JP3439179B2 - Laser etching method - Google Patents

Laser etching method

Info

Publication number
JP3439179B2
JP3439179B2 JP2000229884A JP2000229884A JP3439179B2 JP 3439179 B2 JP3439179 B2 JP 3439179B2 JP 2000229884 A JP2000229884 A JP 2000229884A JP 2000229884 A JP2000229884 A JP 2000229884A JP 3439179 B2 JP3439179 B2 JP 3439179B2
Authority
JP
Japan
Prior art keywords
separation groove
laser
film
pattern
distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000229884A
Other languages
Japanese (ja)
Other versions
JP2002043605A (en
Inventor
雅博 黒田
和孝 宇田
良昭 竹内
康弘 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2000229884A priority Critical patent/JP3439179B2/en
Publication of JP2002043605A publication Critical patent/JP2002043605A/en
Application granted granted Critical
Publication of JP3439179B2 publication Critical patent/JP3439179B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術の分野】本発明は光照射により起電
力を発生する複数の光電変換素子を電気的に接続させた
光起電力装置の製造方法において、透明電極膜、非晶質
半導体膜、金属電極膜の平面上で各光電変換領域毎に電
気的に絶縁するための分離溝を形成するレーザーエッチ
ング方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a photovoltaic device in which a plurality of photoelectric conversion elements that generate electromotive force by light irradiation are electrically connected to each other, and a transparent electrode film, an amorphous semiconductor film, The present invention relates to a laser etching method for forming a separation groove for electrically insulating each photoelectric conversion region on a plane of a metal electrode film.

【0002】[0002]

【従来の技術】太陽電池など、基板上で単位の光電変換
素子を分離し且つ基板上で直列に接続するには、電極
膜、発電膜に分離溝を形成する必要がある。近年ではこ
の分離溝を形成する加工方法は細密加工性に優れたレー
ザースクライビング法を用いることにより、溝幅を狭め
て見かけの電池面積あたりの実質の光電変換面積を高
め、総合的な変換効率を高める工夫がなされている。
2. Description of the Related Art In order to separate unit photoelectric conversion elements on a substrate such as a solar cell and connect them in series on the substrate, it is necessary to form a separation groove in an electrode film and a power generation film. In recent years, by using a laser scribing method that is excellent in fine workability as a processing method for forming the separation groove, the groove width is narrowed to increase the actual photoelectric conversion area per apparent battery area, thereby improving the overall conversion efficiency. The device to raise is made.

【0003】例えばこの方法は、波長1.06μmのN
d:YAGレーザーを用い、溝幅が50μm程度になる
ようなビーム径として、加工部分に照射し、被加工膜を
分離溝形成方向に相対的に移動して該レーザービームで
エッチングして溝形成部分の被加工膜を除去する。
For example, in this method, N of wavelength 1.06 μm is used.
d: YAG laser is used to irradiate the processed portion with a beam diameter such that the groove width is about 50 μm, and the film to be processed is relatively moved in the separation groove forming direction and etched by the laser beam to form the groove. The portion of the film to be processed is removed.

【0004】かかる加工法において、レーザー発振器よ
り射出されるビームの光路に垂直な断面のパターンは円
形を呈しており、その直径上のレーザー強度の分布はガ
ウス分布形状であり、中心が最も強く円周辺に向って裾
野を引く釣鐘型の分布をしている。従って、分離溝の幅
に合わせてこのビームをレンズで集光などして計画の径
の円が加工面に結像するようにしても、この分布の形状
は変らない。この様子を図3に示した。
In this processing method, the pattern of the cross section perpendicular to the optical path of the beam emitted from the laser oscillator has a circular shape, and the distribution of the laser intensity on its diameter is a Gaussian distribution shape, and the center has the strongest circle. It has a bell-shaped distribution that draws a skirt toward the periphery. Therefore, the shape of this distribution does not change even if the beam is focused by a lens in accordance with the width of the separation groove to form a circle of a planned diameter on the processing surface. This state is shown in FIG.

【0005】図3(a)において、31は計画した目標
とする分離溝、33は従来のレーザービームでエッチン
グされた分離溝の両岸平面図、32は従来のビームの加
工面におけるパターン、Rはビーム径、図3(b)にお
いてDはAA’面でみた従来のレーザーの強度分布曲
線、Imは強度の最高値、Iは強度の平均値(∫D/
R)、図3(c)において33は従来の分離溝加工断
面、31は計画した目標とする加工断面、F1は被加工
膜、F2は被加工膜の隣接層膜を示す。
In FIG. 3A, reference numeral 31 is a planned target separation groove, 33 is a plan view of both sides of the separation groove etched by the conventional laser beam, 32 is a pattern on the processed surface of the conventional beam, R Is the beam diameter, D in FIG. 3B is the intensity distribution curve of the conventional laser seen on the AA ′ plane, Im is the maximum intensity value, and I is the average intensity value (∫D /
R), in FIG. 3 (c), 33 is a conventional separation groove processing cross section, 31 is a planned target processing cross section, F1 is a film to be processed, and F2 is a layer adjacent to the film to be processed.

【0006】即ち、溝幅の目標(計画)値に応じてビー
ム径Rを設定し、材質及び溝深さに応じてレーザーの強
度を例えば平均値Iで設定して、加工した時ビームは図
3(b)のような強度分布Dを持っているので、加工さ
れた分離溝は(c)33のような断面に仕上がり、目標
通りの断面31には仕上がらない。また分離溝中心線部
分は強度の最高値Imにさらされるので、被加工膜F1
の計画分離溝の底面を突き抜ける。
That is, the beam diameter R is set according to the target (planned) value of the groove width, and the laser intensity is set to, for example, the average value I according to the material and the groove depth. Since it has the intensity distribution D as shown in FIG. 3 (b), the processed separation groove is finished in a cross section like (c) 33, and the finished cross section 31 is not finished. Further, since the center line of the separation groove is exposed to the maximum strength Im, the film F1 to be processed is processed.
Draw through the bottom of the planned separation groove.

【0007】これは隣接層膜F2を熔融変質させ、また
その熔融変質物を溝周辺に付着させる。この現象は次の
工程で分離溝部分で露出した隣接層膜F2へさらに別の
皮膜を積層するとき、密着性を悪くする。
This causes the adjacent layer film F2 to be melt-altered and the melt-altered substance to adhere to the periphery of the groove. This phenomenon deteriorates the adhesion when another film is further laminated on the adjacent layer film F2 exposed in the separation groove portion in the next step.

【0008】また前記分離溝の断面(c)33部分は強
度分布の裾野部分のレーザーに曝されたわけだから、材
質が気化して蒸散するに足る十分なエネルギーが与えら
れない。該被加溝膜が半導体膜の場合は、このエネルギ
ー的には不足部分が、蒸散せずに熔融若しくはアニール
の経過をとり、溝壁面が均質にドープされた部分単結晶
のごとき状態になって残る。即ち、PINジャンクショ
ンが短絡されたような姿となり、素子特性を著しく劣化
させる。
Further, since the section (c) 33 of the separation groove is exposed to the laser at the skirt portion of the intensity distribution, sufficient energy for vaporizing and evaporating the material cannot be given. When the grooved film is a semiconductor film, this energetically lacking portion undergoes melting or annealing without evaporating, and the groove wall surface becomes a state such as a partially doped single crystal. Remain. That is, the PIN junction appears to be short-circuited and the device characteristics are significantly deteriorated.

【0009】[0009]

【発明が解決しようとする課題】本発明はかかる従来技
術の難点に鑑みなされたものであって、透明電極膜、非
晶質半導体膜もしくは金属電極膜にレーザービームを照
射して該膜を平面において分離するための分離溝を形成
する方法において、従来のレーザースクライビング法が
本質的に齎す欠点を克服して、素子特性を劣化させない
光電変換効率のすぐれた光電変換装置を与える、レーザ
ーエッチング法の提供を目的とする。さらには、前記特
性を備え、且つ加工速度の高いレーザーエッチング法の
提供も目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art, and a transparent electrode film, an amorphous semiconductor film or a metal electrode film is irradiated with a laser beam to flatten the film. In the method of forming a separation groove for separating in, the conventional laser scribing method overcomes the disadvantage inherently caused, and provides a photoelectric conversion device with excellent photoelectric conversion efficiency that does not deteriorate the device characteristics. For the purpose of provision. Further, another object is to provide a laser etching method having the above characteristics and having a high processing speed.

【0010】[0010]

【課題を解決するための手段】本発明は照射部のレーザ
ービームパターンが楕円状で該楕円の長軸が分離溝形成
方向中心線に一致したビームに成形した後、該光路に分
離溝方向(ビーム移動方向)に直角な方向のビーム強度
分布の裾野部分を分離溝幅に対応させてカットオフする
カットオフ手段を配置し前記膜上の照射部のレーザービ
ーム強度分布を分離溝形成方向とこれに直角方向で異な
らせ、分離溝方向はガウス分布とし、分離溝形成方向に
直角な方向は略矩形分布とすることを特徴とし、好まし
くは前記カットオフ手段が長方形のスリットであって、
該スリットの長辺方向中心線を該楕円の長軸と一致させ
るとともに、前記楕円状のレーザパターンに対し、スリ
ットの長辺方向を前記レーザパターンの長径より長く、
短辺を前記レーザパターンの短径より狭幅に設定した
とを特徴とする。
SUMMARY OF THE INVENTION The present invention is a laser for an irradiation section.
-The beam pattern is elliptical and the major axis of the ellipse is a separation groove.
After shaping into a beam that matches the direction center line,
Beam intensity in the direction perpendicular to the separation groove direction (beam movement direction)
Cut off the bottom of the distribution according to the separation groove width
A cut-off means is arranged to make the laser beam intensity distribution of the irradiation portion on the film different in the separation groove forming direction and the direction perpendicular thereto, and the separation groove direction is Gaussian distribution, and the direction perpendicular to the separation groove forming direction is substantially rectangular. Characterized by having a distribution, preferably the cut-off means is a rectangular slit,
Align the long side center line of the slit with the long axis of the ellipse.
The elliptical laser pattern
The longer side direction of the longer than the major axis of the laser pattern,
The short side is set to be narrower than the short diameter of the laser pattern .

【0011】周知のように、かかる加工では、利用する
レーザーは時間軸に関してパルス状に照射を繰り返す、
そして1パルスごとに移動ストロークとタイミングを制
御して、分離溝形成方向にビームを相対的に移動してい
く。そして前記したように、ビームの断面もしくは照射
面は円もしくはそれに近い外周をもっているので、溝形
成方向のエッチングを加工深さを均一にしかも設定深さ
まで行うには、移動方向でビームパターンの頭尾を若干
重ね合わせて移動する。よって重ね合わせ部分のレーザ
強度は前後ビームのその部分の合成値になるので、強く
なる。ここが限度以上につよいことはやはり突きぬけ現
象につながり好ましくないので、本発明ではむしろ移動
方向のパターン輪郭近傍は輪郭近傍に向かって減衰する
強度分布即ち通常のガウス分布を有していたほうが好ま
しい。上記のビームの重ねあわせについては、通常移動
方向のビーム長さの10〜20%であるが、下地膜への
影響を低減するため、エッチング対象の膜の除去に必要
なレーザエネルギ密度よりレーザ出力を低減させ、ビー
ムの重ねあわせを50%以上として、同一場所に2〜5
回の照射を行なうことが多い。この場合、移動方向にガ
ウシアン分布を有していた方が、最初に弱い強度のビー
ム部分が照射され、次第に強い部分が照射されるので、
下地膜への影響が小さくて済み大変好都合である。
As is well known, in such processing, the laser to be used repeats pulsed irradiation with respect to the time axis,
The movement stroke and timing are controlled for each pulse to relatively move the beam in the separation groove forming direction. As described above, since the beam cross section or irradiation surface has a circle or an outer periphery close to it, in order to perform etching in the groove forming direction uniformly at the processing depth and up to the set depth, the head and tail of the beam pattern in the moving direction should be used. Move with a slight overlap. Therefore, the laser intensity of the superposed portion becomes the combined value of that portion of the front and rear beams, and becomes stronger. Since it is not preferable that this is more than the limit, which leads to a penetration phenomenon, it is preferable in the present invention that the vicinity of the pattern contour in the moving direction has an intensity distribution that attenuates toward the vicinity of the contour, that is, a normal Gaussian distribution. The above-mentioned beam superposition is usually 10 to 20% of the beam length in the moving direction, but in order to reduce the influence on the underlying film, the laser output is higher than the laser energy density required for removing the film to be etched. 2 to 5 in the same place by reducing the beam overlap and setting the beam overlap to 50% or more.
Often times irradiation is performed. In this case, if the Gaussian distribution is present in the moving direction, the beam portion of weak intensity is first irradiated and then the strong portion is gradually irradiated.
This is very convenient because it has a small effect on the underlying film.

【0012】一方、移動方向即ち分離溝方向とは直角な
方向のビームパターンの強度分布を、分離溝両岸におい
て急峻に下降し、しかも該直角な方向の平均エネルギー
が分布の最高値に近い分布形にしておけば、前記従来技
術で遭遇したような難点、即ち、ビームパターン強度分
布max部分(中央)における突き抜け現象や分離溝両
岸における未蒸散変質部分の残存現象を有効に防ぐこと
ができるのである。即ち本発明ではその分布形を矩形に
近い分布とするのである。
On the other hand, the intensity distribution of the beam pattern in the direction of movement, that is, in the direction perpendicular to the separation groove direction, drops sharply on both sides of the separation groove, and the average energy in the perpendicular direction is close to the maximum value of the distribution. With the shape, it is possible to effectively prevent the difficulties as encountered in the above-mentioned prior art, that is, the phenomenon of penetration in the beam pattern intensity distribution max portion (center) and the phenomenon of remaining untranspirationd altered portions on both sides of the separation groove. Of. That is, in the present invention, the distribution form is a distribution close to a rectangle.

【0013】更に本発明は照射部のレーザービームパタ
ーンが楕円状で該楕円の長軸が分離溝形成方向中心線に
一致したビームに成形した後、該光路に分離溝方向に直
角な方向のビーム強度分布の裾野部分をカットオフする
カットオフ手段を配置したことも特徴とする。
Further, according to the present invention, after the laser beam pattern of the irradiation portion is elliptical and the major axis of the ellipse is shaped into a beam which coincides with the center line of the separation groove forming direction, a beam in a direction perpendicular to the separation groove direction is formed in the optical path. It is also characterized in that a cutoff means for cutting off the skirt portion of the intensity distribution is arranged.

【0014】本発明者等はかかるレーザースクライビン
グ法におけるレーザービームの照射パターンを楕円とす
る方法を別に提案している。これによると、同一エネル
ギー密度でありながら加工方向のビームの照射描画長が
長くなって、加工速度が速くなるというものだが、本発
明も該法を採用した上で、本発明の必要とする、直角方
向の分布を該楕円の長径を弦とする弧の部分を分離溝両
岸で切断することにした。
The present inventors have separately proposed a method of making the irradiation pattern of the laser beam in the laser scribing method into an ellipse. According to this, the irradiation drawing length of the beam in the processing direction is increased while the energy density is the same, and the processing speed is increased. However, the present invention also employs the method, and is required by the present invention. For the distribution in the perpendicular direction, the arc portion having the major axis of the ellipse as the chord is cut at both sides of the separation groove.

【0015】これにより、加工方向ではビーム強度の分
布はガウスであり、該方向直角では矩形に近い分布とな
り、しかも加工速度は速い方法となる。
As a result, the beam intensity distribution in the processing direction is Gaussian, and the beam intensity distribution is close to a rectangle at the right angle, and the processing speed is high.

【0016】更に本発明は前記カットオフ手段が長方形
のスリットであって、該スリットの長辺方向中心線を該
楕円の長軸と一致させたことも特徴とする。
Further, the present invention is also characterized in that the cut-off means is a rectangular slit, and the center line of the slit in the long side direction coincides with the long axis of the ellipse.

【0017】即ちカットオフ手段の一つとして、本発明
では長方形の開口を持った遮光板などのスリットを光路
に置き、ガウス分布裾野部分のビームをカットし、直角
方向では強度がその分離溝両岸においてシャープにカッ
トオフされた分布とする。開口幅は分離溝幅によって決
まってくる値である。
That is, as one of the cut-off means, in the present invention, a slit such as a light-shielding plate having a rectangular opening is placed in the optical path to cut the beam at the foot of the Gaussian distribution, and the intensity in the right-angled direction is the separation groove. The distribution is sharply cut off on the shore. The opening width is a value determined by the separation groove width.

【0018】本発明は更に、前記レーザービームの楕円
状パターンはレーザービーム光路にシリンドリカルレン
ズを配置して創出することも特徴とする。即ち、レーザ
ー発振器から出たビームを一旦シリンドリカル凹レンズ
で発散させ、設定の長径短径比となったところで、シリ
ンドリカル凸レンズで平行光線とするのである。
The present invention is further characterized in that the elliptical pattern of the laser beam is created by arranging a cylindrical lens in the optical path of the laser beam. That is, the beam emitted from the laser oscillator is once diverged by the cylindrical concave lens, and when the ratio of the major axis and the minor axis is reached, the beam is made parallel by the cylindrical convex lens.

【0019】[0019]

【発明の実施の形態】以下に本発明の実施の形態を図面
を参照しながら例示的に詳しく説明する。但し、この実
施の形態に記載される構成装置の種類、形状、その相対
配置などは特に特定的な記載が無い限りはこの発明の範
囲をそれのみに限定する趣旨ではなく単なる説明例に過
ぎない。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be exemplarily described in detail below with reference to the drawings. However, the types, shapes, relative arrangements, etc. of the constituent devices described in this embodiment are merely examples of explanation, not the intention to limit the scope of the present invention thereto, unless otherwise specified. .

【0020】図2は本発明の方法に用いたレーザーエッ
チング装置である。21はYAGレーザー発振器、22
はレーザービーム、23はシリンドリカル凹レンズ、2
4はシリンドリカル凸レンズ、25はミラー、26は対
物レンズ、27は基板、28はスリット、29はXYス
テージである。
FIG. 2 shows a laser etching apparatus used in the method of the present invention. 21 is a YAG laser oscillator, 22
Is a laser beam, 23 is a cylindrical concave lens, 2
4 is a cylindrical convex lens, 25 is a mirror, 26 is an objective lens, 27 is a substrate, 28 is a slit, and 29 is an XY stage.

【0021】YAGレーザー発振器21からは被加工膜
の材質に適した波長で、被加工膜材質および分離溝深
さ、分離溝幅Rに適した出力のレーザー、例えば10k
Hz周波数のパルス波を取り出す。該レーザービームは
シリンドリカル凹レンズ23、シリンドリカル凸レンズ
24によってビーム断面楕円状に成形される。該ビーム
は長辺方向を楕円長軸方向と一致させ、その中心線を合
わせた長方形スリット28をその光軸の中央に置いてビ
ーム周辺のガウス分布裾野部をカットする。このビーム
はミラー25で方向を90度変え、対物レンズ26によ
って基板27上被加工膜面に結像させる。而して、XY
ステージ29を分離溝形成方向にビームが進行するよう
に相対的に、パルス周波数とパターン重畳度に応じた速
度と移動距離で移動し、分離溝形成加工を達成する。
A laser having a wavelength suitable for the material of the film to be processed from the YAG laser oscillator 21 and an output suitable for the material of the film to be processed, the separation groove depth, and the separation groove width R, for example, 10 k
Extract a pulse wave of Hz frequency. The laser beam is shaped by the cylindrical concave lens 23 and the cylindrical convex lens 24 into an elliptical beam cross section. The long side direction of the beam coincides with the ellipse long axis direction, and a rectangular slit 28 with its center line aligned is placed at the center of the optical axis to cut the Gaussian distribution skirt around the beam. The direction of this beam is changed by 90 degrees by the mirror 25, and an image is formed on the surface of the film to be processed on the substrate 27 by the objective lens 26. Then, XY
The stage 29 is moved relatively at a speed and a moving distance according to the pulse frequency and the pattern superimposition degree so that the beam advances in the separation groove forming direction, and the separation groove forming process is achieved.

【0022】図1は図2の装置を用いて行った本発明の
方法1実施例において、(a)は楕円状ビームパターン
光路上に長方形スリットを配置したところを光路の後方
から見た図である。10はスリットのパターン、12は
楕円状ビームパターンである。12は後述するシリンド
リカルレンズ系でビームパターンを成形して得る。10
は遮光板に図示のような開口部を設けたものである。
FIG. 1 is a view of a first embodiment of the method of the present invention carried out by using the apparatus of FIG. 2, in which a rectangular slit is arranged on the optical path of an elliptical beam pattern as viewed from the rear of the optical path. is there. Reference numeral 10 is a slit pattern, and 12 is an elliptical beam pattern. 12 is obtained by forming a beam pattern with a cylindrical lens system described later. 10
Is a light-shielding plate provided with an opening as shown.

【0023】(b)は上記の光学系で得られた、分離溝
形成方向に垂直な方向(AA‘断面)で分布裾野部をカ
ットオフしたビームパターンを用いて分離溝をスクライ
ビングしいるところを示した。11は計画分離溝岸、1
3は加工ずみ分離溝岸、Rは分離溝幅、矢印は該ビーム
パターンが相対的に移動する方向を示す。図には該レー
ザービームの1パルス分しか図示してないが、このパル
ス状に発するビームの前後を20%ずつ重ねてビームを
移動させた。
(B) shows that the separation groove is scribed using the beam pattern obtained by the above optical system and having the distribution skirt cut off in the direction (AA 'cross section) perpendicular to the separation groove forming direction. Indicated. 11 is the plan separation Mizogishi, 1
Reference numeral 3 indicates a processed separation groove bank, R indicates a separation groove width, and an arrow indicates a direction in which the beam pattern relatively moves. Although only one pulse of the laser beam is shown in the figure, the beam is moved by overlapping the front and rear of the pulsed beam by 20%.

【0024】(c)は上記パターンをAA‘断面でその
強度分布Dを見たところで、分布強度曲線中央部分には
未だ、ガウス曲線が残るが、分離溝岸では殆ど垂直に急
峻な強度下降をする、本発明の略矩形分布であることを
示す。従って分離溝幅R内では望ましい強度である平均
値内外の強度を保つので、前記した突き抜け現象は起き
ていない。その様子を(d)に示す。
In (c), when the intensity distribution D of the above pattern in the AA 'cross section is viewed, a Gaussian curve still remains in the central portion of the distribution intensity curve, but a sharp intensity drop occurs almost vertically on the separation trench. It shows that the distribution is substantially rectangular according to the present invention. Therefore, within the separation groove width R, the strength within the average value, which is the desired strength, is maintained, so that the punch-through phenomenon does not occur. This is shown in (d).

【0025】図1(d)でF1は被加工膜、F2は隣接
層膜であって、被加工膜F1ではシャープなスクライビ
ングができ、隣接層膜F2には影響が及んでいないこと
がわかる。従って、隣接層膜F2の欠陥部分もなく、隣
接層膜F2の溶融残滓の付着もないので、その後の工程
で形成する膜の密着度が良くなった。そして、分離溝岸
における強度の急峻な変化は、半導体層のマイグレーシ
ョンを防いだ。かくして、基板上に電極膜、半導体層膜
をオーバーレイ、スクライビングを交互に繰り返して得
た光電変換領域が直列に接続した光電変換装置の光電変
換効率は良好なものであった。
In FIG. 1D, F1 is the film to be processed, F2 is the adjacent layer film, and it can be seen that sharp scribing is possible with the film to be processed F1 and the adjacent layer film F2 is not affected. Therefore, since there is no defective portion of the adjacent layer film F2 and adhesion of the molten residue of the adjacent layer film F2, the adhesion of the film formed in the subsequent step is improved. Then, the sharp change in the strength at the separation trench prevented the migration of the semiconductor layer. Thus, the photoelectric conversion efficiency of the photoelectric conversion device in which the photoelectric conversion regions obtained by alternately repeating the overlaying and scribing of the electrode film and the semiconductor layer film on the substrate were connected in series was good.

【0026】[0026]

【発明の効果】以上説明したように、本発明により従来
のレーザースクライビング法が本質的に齎す欠点を克服
して、素子特性を劣化させない光電変換効率のすぐれた
光電変換装置を与える、レーザーエッチング法の提供を
可能にし、さらには、前記特性を備え、且つ加工速度の
高いレーザーエッチング法の提供も可能にした。
As described above, the laser etching method according to the present invention overcomes the disadvantages inherent in the conventional laser scribing method and provides a photoelectric conversion device having excellent photoelectric conversion efficiency without deteriorating the device characteristics. It is also possible to provide a laser etching method having the above characteristics and having a high processing speed.

【図面の簡単な説明】[Brief description of drawings]

【図1】 (a)は楕円状ビームパターン光路上に長方
形スリットを配置した概念図、(b)は本発明のビーム
パターンを持つレーザービームを照射して分離溝をエッ
チング加工している概念図、(c)は本発明のビームパ
ターンが呈する分離溝直角方向の略矩形状の強度分布を
示す図、(d)は本発明の方法によって加工された分離
溝形状の略図である。
1A is a conceptual diagram in which a rectangular slit is arranged on an optical path of an elliptical beam pattern, and FIG. 1B is a conceptual diagram in which a separation groove is etched by irradiating a laser beam having a beam pattern of the present invention. , (C) is a diagram showing a substantially rectangular intensity distribution in the direction perpendicular to the separation groove exhibited by the beam pattern of the present invention, and (d) is a schematic view of the separation groove shape processed by the method of the present invention.

【図2】 本発明の方法に使用するレーザーエッチング
装置の一例の略図である。
FIG. 2 is a schematic view of an example of a laser etching apparatus used in the method of the present invention.

【図3】 (a)は従来の方法で分離溝をエッチング加
工している該念図、(b)は本発明のビームパターンが
呈する分離溝直角方向の略矩形状の強度分布を示す図、
(c)は従来の方法によって加工された分離溝形状の略
図である。
FIG. 3 (a) is a schematic diagram in which a separation groove is etched by a conventional method, and FIG. 3 (b) is a diagram showing a substantially rectangular intensity distribution in a direction perpendicular to the separation groove, which is exhibited by the beam pattern of the present invention,
(C) is a schematic view of a separation groove shape processed by a conventional method.

【符号の説明】[Explanation of symbols]

10 スリットパターン 11 計画分離溝岸 12 楕円ビームパターン 13 加工後分離溝岸 D 分離溝直角方向のレーザー強度分布 Im 分離溝直角方向のレーザー強度分布における
max値 I 分離溝直角方向のレーザー強度分布における
平均値 R 分離溝幅 F1 被加工膜 F2 隣接層膜 21 YAGレーザー発振器 22 発振レーザービーム 23 シリンドリカル凹レンズ 24 シリンドリカル凸レンズ 25 ミラー 26 対物レンズ 27 被加工物 28 スリット 29 XYステージ 31 計画分離溝岸 32 円形ビームパターン 22 加工後分離溝岸
10 slit pattern 11 planned separation groove bank 12 elliptical beam pattern 13 post-processing separation groove bank D laser intensity distribution Im in the direction perpendicular to the separation groove max value I in laser intensity distribution perpendicular to the separation groove I average in laser intensity distribution in the direction perpendicular to the separation groove Value R Separation groove width F1 Processed film F2 Adjacent layer film 21 YAG laser oscillator 22 Oscillation laser beam 23 Cylindrical concave lens 24 Cylindrical convex lens 25 Mirror 26 Objective lens 27 Workpiece 28 Slit 29 XY stage 31 Planned separation groove bank 32 Circular beam pattern 22 Separation groove after processing

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山内 康弘 長崎市飽の浦町1丁目1番1号 三菱重 工業株式会社長崎造船所内 (56)参考文献 特開 昭62−40986(JP,A) 特開 昭61−259524(JP,A) 特開 平10−52780(JP,A) 特開 平2−137687(JP,A) 特開 昭63−179581(JP,A) 特開 平3−64043(JP,A) 特開 平4−94174(JP,A) 特開2000−124488(JP,A) 特開 昭63−153514(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 31/04 - 31/078 B23K 26/00 - 26/18 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasuhiro Yamauchi 1-1-1, Satinoura-machi, Nagasaki City Mitsubishi Heavy Industries Ltd. Nagasaki Shipyard (56) Reference JP-A-62-40986 (JP, A) JP 61-259524 (JP, A) JP-A 10-52780 (JP, A) JP-A 2-137687 (JP, A) JP-A 63-179581 (JP, A) JP-A 3-64043 (JP , A) JP-A-4-94174 (JP, A) JP-A-2000-124488 (JP, A) JP-A-63-153514 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) ) H01L 31/04-31/078 B23K 26/00-26/18

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 透明基板上に導電性透明電極膜、非晶質
半導体膜、金属電極膜の積層膜を有し、モジュール単位
に基板上で分離され且つ該分離されたモジュールが基板
上で直列に接続された光起電力装置の製造方法におい
て、透明電極膜、非晶質半導体膜もしくは金属電極膜に
レーザービームを照射して該膜を平面において分離する
ための分離溝を形成する方法であって、照射部のレーザービームパターンが楕円状で該楕円の長
軸が分離溝方向中心線に一致したビームに成形した後、
該光路に分離溝方向に直角な方向のビーム強度分布の裾
野部分を分離溝幅に対応させてカットオフするカットオ
フ手段を配置し前記 膜上の照射部のレーザービーム強度
分布を分離溝方向とこれに直角方向で異ならせ、分離溝
形成方向はガウス分布とし、分離溝方向に直角な方向は
略矩形分布とすることを特徴とするレーザーエッチング
方法。
1. A transparent substrate having a laminated film of a conductive transparent electrode film, an amorphous semiconductor film, and a metal electrode film, which is separated on a substrate in module units, and the separated modules are connected in series on the substrate. A method for manufacturing a photovoltaic device connected to a transparent electrode film, an amorphous semiconductor film, or a metal electrode film is irradiated with a laser beam to form a separation groove for separating the film in a plane. And the laser beam pattern of the irradiation part is elliptical and the length of the ellipse is long.
After forming a beam whose axis matches the center line of the separation groove,
The tail of the beam intensity distribution in the direction perpendicular to the separation groove direction in the optical path
A cut-off that cuts off the field part according to the separation groove width.
Means to disperse the laser beam intensity distribution of the irradiation part on the film in the direction of the separation groove and the direction perpendicular to the separation groove.
A laser etching method characterized in that the forming direction is a Gaussian distribution and the direction perpendicular to the separation groove direction is a substantially rectangular distribution.
【請求項2】 前記カットオフ手段が長方形のスリット
であって、該スリットの長辺方向中心線を該楕円の長軸
と一致させるとともに、前記楕円状のレーザパターンに
対し、スリットの長辺方向を前記レーザパターンの長径
より長く、短辺を前記レーザパターンの短径より狭幅に
設定したことを特徴とする請求項記載のレーザーエッ
チング方法。
Wherein said cut-off means is a rectangular slit, the longitudinal direction center line of the slit Rutotomoni to match the long axis of the ellipse, the elliptical laser pattern
In contrast, the longer side of the slit is the major axis of the laser pattern.
Longer, with the shorter side narrower than the shorter diameter of the laser pattern
Laser etching method according to claim 1, wherein the setting the.
JP2000229884A 2000-07-28 2000-07-28 Laser etching method Expired - Fee Related JP3439179B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000229884A JP3439179B2 (en) 2000-07-28 2000-07-28 Laser etching method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000229884A JP3439179B2 (en) 2000-07-28 2000-07-28 Laser etching method

Publications (2)

Publication Number Publication Date
JP2002043605A JP2002043605A (en) 2002-02-08
JP3439179B2 true JP3439179B2 (en) 2003-08-25

Family

ID=18722928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000229884A Expired - Fee Related JP3439179B2 (en) 2000-07-28 2000-07-28 Laser etching method

Country Status (1)

Country Link
JP (1) JP3439179B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1665656A (en) * 2002-07-01 2005-09-07 三星钻石工业股份有限公司 Device and method for scribing substrate of brittle material
JP4646690B2 (en) * 2005-05-10 2011-03-09 ミヤチテクノス株式会社 Gold plating peeling device
JP4648105B2 (en) * 2005-06-21 2011-03-09 三菱重工業株式会社 Solar cell module and method for manufacturing solar cell module
JP2007184421A (en) * 2006-01-06 2007-07-19 Mitsubishi Heavy Ind Ltd Solar cell module and method of manufacturing same
JP2007273843A (en) * 2006-03-31 2007-10-18 Fujifilm Corp Deposition method, semiconductor layer, and semiconductor device
JP2007294878A (en) * 2006-03-31 2007-11-08 Fujifilm Corp Semiconductor layer, depositing method, semiconductor light emitting device and semiconductor luminescent device
JP5536344B2 (en) * 2009-01-09 2014-07-02 株式会社ディスコ Laser processing equipment
KR101065769B1 (en) * 2009-05-27 2011-09-19 고려대학교 산학협력단 Laser ablation apparatus and Method for manufacturing opening using it
WO2011093431A1 (en) 2010-01-29 2011-08-04 京セラ株式会社 Photoelectric conversion device and method for manufacturing the same
WO2012147200A1 (en) * 2011-04-28 2012-11-01 三菱電機株式会社 Laser processing apparatus and method
JP2013116488A (en) * 2011-12-04 2013-06-13 Kiyoyuki Kondo Beam machining apparatus and method for machining substrate using the same

Also Published As

Publication number Publication date
JP2002043605A (en) 2002-02-08

Similar Documents

Publication Publication Date Title
KR101333518B1 (en) Laser machining method, laser cutting method, and method for dividing structure having multilayer board
KR101282509B1 (en) Laser beam machining method and semiconductor chip
JP3439179B2 (en) Laser etching method
US5922224A (en) Laser separation of semiconductor elements formed in a wafer of semiconductor material
TWI248244B (en) System and method for cutting using a variable astigmatic focal beam spot
US9786562B2 (en) Method and device for cutting wafers
CN104334312A (en) Laser scribing with extended depth affectation into a workpiece
JP5614738B2 (en) Substrate processing method
US20130256286A1 (en) Laser processing using an astigmatic elongated beam spot and using ultrashort pulses and/or longer wavelengths
JP2007184421A (en) Solar cell module and method of manufacturing same
JP4298953B2 (en) Laser gettering method
JP5645000B2 (en) Substrate processing method
JPH10258383A (en) Linear laser beam optical system
WO2010070940A1 (en) Laser processing apparatus, laser processing method and photo-electromotive force apparatus manufacturing method
JP3676202B2 (en) Method for manufacturing photovoltaic device
JP2013232581A (en) Method for manufacturing photovoltaic device and photovoltaic device
JP2006312185A (en) Working method and working apparatus using laser beams
JPH0688149B2 (en) Light processing method
JP4764989B2 (en) Laser processing method
JP3830831B2 (en) Laser processing method
TW201446378A (en) Laser processing using an astigmatic elongated beam spot and using ultrashort pulses and/or longer wavelengths
JP3869736B2 (en) Laser processing method and multilayer wiring board
JP2013105850A (en) Method for manufacturing solar cell
JP2008270560A (en) Working method of laminate and laminate
JP2003236690A (en) Laser beam machining method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030527

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090613

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100613

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100613

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees