JP3434139B2 - Gas rectifier using dummy tube - Google Patents

Gas rectifier using dummy tube

Info

Publication number
JP3434139B2
JP3434139B2 JP24465996A JP24465996A JP3434139B2 JP 3434139 B2 JP3434139 B2 JP 3434139B2 JP 24465996 A JP24465996 A JP 24465996A JP 24465996 A JP24465996 A JP 24465996A JP 3434139 B2 JP3434139 B2 JP 3434139B2
Authority
JP
Japan
Prior art keywords
boiler
tube
superheater
gas
inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24465996A
Other languages
Japanese (ja)
Other versions
JPH1089609A (en
Inventor
真也 麻生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP24465996A priority Critical patent/JP3434139B2/en
Publication of JPH1089609A publication Critical patent/JPH1089609A/en
Application granted granted Critical
Publication of JP3434139B2 publication Critical patent/JP3434139B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Incineration Of Waste (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明はボイラに適用される
ダミー管を利用したガス整流装置に関する。 【0002】 【従来の技術】図5は、ガス整流対策を施した従来のボ
イラの縦断面図である。図において、1はボイラケーシ
ング、2は蒸発器管、3は過熱器管、5はボイラケーシ
ングと煙突の取合部、6は過熱器管入口部、7は蒸発器
管入口部、8はガイドベーン、9はボイラ入口部であ
る。 【0003】上記の構成において、ボイラ入口部9より
ボイラ内へ水平方向に入ってきた燃焼ガスは、ボイラケ
ーシング1の形状により90°向きを変え、ボイラ中を
垂直上方向に流れる。その後、過熱器管3そして蒸発器
管2を通過する時に過熱器管3及び蒸発器管2の内部を
流れる蒸気及び水と熱交換され、その後ボイラケーシン
グと煙突取合部5から排ガスとして、煙突を通って外部
へ排出される。 【0004】燃焼ガスが過熱器管3及び蒸発器管2を通
過時、熱交換を充分に行い、ボイラの性能である水の蒸
発量及び発生した蒸気の温度と圧力を計画通り確保する
ためには、過熱器管入口部6及び蒸発器管入口部7での
ボイラの断面での燃焼ガスの流速が均等であることが必
要である。そのため、従来のボイラでは、燃焼ガスが水
平方向から垂直方向に90°変わる部分にガイドベーン
8を配置し、過熱器管入口部6における断面での燃焼ガ
スの流速を均等にしている。 【0005】しかしながら、ガイドベーン8は、燃焼ガ
スの流動による振動の発生あるいは、熱膨張により長期
間の運転の間に損傷が発生するという欠点がある。一
方、ガイドベーン8を配置しないと過熱器管入口部6の
断面での燃焼ガスの流速のアンバランスが大きく、ボイ
ラの性能が確保されない結果となる。 【0006】 【発明が解決しようとする課題】前述のように、燃焼ガ
スの流れ方向が過熱器管の入口部直前で90°向きを変
える形状の従来のボイラにおいて整流対策としてガイド
ベーン8を設けると、ガイドベーン8は振動、熱膨張、
等により長期間の運転の間に損傷が発生する。 【0007】本発明は上記の課題を解決するため、この
ような損傷の発生しやすいガイドベーンを配置しなくて
も、過熱器管入口部の断面に於いて、燃焼ガスの流速分
布を均等にすることのできるガス整流装置を提供しよう
とするものである。 【0008】 【課題を解決するための手段】そのため、本発明は、蒸
発器管と過熱器管とを有し、過熱器管入口部より燃焼ガ
スを流入するボイラの前記過熱器管入口部に同過熱器管
と同じ外径を有し、同じピッチ、同じ配列形状の千鳥配
列で並べた熱交換を行わない管を備えたことを特徴とす
るダミー管を利用したガス整流装置を提供する。 【0009】上記の本発明のダミー管を利用したガス整
流装置においては、ボイラに入ってきた燃焼ガスは、過
熱器管の入口直前でボイラケーシングの形状により90
°流れの向きを変えられる。この時、燃焼ガスの流れは
入口部において従来技術のガイドベーンが配置されない
ため、大きな乱れを生じ、その後のボイラ断面に於い
て、燃焼ガスの流速分布に大きなアンバランスが生じ
る。この大きな流速分布のアンバランスを持った燃焼ガ
スの流れは、過熱器管の手前に配置されたダミー管を通
過する。 【0010】燃焼ガスがダミー管を通過するとき、ダミ
ー管の抵抗とその千鳥状の配列による整流効果により、
燃焼ガスの流速分布のアンバランスが解消され、過熱器
管入口部に於いては、燃焼ガスの流速分布が均等化さ
れ、計画通りのボイラ性能が確保できる。 【0011】 【発明の実施の形態】以下、本発明の実施の形態につい
て図面に基づいて具体的に説明する。図1は本発明の実
施の一形態に係るダミー管を利用したガス整流装置を適
用したボイラの縦断面図、図2は図1におけるA−A断
面図である。両図において、符号1乃至3、5乃至7は
従来のものと同一機能のものであり、詳しい説明は省略
し、そのまま引用して説明するが、本発明の特徴部分は
符号4,19で示す部分であり、以下に詳しく説明す
る。 【0012】本実施の形態においては、ガスタービン排
熱回収ボイラの過熱器管の前面(ガス流れ上流側)にダ
ミー管を配置した例を示している。図1において、ボイ
ラケーシング1内に配置された過熱器管3の上流側で過
熱器管入口部6とダミー管入口部19との間にはダミー
管4が配置されている。 【0013】ダミー管4は過熱器管3と同じピッチ、同
じ配列形状で図2に示すように千鳥列で上下2段に配置
されている。このようにケーシング1とダミー管4によ
ってガス整流装置が構成される。 【0014】上記のようなガス整流装置を備えたボイラ
において、ボイラ入口より、ボイラ内へ入ってきたガス
タービン排気ガスは、ボイラケーシング1の形状により
横流れから縦流れに向きを90°変えられる。このと
き、ガス流れに乱れが生じ、ダミー管入口部19の断面
では図3に示すような流速のアンバランスが生ずる。 【0015】図3において、横軸はボイラの幅方向の距
離で、縦軸はガスの流速を示し、ボイラの幅方向におい
て、点線で示す平均流速9m/secに対し、最大値で14
m/sec(平均値に対し+55.6%)、最小値で3.5
m/sec(平均値に対し−61.1%)の流速分布のアン
バランスが発生している。 【0016】ガスタービン排気ガスがダミー管4を通過
するとき、整流効果により、流速分布は均等化され、過
熱器管入口部6の断面では、ボイラの幅方向で図4に示
す様に流速のアンバランスは減少する。 【0017】図4において、図3と同じく、横軸はボイ
ラの幅方向の距離、縦横はガス流速を示し、点線で示す
平均流速9m/secに対し、最大値で10m/sec(平均値
に対し、11.1%)、最小値で7.5m/sec(平均値
に対し、16.7%)の流速分布のアンバランスとな
り、アンバランスが減少しており、上記のようにダミー
管を配置することによりボイラの性能上、問題のない流
速分布にすることができる。 【0018】また、本実施の形態のガスタービンの排熱
回収ボイラはガイドベーンのような、整流装置を備えて
いないから、ボイラ下部(入口部)の内部スペースが確
保されており、メンテナンス性が向上されている。 【0019】 【発明の効果】以上、具体的に説明したように、本発明
は過熱器管入口部の直前にガス流れ方向が90°向きを
変える形状のボイラにおいて、ボイラの過熱器管のガス
流れ上流側に過熱器管と同じ外径の熱交換を行わない
ミー管を過熱器管と同じピッチ、同じ配列形状の千鳥
列で並べたガス整流装置を有しているので、ガイドベー
ンを設置しなくても、過熱器管入口部の断面において、
燃焼ガスの流速分布をボイラの性能が確保されるために
必要な程度に均等化することができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas rectifier using a dummy tube applied to a boiler. 2. Description of the Related Art FIG. 5 is a longitudinal sectional view of a conventional boiler in which gas rectification measures are taken. In the figure, 1 is a boiler casing, 2 is an evaporator tube, 3 is a superheater tube, 5 is a connection portion between a boiler casing and a chimney, 6 is a superheater tube inlet, 7 is an evaporator tube inlet, and 8 is a guide. Vane 9 is the boiler entrance. In the above configuration, the combustion gas entering the boiler horizontally from the boiler inlet 9 changes its direction by 90 ° depending on the shape of the boiler casing 1, and flows vertically upward in the boiler. Thereafter, when passing through the superheater tube 3 and the evaporator tube 2, heat is exchanged with steam and water flowing inside the superheater tube 3 and the evaporator tube 2. Is discharged to the outside through [0004] When the combustion gas passes through the superheater tube 3 and the evaporator tube 2, heat exchange is sufficiently performed, and the evaporation amount of water and the temperature and pressure of the generated steam, which are the performance of the boiler, are ensured as planned. It is necessary that the flow rate of the combustion gas in the cross section of the boiler at the superheater tube inlet 6 and the evaporator tube inlet 7 be uniform. For this reason, in the conventional boiler, the guide vanes 8 are arranged at portions where the combustion gas changes by 90 ° from the horizontal direction to the vertical direction, and the flow velocity of the combustion gas in the cross section at the superheater tube inlet 6 is made uniform. [0005] However, the guide vanes 8 have a drawback that vibrations are generated by the flow of the combustion gas or damage is caused during a long-term operation due to thermal expansion. On the other hand, if the guide vanes 8 are not provided, the unbalance of the flow velocity of the combustion gas in the cross section of the superheater tube inlet 6 is large, and the result is that the performance of the boiler is not ensured. As described above, the guide vane 8 is provided as a rectification measure in a conventional boiler in which the flow direction of the combustion gas changes its direction by 90 ° immediately before the inlet of the superheater tube. And the guide vanes 8 vibrate, thermally expand,
For example, damage occurs during long-term operation. In order to solve the above-mentioned problems, the present invention uniformly distributes the flow rate distribution of the combustion gas in the cross section of the inlet of the superheater tube without disposing the guide vane which is likely to cause such damage. It is an object of the present invention to provide a gas rectifying device that can perform the gas rectification. [0008] Therefore, the present invention provides an evaporator tube and a superheater tube, wherein the boiler in which the combustion gas flows from the superheater tube inlet is provided at the superheater tube inlet. Disclosed is a gas rectifier using a dummy tube, which is provided with a tube having the same outer diameter as the superheater tube, the same pitch, and the same arrangement shape and arranged in a staggered arrangement and performing no heat exchange. In the gas rectifier using the dummy pipe of the present invention described above, the combustion gas entering the boiler is discharged immediately before the inlet of the superheater pipe due to the shape of the boiler casing.
° Can change the direction of flow. At this time, the flow of the combustion gas is largely disturbed because the guide vanes of the prior art are not arranged at the inlet portion, and a large imbalance occurs in the flow velocity distribution of the combustion gas in the subsequent boiler section. The flow of the combustion gas having such a large unbalance of the flow velocity distribution passes through a dummy pipe disposed in front of the superheater pipe. [0010] When the combustion gas passes through the dummy tube, the resistance of the dummy tube and the rectifying effect of the staggered arrangement thereof cause
The imbalance in the flow velocity distribution of the combustion gas is eliminated, and the flow velocity distribution of the combustion gas is equalized at the inlet of the superheater tube, so that the planned boiler performance can be secured. Embodiments of the present invention will be specifically described below with reference to the drawings. FIG. 1 is a longitudinal sectional view of a boiler to which a gas rectifier using a dummy tube according to an embodiment of the present invention is applied, and FIG. 2 is a sectional view taken along line AA in FIG. In both figures, reference numerals 1 to 3, 5 to 7 have the same functions as conventional ones, and detailed description is omitted, and the description will be made with reference to the drawings as they are. This is described in detail below. In this embodiment, an example is shown in which a dummy pipe is disposed in front of the superheater pipe (upstream of the gas flow) of the gas turbine exhaust heat recovery boiler. In FIG. 1, a dummy pipe 4 is arranged between the superheater pipe inlet 6 and the dummy pipe inlet 19 on the upstream side of the superheater pipe 3 arranged in the boiler casing 1. The dummy tubes 4 have the same pitch and the same arrangement shape as the superheater tubes 3, and are arranged in two staggered rows as shown in FIG. Thus, the gas rectifier is constituted by the casing 1 and the dummy pipe 4. In the boiler provided with the gas rectifier as described above, the gas turbine exhaust gas entering the boiler from the boiler inlet can be turned by 90 ° from the horizontal flow to the vertical flow depending on the shape of the boiler casing 1. At this time, the gas flow is disturbed, and the flow velocity is unbalanced as shown in FIG. In FIG. 3, the horizontal axis represents the distance in the width direction of the boiler, and the vertical axis represents the gas flow velocity. In the width direction of the boiler, the maximum value is 14 m for an average flow velocity of 9 m / sec indicated by a dotted line.
m / sec (+ 55.6% of the average), 3.5 at minimum
An imbalance in flow velocity distribution of m / sec (-61.1% with respect to the average value) has occurred. When the gas turbine exhaust gas passes through the dummy pipe 4, the flow velocity distribution is equalized by the rectification effect, and the cross section of the superheater pipe inlet 6 has the flow velocity distribution in the width direction of the boiler as shown in FIG. Imbalance is reduced. In FIG. 4, as in FIG. 3, the horizontal axis represents the distance in the width direction of the boiler, and the vertical and horizontal axes represent the gas flow velocity. On the other hand, the flow velocity distribution was unbalanced at a minimum value of 7.5 m / sec (16.7% of the average value), and the imbalance was reduced. By arranging them, it is possible to obtain a flow velocity distribution which has no problem on the performance of the boiler. Further, the exhaust heat recovery boiler of the gas turbine according to the present embodiment does not include a rectifying device such as a guide vane, so that an internal space below the boiler (entrance portion) is secured, and maintainability is improved. Has been improved. As described above, the present invention relates to a boiler having a shape in which the gas flow direction changes direction by 90 ° immediately before the inlet of the superheater tube. A gas rectifier in which a heat pipe having the same outer diameter as the superheater pipe and not performing heat exchange is arranged in a staggered arrangement with the same pitch and the same arrangement shape as the superheater pipe on the upstream side of the flow. Because it has, without installing the guide vane, in the cross section of the superheater tube inlet,
The flow velocity distribution of the combustion gas can be equalized to the extent necessary to ensure the performance of the boiler.

【図面の簡単な説明】 【図1】本発明の実施の一形態に係るダミー管を利用し
たガス整流装置を用いたボイラの縦断面図である。 【図2】図1におけるA−A断面図である。 【図3】図1におけるダミー管入口部断面におけるボイ
ラ幅方向のガス流速分布図である。 【図4】図1における過熱器管入口部におけるボイラ幅
方向のガス流速分布図である。 【図5】従来のガス整流対策を施したボイラの縦断面図
である。 【符号の説明】 1 ボイラケーシング 2 蒸発器管 3 過熱器管 4 ダミー管 6 過熱器管入口部 7 蒸発器管入口部 19 ダミー管入口部
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a longitudinal sectional view of a boiler using a gas rectifier using a dummy pipe according to an embodiment of the present invention. FIG. 2 is a sectional view taken along line AA in FIG. FIG. 3 is a gas flow rate distribution diagram in a boiler width direction at a dummy pipe inlet section in FIG. 1; FIG. 4 is a gas flow distribution diagram in a boiler width direction at a superheater tube inlet portion in FIG. 1; FIG. 5 is a longitudinal sectional view of a conventional boiler in which gas rectification measures are taken. [Description of Signs] 1 Boiler casing 2 Evaporator tube 3 Superheater tube 4 Dummy tube 6 Superheater tube inlet 7 Evaporator tube inlet 19 Dummy tube inlet

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) F22B 1/18 F23J 11/00 F22B 37/10 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) F22B 1/18 F23J 11/00 F22B 37/10

Claims (1)

(57)【特許請求の範囲】 【請求項1】 蒸発器管と過熱器管とを有し、過熱器管
入口部より燃焼ガスを流入するボイラの前記過熱器管入
口部に同過熱器管と同じ外径を有し、同じピッチ、同じ
配列形状の千鳥配列で並べた熱交換を行わない管を備え
たことを特徴とするダミー管を利用したガス整流装置。
(57) [Claim 1] A superheater tube having an evaporator tube and a superheater tube, wherein the superheater tube is inserted into the superheater tube inlet of a boiler into which combustion gas flows from an inlet of the superheater tube. Same outer diameter, same pitch, same
Gas rectifying device using a dummy tube comprising the tube does not perform heat exchange arranged in staggered array configuration.
JP24465996A 1996-09-17 1996-09-17 Gas rectifier using dummy tube Expired - Fee Related JP3434139B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24465996A JP3434139B2 (en) 1996-09-17 1996-09-17 Gas rectifier using dummy tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24465996A JP3434139B2 (en) 1996-09-17 1996-09-17 Gas rectifier using dummy tube

Publications (2)

Publication Number Publication Date
JPH1089609A JPH1089609A (en) 1998-04-10
JP3434139B2 true JP3434139B2 (en) 2003-08-04

Family

ID=17122048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24465996A Expired - Fee Related JP3434139B2 (en) 1996-09-17 1996-09-17 Gas rectifier using dummy tube

Country Status (1)

Country Link
JP (1) JP3434139B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4721589B2 (en) * 2001-09-26 2011-07-13 中国電力株式会社 Dummy tube device for fluidized bed boiler
JP2011179711A (en) * 2010-02-26 2011-09-15 Mitsubishi Heavy Ind Ltd Heat exchanger and method for inspecting heat exchanger
KR101422347B1 (en) * 2012-10-23 2014-07-22 (주)귀뚜라미 Condensation heat exchanger having dummy pipe
KR101484842B1 (en) * 2013-04-10 2015-01-20 (주)귀뚜라미 Pressure resistant heat exchanger having dummy pipe

Also Published As

Publication number Publication date
JPH1089609A (en) 1998-04-10

Similar Documents

Publication Publication Date Title
US4316435A (en) Boiler tube silencer
ES267084U (en) Shell and tube moisture separator reheater with outlet orificing
JPS59122803A (en) Reheater for steam turbine
EP2473781A2 (en) Apparatus and method for close coupling of heat recovery steam generators with gas turbines
CN101509427A (en) Exhaust stacks and power generation systems for increasing gas turbine power output
RU99124764A (en) DIRECT STEAM GENERATOR AND STARTING METHOD IN ACTION OF THE DIRECT STRAIGHT STEAM GENERATOR
JP3434139B2 (en) Gas rectifier using dummy tube
PT1461567E (en) Steam super heater comprising shield pipes
CN207706077U (en) A kind of temperature difference electricity generation device using boiler back end ductwork fume afterheat
RU2006110527A (en) DIRECT STEAM GENERATOR AND METHOD FOR OPERATING DIRECT STRAIGHT STEAM GENERATOR
JP2857440B2 (en) Heat transfer tube support device
JPH09137906A (en) Exhaust heat recovery device
JPS5812045Y2 (en) heat exchanger tube equipment
JP2842190B2 (en) Exhaust heat recovery boiler can structure
RU203911U1 (en) HOT WATER GAS BOILER
JPH0467081B2 (en)
CN209378760U (en) A kind of guiding device for gas turbine flue gas denitration
JP3852820B2 (en) Smoke removal equipment
JPS60101485A (en) Heat exchanger
JP2001296090A (en) Heat exchanger
CN212006843U (en) Dilatation formula amortization low temperature drainage heat supply network heater
RU2120082C1 (en) Boiler steam superheater
JP7245008B2 (en) Combined cycle power plant
RU2110730C1 (en) Barrel boiler
JPH11153318A (en) Flue gas processing apparatus

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030422

LAPS Cancellation because of no payment of annual fees