JP3440990B2 - How to convert hydrocarbon resources - Google Patents

How to convert hydrocarbon resources

Info

Publication number
JP3440990B2
JP3440990B2 JP36940598A JP36940598A JP3440990B2 JP 3440990 B2 JP3440990 B2 JP 3440990B2 JP 36940598 A JP36940598 A JP 36940598A JP 36940598 A JP36940598 A JP 36940598A JP 3440990 B2 JP3440990 B2 JP 3440990B2
Authority
JP
Japan
Prior art keywords
water
reaction
oil
reactor
gas containing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP36940598A
Other languages
Japanese (ja)
Other versions
JP2000192055A (en
Inventor
孝弘 近沢
庸介 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP36940598A priority Critical patent/JP3440990B2/en
Publication of JP2000192055A publication Critical patent/JP2000192055A/en
Application granted granted Critical
Publication of JP3440990B2 publication Critical patent/JP3440990B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は石炭、重質油、オイ
ルシェール、天然ビチューメン等の化石燃料や都市ゴ
ミ、汚泥、有機廃材等の有機廃棄物を含む炭化水素資源
から水素などのガス、軽質油、水溶性生成油を製造する
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to gas, such as hydrogen, from hydrocarbon resources including fossil fuels such as coal, heavy oil, oil shale and natural bitumen, and organic wastes such as municipal waste, sludge and organic waste materials. The present invention relates to a method for producing oil, a water-soluble product oil.

【0002】[0002]

【従来の技術】高温・高圧の亜臨界又は超臨界状態の水
は拡散能力が高く、高密度、高イオン積で、有機物を溶
解させる能力が高い特徴があるため、この亜臨界又は超
臨界状態の水を用いて有機物を軽質化し、クリーン化
し、無害化する種々のプロセスが開発されている。例え
ば、石炭等の化石燃料、加硫ゴム等の高分子化合物を亜
臨界又は超臨界状態の水で処理することにより、水から
の水素供与作用による水素化分解を伴う化石燃料、高分
子化合物の改質・低分子化方法が提案されている(特開
平9−151384)。
2. Description of the Related Art Water in a subcritical or supercritical state at high temperature and high pressure has a high diffusion capacity, a high density, a high ionic product, and a high ability to dissolve organic substances. Various processes have been developed for lightening, cleaning and detoxifying organic substances by using water. For example, by treating a fossil fuel such as coal or a polymer compound such as a vulcanized rubber with water in a subcritical or supercritical state, a fossil fuel accompanied by hydrogenolysis by a hydrogen donating action from water or a polymer compound A method of modifying and lowering the molecular weight has been proposed (Japanese Patent Laid-Open No. 9-151384).

【0003】[0003]

【発明が解決しようとする課題】しかし、上記従来の方
法に基づいて超臨界水中で炭化水素資源を軽質化した場
合に、発生する生成油を軽質化するために必要かつ十分
な水素量を得ることが困難である。そのため、この方法
には炭化水素化合物の転換率が低く、生成する生成油も
重質なものが多い問題がある。本発明の目的は、複雑な
プロセスを要することなく、高い転換率で炭化水素資源
から水素などのガス、軽質油及び水溶性生成油を製造で
きる炭化水素資源の転換方法を提供することにある。
However, when a hydrocarbon resource is lightened in supercritical water based on the above-mentioned conventional method, a necessary and sufficient amount of hydrogen is obtained to lighten the produced oil. Is difficult. Therefore, this method has a problem that the conversion rate of hydrocarbon compounds is low and that the produced oil is often heavy. An object of the present invention is to provide a hydrocarbon resource conversion method capable of producing a gas such as hydrogen, a light oil and a water-soluble product oil from a hydrocarbon resource at a high conversion rate without requiring a complicated process.

【0004】[0004]

【課題を解決するための手段】請求項1に係る発明は、
図1に示すように温度380〜500℃で圧力25〜4
0MPaの第1反応領域14と、温度500〜900℃
で圧力25〜40MPaの第2反応領域15を有する反
応器13で炭化水素資源を転換する方法であって、反応
器13の第1反応領域14で炭化水素資源と水とを反応
させて上記炭化水素資源を一次分解することにより水不
溶性油と水に溶解した水溶性油とを生成し、反応器13
の第2反応領域15で上記一次分解により生成した残渣
と水とを反応させて水素を主成分とするガスを生成する
ことを特徴とする炭化水素資源の転換方法である。請求
項2に係る発明は、請求項1に係る発明であって、反応
器13の第2反応領域15で一次分解により生成した残
渣と水とをアルカリ触媒とともに反応させて水素を主成
分とするガスを生成する炭化水素資源の転換方法であ
る。
The invention according to claim 1 is
As shown in FIG. 1, the temperature is 380 to 500 ° C. and the pressure is 25 to 4
First reaction region 14 at 0 MPa and temperature 500 to 900 ° C.
A method for converting a hydrocarbon resource in a reactor 13 having a second reaction region 15 at a pressure of 25 to 40 MPa, wherein the hydrocarbon resource and water are reacted in the first reaction region 14 of the reactor 13 to carry out the above-mentioned carbonization. Primary decomposition of the hydrogen resource produces a water-insoluble oil and a water-soluble oil dissolved in water, and the reactor 13
In the second reaction region 15, the residue produced by the primary decomposition is reacted with water to produce a gas containing hydrogen as a main component, which is a hydrocarbon resource conversion method. The invention according to claim 2 is the invention according to claim 1, wherein the residue produced by primary decomposition in the second reaction region 15 of the reactor 13 and water are reacted with an alkali catalyst to contain hydrogen as a main component. It is a conversion method of hydrocarbon resources that generate gas.

【0005】請求項3に係る発明は、請求項1又は2に
係る発明であって、反応器13の第1反応領域14で一
次分解した生成物及び第2反応領域15で生成した水素
を主成分とするガスを分離器17により水素を主成分と
するガスと水不溶性油と水に溶解した水溶性油とに分離
し、分離器17でそれぞれ分離された水不溶性油と水素
を主成分とするガスを触媒とともに水添反応器20で4
00〜500℃の温度下、10〜30MPaの圧力で反
応させて上記水不溶性油を軽質油に転換する炭化水素資
源の転換方法である。請求項4に係る発明は、請求項3
に係る発明であって、分離器17で分離された水に溶解
した水溶性油を抽出器22で溶媒抽出して水溶性油を得
る炭化水素資源の転換方法である。請求項5に係る発明
は、請求項4に係る発明であって、抽出器22で水溶性
油を取除いた水を温度500〜900℃、圧力25〜4
0MPaに昇温昇圧して反応器13の第2反応領域15
における反応に使用する炭化水素資源の転換方法であ
る。本明細書において、「水の超臨界状態」又は「超臨
界水」とは、374〜900℃の温度で22〜30MP
aの圧力にある水の状態をいう。
The invention according to claim 3 is the invention according to claim 1 or 2, wherein the product mainly decomposed in the first reaction zone 14 of the reactor 13 and the hydrogen generated in the second reaction zone 15 are mainly used. The component gas is separated by a separator 17 into a gas containing hydrogen as a main component, a water-insoluble oil and a water-soluble oil dissolved in water, and the water-insoluble oil and hydrogen separated by the separator 17 are contained as main components. The generated gas together with the catalyst in the hydrogenation reactor 20.
It is a hydrocarbon resource conversion method in which the water-insoluble oil is converted to a light oil by reacting at a pressure of 10 to 30 MPa at a temperature of 00 to 500 ° C. The invention according to claim 4 is claim 3
The present invention relates to a method for converting a hydrocarbon resource in which the water-soluble oil dissolved in water separated by the separator 17 is solvent-extracted by the extractor 22 to obtain the water-soluble oil. The invention according to claim 5 is the invention according to claim 4, wherein the water from which the water-soluble oil has been removed by the extractor 22 has a temperature of 500 to 900 ° C and a pressure of 25 to 4
The second reaction region 15 of the reactor 13 is heated and pressurized to 0 MPa.
It is a method of converting hydrocarbon resources used for the reaction in. In the present specification, "supercritical state of water" or "supercritical water" means 22 to 30 MP at a temperature of 374 to 900 ° C.
The state of water at the pressure a.

【0006】[0006]

【発明の実施の形態】本発明で用いる炭化水素資源とし
ては、石炭、重質油、オイルシェール、天然ビチューメ
ン等の化石燃料、都市ごみ、汚泥、有機廃材等の有機廃
棄物が挙げられる。反応器内では水の超臨界状態で反応
が行われるため、上記炭化水素資源は予め数mm以下
の、好ましくはポンプの能力に応じて300μm以下の
粒径に微粉砕された後、水と界面活性剤を混合して炭化
水素スラリーの形態で反応器に供給される。炭化水素ス
ラリーにおける水はスラリー濃度が好ましくは30〜6
0重量%になるように炭化水素資源の微粉砕物に添加さ
れる。
BEST MODE FOR CARRYING OUT THE INVENTION Examples of hydrocarbon resources used in the present invention include fossil fuels such as coal, heavy oil, oil shale and natural bitumen, organic wastes such as municipal solid waste, sludge and organic waste materials. Since the reaction is carried out in a supercritical state of water in the reactor, the above hydrocarbon resource is pulverized in advance to a particle size of several mm or less, preferably 300 μm or less depending on the ability of the pump, and then the interface with water. The activator is mixed and fed to the reactor in the form of a hydrocarbon slurry. Water in the hydrocarbon slurry preferably has a slurry concentration of 30 to 6
It is added to a finely pulverized product of hydrocarbon resources so as to be 0% by weight.

【0007】請求項1に係る発明では、それぞれ圧力2
5〜40MPaであって温度が異なる2つの反応領域を
有する単一の反応器内において、先ず温度380〜50
0℃の第1反応領域で炭化水素資源を超臨界水により一
次分解する。この一次分解により水不溶性油と水に溶解
した水溶性油とが生成される。また温度500〜900
℃の第2反応領域において、一次分解で生成した残渣を
超臨界水により、次式(1)の水性ガス化反応を起させ
て水素を主成分とするガスを生成する。ここで残渣に含
まれる灰分の一部は触媒として利用され、水性ガス化反
応がより加速され、効果的に水素が製造される。 C + H2O → CO + H2 …… (1) 第2反応領域で生成した水素を主成分とするガスは、上
方の第1反応領域に素早く移動し、その中で水素は第1
反応領域で生成した活性な一次分解物と反応する、いわ
ゆる水添反応を起こし、生成油を軽質化する。第1反応
領域の好ましい温度は380〜450℃であり、好まし
い圧力は25〜30MPaである。また第2反応領域の
好ましい温度は600〜700℃であり、好ましい圧力
は25〜30MPaである。第1反応領域の温度が38
0℃未満、圧力が25MPa未満では、第2反応領域の
温度が500℃未満、圧力が25MPa未満では、それ
ぞれの反応速度が遅く、また第1反応領域の温度が50
0℃を超え、圧力が40MPaを超え、第2反応領域の
温度が900℃を超え、圧力が40MPaを超えると、
反応器に負荷がかかり過ぎ、効率的でない。
In the invention according to claim 1, the pressure is 2
In a single reactor having two reaction zones of 5 to 40 MPa and different temperatures, first the temperature of 380 to 50
The hydrocarbon resource is primarily decomposed by supercritical water in the first reaction zone at 0 ° C. This primary decomposition produces a water-insoluble oil and a water-soluble oil dissolved in water. Moreover, the temperature is 500 to 900.
In the second reaction region at 0 ° C., the residue produced by the primary decomposition is caused to undergo a water gasification reaction of the following formula (1) with supercritical water to produce a gas containing hydrogen as a main component. Here, a part of the ash contained in the residue is used as a catalyst, the water gasification reaction is further accelerated, and hydrogen is effectively produced. C + H 2 O → CO + H 2 (1) The gas containing hydrogen as a main component produced in the second reaction region quickly moves to the upper first reaction region, in which hydrogen is the first
A so-called hydrogenation reaction which reacts with the active primary decomposition product generated in the reaction region is caused to lighten the produced oil. The preferable temperature of the first reaction region is 380 to 450 ° C., and the preferable pressure is 25 to 30 MPa. The preferable temperature of the second reaction region is 600 to 700 ° C., and the preferable pressure is 25 to 30 MPa. The temperature of the first reaction zone is 38
When the temperature is less than 0 ° C. and the pressure is less than 25 MPa, the temperature of the second reaction region is less than 500 ° C., and when the pressure is less than 25 MPa, each reaction rate is slow, and the temperature of the first reaction region is 50%.
When the temperature exceeds 0 ° C., the pressure exceeds 40 MPa, the temperature of the second reaction region exceeds 900 ° C., and the pressure exceeds 40 MPa,
The reactor is overloaded and not efficient.

【0008】第2反応領域で生成する水素を主成分とす
るガスには、水素の他にメタン、一酸化炭素、二酸化炭
素等が含まれる。第1反応領域で生成する水不溶性油と
してはオイル(ベンゼン、トルエン及びキシレン(以
下、BTXという。)を主成分とする留分)とアスファ
ルテン、プレアスファルテンが挙げられ、水に溶解した
水溶性油としてはフェノール類、有機酸類、アルデヒド
類等が挙げられる。
The gas containing hydrogen as a main component, which is produced in the second reaction region, contains methane, carbon monoxide, carbon dioxide and the like in addition to hydrogen. Examples of the water-insoluble oil produced in the first reaction region include oil (fraction containing benzene, toluene, and xylene (hereinafter referred to as BTX) as main components), asphaltene, and pre-asphaltene. Water-soluble oil dissolved in water Examples thereof include phenols, organic acids, aldehydes and the like.

【0009】請求項2に係る発明では、反応器の第2反
応領域で一次分解により生成した残渣と水とをアルカリ
触媒とともに反応させて水素を主成分とするガスを生成
する。超臨界状態の水は流体密度が高いため、アルカリ
触媒を外部より加えた場合には一次分解により生成した
残渣の炭素粒子とアルカリ触媒の粒子との接触性が向上
する。これにより、上記式(1)の水性ガス化反応及び
次の式(2)の水性ガスシフト反応がより効率的に行わ
れ、水素を主成分とするガスがより多く生成される。 CO + H2O = CO2 + H2 …… (2) 即ち、生成した水素は残渣粒子の活性な炭素表面から素
早く離脱して超臨界状態の水中に拡散し溶解する。その
結果、活性な炭素表面が露出して炭素表面の活性能力が
素早く回復し、上記反応式に基づき新しい水素が生成す
る。このアルカリ触媒として、炭酸カリウム、炭酸ナト
リウム、水酸化カリウム、水酸化ナトリウム、水酸化カ
ルシウム、酸化カルシウム、炭酸カルシウム、酸化ナト
リウム、酸化カリウム等が例示される。
According to the second aspect of the invention, the residue produced by primary decomposition in the second reaction zone of the reactor and water are reacted with an alkali catalyst to produce a gas containing hydrogen as a main component. Since water in a supercritical state has a high fluid density, when an alkali catalyst is added from the outside, the contact between the carbon particles of the residue produced by the primary decomposition and the particles of the alkali catalyst is improved. As a result, the water gasification reaction of the above formula (1) and the water gas shift reaction of the following formula (2) are performed more efficiently, and more gas containing hydrogen as a main component is produced. CO 2 + H 2 O = CO 2 + H 2 (2) That is, the produced hydrogen is quickly separated from the active carbon surface of the residual particles, diffuses and dissolves in supercritical water. As a result, the active carbon surface is exposed and the activation ability of the carbon surface is quickly restored, and new hydrogen is generated based on the above reaction formula. Examples of the alkali catalyst include potassium carbonate, sodium carbonate, potassium hydroxide, sodium hydroxide, calcium hydroxide, calcium oxide, calcium carbonate, sodium oxide, potassium oxide and the like.

【0010】請求項3に係る発明では、反応器の第1反
応領域で一次分解した生成物及び第2反応領域で生成し
た水素を主成分とするガスが分離器で水素を主成分とす
るガスと水不溶性油と水に溶解した水溶性油とに分離さ
れる。更に水添反応器でこの分離された水不溶性油に水
素を主成分とするガスを触媒とともに反応させると、水
不溶性油が軽質油に転換する。ここで水添反応に用いら
れる触媒としては、酸化モリブデン、モリブデンとコバ
ルトの複合酸化物、モリブデンとニッケルの複合酸化物
等のモリブデン触媒が挙げられる。
In the invention according to claim 3, the gas containing hydrogen as a main component in the separator is the gas containing hydrogen as a main component produced in the first reaction region of the reactor and the hydrogen produced in the second reaction region. And water-insoluble oil and water-soluble oil dissolved in water. Further, when the separated water-insoluble oil is reacted with a gas containing hydrogen as a main component together with a catalyst in the hydrogenation reactor, the water-insoluble oil is converted into a light oil. Examples of the catalyst used in the hydrogenation reaction include molybdenum oxide, molybdenum-cobalt composite oxide, molybdenum-nickel composite oxide, and the like.

【0011】請求項4に係る発明では、分離器で分離さ
れた水に溶解した水溶性油が抽出器で溶媒抽出されて水
溶性油として得られる。抽出器で水に溶解した水溶性油
に溶媒としてメチルイソブチルケトン、ジエチルエーテ
ル、N−ブチルアセテート又はジイソブチルエーテル等
を加え、水溶性油を溶媒中に移動させて静置すると比重
差により水と分離する。請求項5に係る発明では、抽出
器で水溶性油を取除いた水を温度500〜900℃、圧
力25〜40MPaに昇温昇圧して反応器の第2反応領
域に供給して、水を再利用する。
In the invention according to claim 4, the water-soluble oil dissolved in water separated by the separator is solvent-extracted by the extractor to obtain water-soluble oil. Methyl isobutyl ketone, diethyl ether, N-butyl acetate, diisobutyl ether, etc. are added as a solvent to the water-soluble oil dissolved in the water in the extractor, and when the water-soluble oil is moved into the solvent and left standing, it is separated from water by the difference in specific gravity. To do. In the invention according to claim 5, the water from which the water-soluble oil has been removed in the extractor is heated to a temperature of 500 to 900 ° C. and a pressure of 25 to 40 MPa and supplied to the second reaction region of the reactor to supply water. Reuse.

【0012】図1に本発明の一実施形態である炭化水素
資源の転換装置を示す。炭化水素資源は炭化水素スラリ
ーの形態で予熱器11に供給される。必要に応じてアル
カリ触媒が添加される。予熱器11で炭化水素スラリー
は100〜150℃程度に加熱される。加熱されたスラ
リーはポンプ12により25〜40MPaの圧力に高め
られ、反応器13の380〜500℃の温度に保持され
ている第1反応領域14に送られる。第1反応領域14
でスラリー中の炭化水素資源は一次分解され、水不溶性
油と水に溶解した水溶性油とを生成する。炭化水素資源
が石炭の場合、第1反応領域14において高温高圧状態
の石炭スラリーに対して、石炭の加水分解反応、石
炭の熱分解反応及び水素添加反応が起ると考えられ
る。即ち、高温水中では、石炭中の水素結合等の非共有
性の結合が解離し、石炭が膨張する。これにより石炭の
分解液化反応がより有効に進行する。石炭の加水分解
反応では、石炭のベンゼン環をつないでいるヘテロ元素
部分にH2OのOH-及びH+が付加され、石炭が低分子
化される。石炭の熱分解反応では、石炭が単純に熱分
解し低分子化する。更に水素添加反応では、上記の
反応中に生成したラジカルにHが付加し、これにより熱
分解種が安定する。また熱分解しない安定な分子と水素
との反応も生じる。ここで加水分解により生成した水酸
基、カルボン酸基にも水素添加反応が起こり得るが、上
記ラジカルへの水素反応の方が優位に起こる。上記〜
の反応は個別的に行われず、互いに併発して複合的に
行われ、石炭の軽質化が進行する。このようにして石炭
が分解されて軽質化され、水不溶性油と水に溶解した水
溶性油とに転換される。
FIG. 1 shows a hydrocarbon resource converter according to an embodiment of the present invention. The hydrocarbon resource is supplied to the preheater 11 in the form of a hydrocarbon slurry. An alkali catalyst is added if necessary. The hydrocarbon slurry is heated to about 100 to 150 ° C. in the preheater 11. The heated slurry is increased in pressure to 25 to 40 MPa by the pump 12 and sent to the first reaction region 14 of the reactor 13 which is maintained at a temperature of 380 to 500 ° C. First reaction area 14
Thus, the hydrocarbon resources in the slurry are primarily decomposed to produce a water-insoluble oil and a water-soluble oil dissolved in water. When the hydrocarbon resource is coal, it is considered that a hydrolysis reaction of coal, a thermal decomposition reaction of coal, and a hydrogenation reaction occur with respect to the coal slurry in a high temperature and high pressure state in the first reaction region 14. That is, in high-temperature water, non-covalent bonds such as hydrogen bonds in coal are dissociated, and coal expands. Thereby, the decomposition and liquefaction reaction of coal proceeds more effectively. In the hydrolysis reaction of coal, OH and H + of H 2 O are added to the hetero element portion connecting the benzene ring of coal to lower the molecular weight of coal. In the thermal decomposition reaction of coal, the coal is simply thermally decomposed into low molecular weight compounds. Further, in the hydrogenation reaction, H is added to the radicals generated during the above reaction, which stabilizes the thermally decomposed species. In addition, a reaction occurs between hydrogen and a stable molecule that is not thermally decomposed. Here, a hydrogenation reaction may occur also in a hydroxyl group and a carboxylic acid group generated by hydrolysis, but the hydrogen reaction to the above radical occurs predominantly. the above~
The reactions are not carried out individually but in parallel with each other, and the coal lightening progresses. In this way, the coal is decomposed, lightened, and converted into a water-insoluble oil and a water-soluble oil dissolved in water.

【0013】第1反応領域14で生成したスラリーの分
解物は水不溶性油と水に溶解した水溶性油と残渣であ
る。この残渣は第1反応領域14に連通して設けられた
反応器13の500〜900℃の温度に保持されている
第2反応領域15に移行する。15aは加熱器である。
ここでスラリーに含まれていたアルカリ触媒、残渣中に
含まれている無機物及び後述する灰分中の無機物を触媒
として、残渣は熱分解して水素を主成分とするガスを生
成する。この水素を主成分とするガスは上方の第1反応
領域14に移行して第1反応領域14内でのスラリーの
転換反応及び水添反応に使用される。第2反応領域15
で反応の結果生じた灰分の一部はガスの生成反応の触媒
として利用され、残りは反応器13の底部から抜出され
る。
The decomposed products of the slurry produced in the first reaction zone 14 are a water-insoluble oil, a water-soluble oil dissolved in water and a residue. This residue is transferred to the second reaction region 15 of the reactor 13 provided in communication with the first reaction region 14 and maintained at a temperature of 500 to 900 ° C. 15a is a heater.
Here, the residue is thermally decomposed to generate a gas containing hydrogen as a main component, using the alkaline catalyst contained in the slurry, the inorganic matter contained in the residue and the inorganic matter contained in the ash described later as a catalyst. The gas containing hydrogen as a main component moves to the upper first reaction region 14 and is used for a slurry conversion reaction and a hydrogenation reaction in the first reaction region 14. Second reaction region 15
Part of the ash generated as a result of the reaction is used as a catalyst for the gas generation reaction, and the rest is withdrawn from the bottom of the reactor 13.

【0014】残渣を除く水素を主成分とするガスと水不
溶性油と水に溶解した水溶性油を含む混合物はバルブ1
6を通って分離器17に至り、ここで水素を主成分とす
るガスと水不溶性油と水に溶解した水溶性油にそれぞれ
分離される。分離器17で分離された水素を主成分とす
るガスはバルブ18を通って、水不溶性油はバルブ19
を通って水添反応器20に供給される。水添反応器20
には更にモリブデン触媒が添加される。ここで400〜
500℃の温度下、10〜30MPaの圧力で反応させ
て水不溶性油をBTX等を主成分とするオイルに転換す
る。水添反応器20からは水素を主成分とするガスと軽
質油が取出される。分離器17で分離された水に溶解し
た水溶性油はバルブ21を通って抽出器22に供給され
る。ここでジエチルエーテル、メチルイソブチルケトン
等の溶媒を添加してフェノール類、有機酸等の水溶性油
を抽出する。抽出器22で水溶性油が抽出された残部の
水はポンプ23で25〜40MPaの圧力に昇圧された
後、予熱器24に供給されて500〜900℃程度に加
熱され、次いで25〜30MPaの圧力で600〜70
0℃の温度に保持されている反応器13の第2反応領域
15に圧送される。
A mixture containing a gas containing hydrogen as a main component excluding a residue, a water-insoluble oil, and a water-soluble oil dissolved in water is a valve 1
6 to reach a separator 17, where it is separated into a gas containing hydrogen as a main component, a water-insoluble oil, and a water-soluble oil dissolved in water. The gas containing hydrogen as a main component separated by the separator 17 passes through the valve 18, and the water-insoluble oil is discharged through the valve 19.
And is supplied to the hydrogenation reactor 20. Hydrogenation reactor 20
A molybdenum catalyst is further added to. 400-
The water-insoluble oil is converted into an oil containing BTX or the like as a main component by reacting at a temperature of 500 ° C. and a pressure of 10 to 30 MPa. From the hydrogenation reactor 20, a gas containing hydrogen as a main component and a light oil are taken out. The water-soluble oil dissolved in water separated by the separator 17 is supplied to the extractor 22 through the valve 21. Here, a solvent such as diethyl ether or methyl isobutyl ketone is added to extract a water-soluble oil such as phenols and organic acids. The remaining water from which the water-soluble oil has been extracted by the extractor 22 is boosted to a pressure of 25 to 40 MPa by the pump 23, then supplied to the preheater 24 and heated to about 500 to 900 ° C., and then 25 to 30 MPa. 600-70 by pressure
It is fed under pressure to the second reaction region 15 of the reactor 13 which is maintained at a temperature of 0 ° C.

【0015】[0015]

【発明の効果】以上述べたように、本発明によれば、温
度380〜500℃、圧力25〜40MPaの反応器の
第1反応領域で炭化水素資源と水とを反応させて炭化水
素資源を一次分解することにより水不溶性油と水に溶解
した水溶性油とを生成し、温度500〜900℃、圧力
25〜40MPaの反応器の第2反応領域で上記一次分
解により生成した残渣と水とを反応させて水素を主成分
とするガスを生成するようにしたので、複雑なプロセス
を要することなく、高い転換率で炭化水素資源から水
素、軽質油及び水溶性生成油を製造することが可能とな
る。
As described above, according to the present invention, the hydrocarbon resource is reacted with water in the first reaction zone of the reactor having a temperature of 380 to 500 ° C. and a pressure of 25 to 40 MPa to generate the hydrocarbon resource. Water-insoluble oil and water-soluble oil dissolved in water are produced by primary decomposition, and the residue and water produced by the primary decomposition in the second reaction zone of the reactor at a temperature of 500 to 900 ° C. and a pressure of 25 to 40 MPa. It is possible to produce hydrogen, light oil, and water-soluble product oil from hydrocarbon resources at a high conversion rate without requiring a complicated process because it is made to react with and produce a gas containing hydrogen as a main component. Becomes

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の炭化水素資源の転換装置の構成図。FIG. 1 is a configuration diagram of a hydrocarbon resource conversion device of the present invention.

【符号の説明】[Explanation of symbols]

11 予熱器 13 反応器 14 第1反応領域 15 第2反応領域 17 分離器 20 水添反応器 22 抽出器 24 予熱器 11 Preheater 13 reactor 14 First reaction area 15 Second reaction area 17 Separator 20 Hydrogenation reactor 22 Extractor 24 Preheater

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭58−42689(JP,A) 特開 平10−237458(JP,A) 特開 平10−237459(JP,A) (58)調査した分野(Int.Cl.7,DB名) C10J 3/46 C01B 3/32 C10G 11/20 ─────────────────────────────────────────────────── ─── Continuation of front page (56) Reference JP-A-58-42689 (JP, A) JP-A-10-237458 (JP, A) JP-A-10-237459 (JP, A) (58) Field (Int.Cl. 7 , DB name) C10J 3/46 C01B 3/32 C10G 11/20

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 温度380〜500℃で圧力25〜40
MPaの第1反応領域(14)と、温度500〜900℃で
圧力25〜40MPaの第2反応領域(15)を有する反応
器(13)で炭化水素資源を転換する方法であって、 前記反応器(13)の第1反応領域(14)で炭化水素資源と水
とを反応させて前記炭化水素資源を一次分解することに
より水不溶性油と水に溶解した水溶性油とを生成し、 前記反応器(13)の第2反応領域(15)で前記一次分解によ
り生成した残渣と水とを反応させて水素を主成分とする
ガスを生成することを特徴とする炭化水素資源の転換方
法。
1. A pressure of 25 to 40 at a temperature of 380 to 500 ° C.
A method for converting a hydrocarbon resource in a reactor (13) having a first reaction zone (14) of MPa and a second reaction zone (15) at a temperature of 500 to 900 ° C and a pressure of 25 to 40 MPa, the reaction comprising: In the first reaction region (14) of the vessel (13), a hydrocarbon resource and water are reacted to primary decompose the hydrocarbon resource to produce a water-insoluble oil and a water-soluble oil dissolved in water, A method for converting a hydrocarbon resource, characterized in that in the second reaction zone (15) of the reactor (13), the residue produced by the primary decomposition is reacted with water to produce a gas containing hydrogen as a main component.
【請求項2】 反応器(13)の第2反応領域(15)で一次分
解により生成した残渣と水とをアルカリ触媒とともに反
応させて水素を主成分とするガスを生成する請求項1記
載の炭化水素資源の転換方法。
2. The gas containing hydrogen as a main component according to claim 1, wherein the residue produced by primary decomposition and water in the second reaction region (15) of the reactor (13) are reacted with an alkali catalyst to produce a gas containing hydrogen as a main component. Conversion method of hydrocarbon resources.
【請求項3】 反応器(13)の第1反応領域(14)で一次分
解した生成物及び第2反応領域(15)で生成した水素を主
成分とするガスを分離器(17)により水素を主成分とする
ガスと水不溶性油と水に溶解した水溶性油とに分離し、 前記分離器(17)でそれぞれ分離された水不溶性油と水素
を主成分とするガスを触媒とともに水添反応器(20)で4
00〜500℃の温度下、10〜30MPaの圧力で反
応させて前記水不溶性油を軽質油に転換する請求項1又
は2記載の炭化水素資源の転換方法。
3. A separator (17) is used to produce a gas containing hydrogen as a main component, which is primarily decomposed in the first reaction zone (14) of the reactor (13) and hydrogen produced in the second reaction zone (15). Is separated into a gas containing water as a main component, a water-insoluble oil and a water-soluble oil dissolved in water, and the gas containing the water-insoluble oil and hydrogen separated by the separator (17) is hydrogenated together with a catalyst. 4 in the reactor (20)
The method for converting a hydrocarbon resource according to claim 1 or 2, wherein the water-insoluble oil is converted into a light oil by reacting at a pressure of 10 to 30 MPa at a temperature of 00 to 500 ° C.
【請求項4】 分離器(17)で分離された水に溶解した水
溶性油を抽出器(22)で溶媒抽出して水溶性油を得る請求
項3記載の炭化水素資源の転換方法。
4. The method for converting a hydrocarbon resource according to claim 3, wherein the water-soluble oil dissolved in water separated by the separator (17) is solvent-extracted by the extractor (22) to obtain a water-soluble oil.
【請求項5】 抽出器(22)で水溶性油を取除いた水を温
度500〜900℃、圧力25〜40MPaに昇温昇圧
して反応器(13)の第2反応領域(15)における反応に使用
する請求項4記載の炭化水素資源の転換方法。
5. The water in which water-soluble oil is removed in the extractor (22) is heated to a temperature of 500 to 900 ° C. and a pressure of 25 to 40 MPa to raise the pressure in the second reaction region (15) of the reactor (13). The method for converting a hydrocarbon resource according to claim 4, which is used in a reaction.
JP36940598A 1998-12-25 1998-12-25 How to convert hydrocarbon resources Expired - Fee Related JP3440990B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36940598A JP3440990B2 (en) 1998-12-25 1998-12-25 How to convert hydrocarbon resources

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36940598A JP3440990B2 (en) 1998-12-25 1998-12-25 How to convert hydrocarbon resources

Publications (2)

Publication Number Publication Date
JP2000192055A JP2000192055A (en) 2000-07-11
JP3440990B2 true JP3440990B2 (en) 2003-08-25

Family

ID=18494336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36940598A Expired - Fee Related JP3440990B2 (en) 1998-12-25 1998-12-25 How to convert hydrocarbon resources

Country Status (1)

Country Link
JP (1) JP3440990B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001080903A (en) * 1999-09-07 2001-03-27 Emu Tou Emu:Kk Hydrogen generating device
JP2002095953A (en) * 2000-09-21 2002-04-02 Japan Organo Co Ltd Reaction device for supercritical water
JP5324073B2 (en) * 2007-10-05 2013-10-23 Jx日鉱日石エネルギー株式会社 Fuel cell system

Also Published As

Publication number Publication date
JP2000192055A (en) 2000-07-11

Similar Documents

Publication Publication Date Title
JP4243295B2 (en) Low-temperature catalytic gasification apparatus and method for biomass refined fuel
US7425315B2 (en) Method to recapture energy from organic waste
US20020162332A1 (en) Hydrothermal conversion and separation
JP2004534903A (en) How to create clean energy from coal
JP5630626B2 (en) Organic raw material gasification apparatus and method
JP3489478B2 (en) Conversion method of hydrocarbon resources using supercritical water
CA2130019C (en) Process for the preparation of synthesis gas
JP3440990B2 (en) How to convert hydrocarbon resources
JP2001192676A (en) Method for conversion of hydrocarbon resource, etc., in high efficiency
AU740136B2 (en) Removal of soot in a gasification system
JP2006104261A (en) Method for reforming hydrocarbon-based heavy raw material
AU741448B2 (en) Soot filter cake disposal
JP3947894B2 (en) Method and apparatus for producing hydrogen gas, etc.
Elliott Bench Scale Research in Biomass Liquefaction by the CO‐Steam Process
JP4284829B2 (en) Method and apparatus for producing hydrogen gas
JP2006021069A (en) Reaction apparatus using supercritical water
JP2006187750A (en) Sulfate pitch treatment method
JP2005270768A (en) Method for gasifying papermaking sludge and used paper waste and making hydrogen
JPH11246876A (en) Method for generating flammable gas, its device and hybrid power generator using the same gas
JP2003055670A (en) Gasification method for hydrocarbon feedstock
AU2009327009B2 (en) Coal processing method by using characteristic of sub-critical and supercritical water
CN105779020A (en) Coarse coal gas purification and waste heat recovery system and method
JPH10130662A (en) Method for recycling waste into resources
JP3900764B2 (en) Method and apparatus for lightening heavy oil
WO2018039677A1 (en) Methods for the use of ultra-clean char

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030521

LAPS Cancellation because of no payment of annual fees