を行い、最後に
R,θ位置の円弧長さ2r部分に全部の充填樹脂量をM
とするための不足分樹脂量の充填を行うようにすること
で、図4のドット状分布と同様の高い精度で動バランス
を調整できる。また、図5(B)の連続分布の場合は、
単位円弧長さ当たりの盛り付け重量mを予め求めておい
て、s≒M/mのsを用いて同様にR,θ位置を最後と
するように樹脂の盛り付けを行えばよい。図5(C)の
場合は、エンドミルの中心をR,θ±(M−ρπr
2h)/2ρrhRの範囲移動するようして深さhの溝
を掘削すれば、どこから掘削を始めても精度よく動バラ
ンスを調整できる。
In the case of the continuous distribution of FIG. 5A, for example, the arc length s for filling the circumferential groove Q2 of the resin corresponding to the weight M to be added is s≈M / 2ρrh (ρ is the resin unit) Since the weight per volume, r and h are 1/2 of the groove width of the circumferential groove Q2 and the depth), the nozzle 33a is first (s-2r) / 2 outward from the position of θ ± 2r / R. The circular groove Q2 is filled with resin by rotating the arc length 2r relative to each other, and finally, the total amount of the filled resin is M in the arc length 2r portion at the R and θ positions.
By filling the shortage resin amount to achieve the above, it is possible to adjust the dynamic balance with high accuracy similar to the dot-like distribution of FIG. Moreover, in the case of the continuous distribution of FIG.
The deposition weight m per unit arc length may be obtained in advance, and the resin may be deposited such that the R and θ positions are the last by using s of s≈M / m. In the case of FIG. 5C, the center of the end mill is R, θ ± (M−ρπr
By excavating the groove of depth h by moving in the range of 2 h) / 2ρrhR, the dynamic balance can be adjusted accurately no matter where the excavation starts.

【0027】以上述べた円弧状に加重もしくは除重する
例に限らず、図6に示したようにラジアル方向に加重も
しくは除重するようにしてもよい。但し、この場合は、
溝内に加重するようにはできず、θ位置のRS=(RL 2
−2MR/m)1/2(但し、RLは加重または除重を行え
る半径の所定最大値、mは単位ラジアル方向長さ当たり
の盛り付け加重量または掘削除重量)を満足する半径R
SからRLまでの間の平面上にm割合の盛り付け加重また
は掘削除重する制御を行うことで精度よく動バランスを
調整できる。
Not limited to the example of weighting or unloading in the arc shape described above, weighting or unloading may be performed in the radial direction as shown in FIG. However, in this case,
It cannot be weighted in the groove and R S = (R L 2
-2MR / m) 1/2 (where R L is the specified maximum radius that allows weighting or unloading, and m is the radius R that satisfies the loading weight or excavating weight per unit radial direction length)
It is possible to adjust the dynamic balance with high accuracy by performing the control of weighting or excavation weighting of m proportions on the plane between S and RL .

【0028】[0028]

【発明の効果】以上詳述したように、本発明の動バラン
ス測定によれば、被測定体の動バランスを正確に調整
できる付加すべき重り重量と位置位相角または除去すべ
き掘削重量と位置位相角を容易に求めることができる。
As described above in detail, according to the dynamic balance measurement apparatus of the present invention, the drilling weight to be weight by weight and the position phase angle or removed to be added to the dynamic balance can be precisely adjusted in the object to be measured The position phase angle can be easily obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】発明の動バランス測定機の1例を示す概要斜
視図。
FIG. 1 is a schematic perspective view showing an example of a dynamic balance measuring machine of the present invention.

【図2】発明動バランス測定機の駆動基板部の例を示
す部分断面図。
FIG. 2 is a partial cross-sectional view showing an example of a drive board portion of the dynamic balance measuring machine of the present invention.

【図3】バランス調整機の1例を示す概要斜視図。FIG. 3 is a schematic perspective view showing an example of a dynamic balance adjuster.

【図4】バランス調整機によるバランス調整の例を示
す被調整体の平面図。
FIG. 4 is a plan view of an adjusted body showing an example of balance adjustment by a dynamic balance adjuster.

【図5】バランス調整機によるバランス調整の例を示
す被調整体の部分斜視図。
FIG. 5 is a partial perspective view of an adjusted body showing an example of balance adjustment by a dynamic balance adjuster.

【図6】バランス調整機によるバランス調整の他の例
を示す被調整体の平面図。
FIG. 6 is a plan view of an adjusted body showing another example of balance adjustment by a dynamic balance adjuster.

【符号の説明】[Explanation of symbols]

1 駆動基板部 P 被測定体 P1 基準位置マーク 2 振動検出板部 3、4、5、6 板バネ 7、8 機体固定部 9、10 振動センサー 13 回転位相センサー 14、35 制御装置 15 操作パネル 21、22 被検出部分 101 被測定体装着手段 102 芯軸 103 下スラスト軸受 105 ラジアル軸受 107 カラー 109 上スラスト軸受 114 被動部 116 ポリゴンミラー 117 固定部材 119 締めネジ 120 モータ 121 動圧発生用溝 124 ステータコイル 125 マグネット 30 被調整体回動部 31 着脱手段 32 加重分布部 33 加重手段 33a ノズル 34 移動手段 36 基準マークセンサー 1 Drive board part P DUT P1 reference position mark 2 Vibration detection plate 3, 4, 5, 6 leaf spring 7, 8 Body fixing part 9, 10 Vibration sensor 13 Rotational phase sensor 14, 35 Control device 15 Operation panel 21, 22 Detected part 101 Measured object mounting means 102 core shaft 103 Lower thrust bearing 105 radial bearing 107 colors 109 Upper thrust bearing 114 Driven part 116 polygon mirror 117 fixing member 119 Tightening screw 120 motor 121 Dynamic pressure generating groove 124 Stator coil 125 magnet 30 Adjustable body rotating part 31 Detaching means 32 Weighted distribution part 33 Weighting means 33a nozzle 34 means of transportation 36 Reference mark sensor

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01M 1/38 G01M 1/16 G01M 1/32 G02B 26/10 102 ─────────────────────────────────────────────────── ─── Continuation of front page (58) Fields surveyed (Int.Cl. 7 , DB name) G01M 1/38 G01M 1/16 G01M 1/32 G02B 26/10 102

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 上部に被測定体を着脱自在に装着して回
転させる駆動基板部と、該駆動基板部の下部に一体に垂
下状態に設けられて前記回転の中心線に直角方向の振動
を検出するための被検出部分を有する振動検出板部と、
該振動検出板部と前記振動方向に直角方向の左右の機体
固定部とを上下に離れた2箇所で連結する前記振動方向
に直角の板バネと、前記被検出部分の前記振動を検出す
る振動センサーと、被測定体の回転位相を検出する回転
位相センサーと、該回転位相センサーと前記振動センサ
ーの出力情報に基いて被測定体の不釣り合い量とその位
相角度に関する情報を算出する演算手段を備えたことを
特徴とする動バランス測定機。
1. A drive substrate part on which an object to be measured is detachably mounted and rotated, and a lower part of the drive substrate part which is integrally provided in a suspended state to generate vibration in a direction perpendicular to the center line of rotation. A vibration detecting plate portion having a detected portion for detecting,
A leaf spring at right angles to the vibration direction that connects the vibration detection plate portion and left and right body fixing portions at right angles to the vibration direction at two vertically separated locations, and a vibration that detects the vibration of the detected portion. A sensor, a rotational phase sensor for detecting the rotational phase of the object to be measured, and an arithmetic means for calculating information about the unbalanced amount of the object to be measured and its phase angle based on the output information of the rotational phase sensor and the vibration sensor. A dynamic balance measuring machine characterized by being equipped.
【請求項2】 前記振動検出板部が前記被検出部分を上
下2箇所に有して、該2箇所の被検出部分に対してそれ
ぞれ前記振動センサーを備え、前記演算手段が被測定体
の任意の部分の不釣り合い量とその位相角度に関する情
報を算出し得ることを特徴とする請求項1に記載の動バ
ランス測定機。
2. The vibration detection plate portion has the detected portions at two upper and lower positions, and the vibration sensors are provided for the two detected portions, respectively, and the arithmetic means is an arbitrary measured object. The dynamic balance measuring machine according to claim 1, wherein the information regarding the unbalance amount of the portion and the phase angle thereof can be calculated.
【請求項3】 前記被測定体がポリゴンミラーユニット
であって前記駆動基板部のステータコイルから回転力を
受けるマグネットを備え、前記被測定体を装着する手段
が垂直なラジアル軸受と、該ラジアル軸受の上下両端側
又は下端側に設けたスラスト軸受とを有して装着された
ポリゴンミラーを動圧軸受で回転支持することを特徴と
する請求項1または請求項2に記載の動バランス測定
機。
3. A radial bearing in which the object to be measured is a polygon mirror unit and includes a magnet that receives a rotational force from a stator coil of the drive substrate section, and a means for mounting the object to be measured is a vertical radial bearing, and the radial bearing. The dynamic balance measuring machine according to claim 1 or 2, wherein a polygon mirror mounted with thrust bearings provided on the upper and lower end sides or the lower end side is rotatably supported by dynamic pressure bearings.
JP28730695A 1995-11-06 1995-11-06 Dynamic balance measuring machine Expired - Fee Related JP3443719B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28730695A JP3443719B2 (en) 1995-11-06 1995-11-06 Dynamic balance measuring machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28730695A JP3443719B2 (en) 1995-11-06 1995-11-06 Dynamic balance measuring machine

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003119250A Division JP2004029003A (en) 2003-04-24 2003-04-24 Dynamic balance adjustment machine

Publications (2)

Publication Number Publication Date
JPH09126936A JPH09126936A (en) 1997-05-16
JP3443719B2 true JP3443719B2 (en) 2003-09-08

Family

ID=17715670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28730695A Expired - Fee Related JP3443719B2 (en) 1995-11-06 1995-11-06 Dynamic balance measuring machine

Country Status (1)

Country Link
JP (1) JP3443719B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG97141A1 (en) * 1999-02-19 2003-07-18 Pemstar Inc Method and apparatus for analyzing rotor balance
JP2001356060A (en) * 2000-04-11 2001-12-26 Nissho Denki Kk Method and system for evaluating dynamic mechanical characteristic of memory medium driver
CN103389182B (en) * 2013-07-04 2016-06-01 河南科技大学 Miniature rotor running balance indicating machine pendulum frame
JP6277406B2 (en) * 2013-09-27 2018-02-14 日本電産株式会社 Mirror rotating device
CN105571782B (en) * 2015-12-14 2017-11-07 太原理工大学 Optics dynamic balancing machine
JP7044365B2 (en) * 2018-06-22 2022-03-30 株式会社長浜製作所 Test equipment for tires or wheels with tires
CN116202691B (en) * 2023-04-27 2023-07-18 山东普鲁特机床有限公司 Vertical and horizontal dual-purpose boring and milling composite machining center spindle dynamic balance testing device

Also Published As

Publication number Publication date
JPH09126936A (en) 1997-05-16

Similar Documents

Publication Publication Date Title
WO2020182128A1 (en) Method for acquiring unbalance amount of rotor, and method for acquiring unbalance amount of balancing machine
CN206410824U (en) A kind of hard support dynamic balancing machine
KR100558206B1 (en) Method and apparatus for measuring dynamic balance
JP3443719B2 (en) Dynamic balance measuring machine
JP2014182128A (en) Dynamic balance detecting device
CN109341948A (en) Aircraft wing rudder face and rudder rotational inertia measuring device and measurement method
WO2003004961B1 (en) Self-calibrating machines for balancing work pieces and methods of machine calibration
US20060130576A1 (en) Balancing machine
US4750361A (en) Universal balancing machine
JP2000024478A (en) Vibrating device for vibrating liquid put in vessel
JPH04312211A (en) Bearing structure and vibration detecting device
JPH10206270A (en) Method for calculating amount of eccentric mass of rotary head device of shaft fixing system, method for selecting position of eccentric mass and equipment therefor
JP4098429B2 (en) Balance test machine and balance test method
JPH0715423B2 (en) Method and apparatus for determining wheel imbalance
JP2004029003A (en) Dynamic balance adjustment machine
JP4236510B2 (en) Apparatus and method for measuring rotational balance of rotating body
JPH05281076A (en) Balancing method for rotating body and attaching device based on above method for balancing weight to tire wheel
JP4190395B2 (en) Unbalance vibration detection mechanism
JPH08247883A (en) Unbalance measurement device for rotor
US3847025A (en) Dynamic tire balancing method and apparatus
JPH10115567A (en) Low-speed balancing apparatus for heavy object
JPH02224944A (en) Measurement mechanism for balance weight of rotating body taking no shaft center
JP3409818B2 (en) Horizontal balancing device
JPH05164780A (en) Method and device for measuring performance of acceleration sensor
JPH0522844Y2 (en)

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080627

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080627

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090627

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100627

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100627

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees