JP3430148B2 - Ground improvement construction method and construction management device - Google Patents

Ground improvement construction method and construction management device

Info

Publication number
JP3430148B2
JP3430148B2 JP2000381257A JP2000381257A JP3430148B2 JP 3430148 B2 JP3430148 B2 JP 3430148B2 JP 2000381257 A JP2000381257 A JP 2000381257A JP 2000381257 A JP2000381257 A JP 2000381257A JP 3430148 B2 JP3430148 B2 JP 3430148B2
Authority
JP
Japan
Prior art keywords
blade
rotary shaft
predetermined depth
calculated
blade cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000381257A
Other languages
Japanese (ja)
Other versions
JP2002180452A (en
Inventor
修 石田
誠 大塚
Original Assignee
不動建設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 不動建設株式会社 filed Critical 不動建設株式会社
Priority to JP2000381257A priority Critical patent/JP3430148B2/en
Publication of JP2002180452A publication Critical patent/JP2002180452A/en
Application granted granted Critical
Publication of JP3430148B2 publication Critical patent/JP3430148B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、特に軟弱地盤中に
モルタル,セメントミルクなどの改良材と原位置土とを
混合して柱状パイルを造成したり、地盤強度を向上する
地盤改良施工方法及びその施工管理装置に関する
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ground improvement construction method for forming columnar piles by mixing improvement materials such as mortar and cement milk with in-situ soil in soft ground, and improving ground strength. Regarding the construction management device

【0002】[0002]

【従来の技術】地盤改良施工としては、セメントミルク
等の改良材を地盤中に吐出して原位置土と撹拌混合する
ことにより、改良材との化学的な結合作用を利用して、
強固な柱状パイルを造成したり、土質性状を安定化する
と共に地盤強度を向上する方法がある。使用施工装置
は、駆動モータで回転されると共に支持リーダに沿って
上下動される回転軸と、該回転軸と一体に回転される撹
拌翼とを有し、回転軸を回転しながら地盤中の所定深さ
まで貫入したり引抜く過程で、撹拌翼により、地盤中に
吐出される改良材と原位置土とを混合する。前記改良材
は、回転軸に沿って配置される供給管を介して供給さ
れ、撹拌翼の付け根部等に設けられる吐出口から撹拌翼
の回転によって形成される空隙部に吐出され、撹拌翼の
回転に伴う回転軌跡に散布され、原位置土と強制的に混
合される。
2. Description of the Related Art As a ground improvement construction, a chemical improver such as cement milk is discharged into the ground and agitated and mixed with in-situ soil to utilize the chemical bonding action with the improver.
There are methods of forming strong columnar piles, stabilizing soil properties and improving ground strength. The used construction device has a rotating shaft that is rotated by a drive motor and is moved up and down along a support leader, and a stirring blade that is rotated integrally with the rotating shaft. During the process of penetrating or pulling out to a predetermined depth, the stirring blade mixes the improvement material discharged into the ground with the in-situ soil. The improving material is supplied through a supply pipe arranged along the rotation axis, and is discharged from a discharge port provided at a root portion of the stirring blade into a cavity formed by rotation of the stirring blade, It is sprinkled on the rotation trajectory associated with the rotation and compulsorily mixed with the in-situ soil.

【0003】[0003]

【発明が解決しようとする課題】上記施工方法では、原
位置土と改良材との混合度合が改良品質を大きく左右す
る。このため、施工設計では、対象地盤強度や性状等が
予備試験により把握されて、改良材の吐出量と共に貫入
や引抜速度、撹拌翼の枚数、撹拌翼の深さ方向1m当た
りの回転数つまり羽根切回数等の設定が重要となる。即
ち、貫入や引抜速度等は目標羽根切回数を充足できるよ
う決められるが、その場合に安全率を高くすると施工効
率が悪くなる。また、実際の施工では、施工箇所が予備
試験の地盤強度より部分的に硬かったり柔らかいことも
多く、回転軸の回転速度、貫入や引抜速度等が設計値か
らずれることも起きる。従って、施工評価上からは、羽
根切回数が深さ方向の各部において目標羽根切回数を常
に満たしていることまでは期待できず、品質的に更に細
かに管理して確実性と信頼性をより向上したい。
In the above construction method, the degree of mixing of the in-situ soil and the improving material greatly affects the improving quality. For this reason, in the construction design, the target ground strength and properties are grasped by preliminary tests, and the discharge amount of the improvement material as well as the penetration and withdrawal speed, the number of stirring blades, the number of rotations per meter depth of the stirring blade, that is, the blades. It is important to set the number of cuts. That is, the penetration speed, the withdrawal speed, and the like are determined so that the target number of blade cuttings can be satisfied, but in that case, if the safety factor is increased, the construction efficiency is deteriorated. In actual construction, the construction location is often harder or softer than the ground strength of the preliminary test, and the rotation speed of the rotary shaft, the penetration speed, the extraction speed, etc. may deviate from the designed values. Therefore, from the viewpoint of construction evaluation, it cannot be expected that the number of blade cuttings will always meet the target number of blade cuttings in each part in the depth direction. I want to improve.

【0004】また、上記施工装置の駆動モータは、電動
式か油圧式の何れかであり、支持リーダの上部に設置さ
れて、歯車等の連結機構を介し回転軸を回転し、又、該
回転が地上のベースマシン側から制御される。油圧モー
タは、電動モータに比べて一般に小型・軽量であり、ベ
ースマシン側で使用される油圧設備つまりモータ駆動用
の油圧ないしは作動油を利用できる利点がある。ところ
が、油圧モータでは、その回転数は油流量を変えれば容
易に変化させられるが、地盤の硬さによって回転数が変
動し易いという機構上の問題がある。このため、従来
は、対象地盤が比較的硬い場合、電動モータが用いられ
ており、発電機設備に要する費用、付帯設備経費もかさ
むのみならず、施工の迅速化及び効率化に欠けていた。
Further, the drive motor of the above construction apparatus is either an electric type or a hydraulic type, and is installed on the upper part of the support leader to rotate the rotary shaft through a connecting mechanism such as a gear and to rotate the rotary shaft. Is controlled from the base machine side on the ground. A hydraulic motor is generally smaller and lighter than an electric motor, and has an advantage that hydraulic equipment used on the base machine side, that is, hydraulic pressure or hydraulic oil for driving a motor can be used. However, in the hydraulic motor, the number of revolutions can be easily changed by changing the oil flow rate, but there is a mechanical problem that the number of revolutions easily varies depending on the hardness of the ground. For this reason, conventionally, when the target ground is relatively hard, an electric motor is used, and not only the cost required for the generator facility and the incidental facility cost are increased, but also the speed and efficiency of the construction are lacking.

【0005】本発明は以上のような課題を解消すること
を目的としている。具体的には、目標羽根切回数を深さ
方向の各部で充足できるようにすることにより、経費削
減と施工効率を向上し、同時に施工評価をより高めるこ
とにある。他の目的は以下の内容説明の中で明らかにす
る。
An object of the present invention is to solve the above problems. Specifically, the target number of blade cuttings can be satisfied in each part in the depth direction, so that cost reduction and construction efficiency are improved, and at the same time, construction evaluation is further enhanced. Other purposes will be made clear in the following description.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明の地盤改良施工方法は、支持リーダに沿って
上下動されると共に油圧式の駆動モータにより回転され
る回転軸と、該回転軸と一体に回転される撹拌翼とを有
し、前記回転軸を回転しながら地盤中の所定深さまで貫
入したり引抜く過程で、前記撹拌翼により、地盤中に吐
出される改良材と原位置土とを混合する地盤改良施工方
法において、前記貫入時には、前記回転軸の所定深さ毎
に前記撹拌翼の羽根切回数を演算すると共に、該演算値
と目標羽根切回数との差を前記所定深さ毎に不足羽根切
回数として算出し、前記引抜時には、前記目標羽根切回
数に達するよう前記不足羽根切回数に基づいて前記所定
深さ毎に応じ前記回転軸の引抜速度を制御することを特
徴としている。また、本発明は、施工管理装置から特定
すると、上記地盤改良施工方法に用いられて、前記回転
軸の回転数及び昇降速度から、前記回転軸の所定深さ毎
に前記撹拌翼の羽根切回数を演算し、該演算値と目標羽
根切回数との差を不足羽根切回数として所定深さ毎に算
出すると共に、前記回転軸の引抜速度について前記不足
羽根切回数を補うよう所定深さに応じ算出する演算手段
と、前記演算手段で得られた前記回転軸の引抜速度を所
定深さに対応させて表示する表示手段とを有しているも
のである。
In order to achieve the above object, the ground improvement construction method of the present invention comprises a rotary shaft which is vertically moved along a support leader and is rotated by a hydraulic drive motor, Having a stirring blade that is rotated integrally with a rotating shaft, in the process of penetrating or withdrawing to a predetermined depth in the ground while rotating the rotating shaft, by the stirring blade, an improving material that is discharged into the ground, In the ground improvement construction method of mixing with in-situ soil, at the time of the penetration, the blade cutting number of the stirring blade is calculated for each predetermined depth of the rotating shaft, and the difference between the calculated value and the target blade cutting number is calculated. Calculated as the number of insufficient blade cuts for each of the predetermined depths, and at the time of withdrawal, the extraction speed of the rotary shaft is controlled according to each of the predetermined depths based on the number of insufficient blade cuts so as to reach the target number of blade cuts. It is characterized by that. Further, the present invention, when specified from the construction management device, is used for the ground improvement construction method, and from the rotation speed and the ascending / descending speed of the rotary shaft, the number of blade cutting of the stirring blade for each predetermined depth of the rotary shaft. Is calculated and the difference between the calculated value and the target number of times of blade cutting is calculated as the number of times of insufficient blade cutting for each predetermined depth, and the pulling speed of the rotating shaft is determined according to a predetermined depth so as to compensate for the number of times of insufficient blade cutting. It has a calculating means for calculating and a display means for displaying the drawing speed of the rotary shaft obtained by the calculating means in correspondence with a predetermined depth.

【0007】以上の発明特徴は、貫入時において、所定
深さ毎に羽根切回数を演算し、それを不足羽根切回数
(=目標羽根切回数−演算羽根切回数)として算出す
る。引抜時において、該不足羽根切回数を基にして目標
羽根切回数に達するよう所定深さ毎に回転軸の引抜速度
(所定深さ毎の引抜速度)にて調整制御する。これによ
って、実施工での羽根切回数は、貫入と引抜時の合計と
して、所定深さ毎にそれぞれ目標羽根切回数を確実に満
たしている。このため、この構成では、目標羽根切回数
が所定深さ毎、つまり各部分も常に充足されることか
ら、施工品質及び評価の信ぴょう性を向上できる。同時
に、羽根切回数が部分的に不足したり過剰となることを
防いで迅速・効率施工を可能にする。同時に、上記課題
で述べた油圧モータの適用を拡大可能にして工期を短縮
したり、施工経費の低減を実現できる。
According to the above-mentioned features of the invention, the number of blade cuttings is calculated for each predetermined depth at the time of penetration, and is calculated as the number of insufficient blade cuttings (= target blade cutting number-calculated blade cutting number). At the time of pulling out, adjustment control is performed at a predetermined depth at each pulling speed of the rotary shaft (pulling speed for each predetermined depth) so as to reach the target number of blade cutting based on the number of insufficient blade cutting. As a result, the number of blade cuttings performed in the actual work surely satisfies the target number of blade cuttings for each predetermined depth as the sum of the penetration and the withdrawal. For this reason, in this configuration, the target number of blade cuttings is always satisfied for each predetermined depth, that is, each portion is always satisfied, so that construction quality and reliability of evaluation can be improved. At the same time, it prevents the blade cutting frequency from becoming partially insufficient or excessive, and enables quick and efficient construction. At the same time, the application of the hydraulic motor described in the above problem can be expanded to shorten the construction period and reduce the construction cost.

【0008】以上の本発明において、所定深さ毎とは、
回転軸(撹拌軸も同じ)の貫入や引抜時において、例え
ば、1m毎又は50cm毎という様に単位深さづつとい
う意味である。この単位深さは、通常、50cm〜1.
5mの範囲内で定めることが精度的及び引抜時の速度制
御的に好ましい。目標羽根切回数とは、施工設計時に最
適なものとして設定される施工域毎の羽根切回数であ
る。
In the present invention described above, the meaning of each predetermined depth is
This means that when the rotary shaft (same as the stirring shaft) is penetrated or withdrawn, it is divided into unit depths such as 1 m or 50 cm. This unit depth is usually 50 cm to 1.
It is preferable to set it within the range of 5 m in terms of accuracy and speed control during drawing. The target number of times of blade cutting is the number of times of blade cutting for each construction area that is set as an optimum one during construction design.

【0009】貫入時の羽根切回数は例えば次の式(1)
から算出される。
The number of blade cuts at the time of penetration is, for example, the following formula (1)
Calculated from

【式1】 [Formula 1]

【0010】本発明方法では、羽根切回数Tは貫入過程
において、所定深さ毎に演算され、深さに対応した羽根
切回数(T1、T2・・・Tx)として求められる。また、
各羽根切回数(T1、T2・・・Tx)と目標羽根切回数
(T0)との差が不足羽根切回数(Tn1、Tn2・・・Tn
x)として所定深さ毎に算出される。そして、回転軸の
引抜速度は、所定深さ毎に不足羽根切回数(Tn1、T
n2・・・Tnx)を基にし算出される。この各引抜速度も
上記式(1)をベースにして導出されることになる。
In the method of the present invention, the blade cutting frequency T is calculated for each predetermined depth in the penetration process, and is calculated as the blade cutting frequency (T1, T2 ... Tx) corresponding to the depth. Also,
The difference between the number of blade cuttings (T1, T2 ... Tx) and the target number of blade cuttings (T0) is insufficient The number of blade cuttings (Tn1, Tn2 ... Tn)
x) is calculated for each predetermined depth. Then, the extraction speed of the rotary shaft is determined by the number of times of insufficient blade cutting (Tn1, Tn) for each predetermined depth.
It is calculated based on n2 ... Tnx). Each drawing speed is also derived based on the above equation (1).

【0011】以上の本発明は、請求項2と3の如く構成
することがより好ましい。即ち、第1に、前記回転軸が
支持リーダに沿って付設されたラック・ピニオン機構等
を介し強制的に上下動される構成である。この構成は、
回転軸がラック・ピニオン機構等を介して強制的に上下
動されると、例えば、上記した貫入速度vが機構的に一
定となるため、本発明の施工管理装置の演算が簡単かつ
確実となる。また、引抜速度で制御するときにもより正
確に行える利点がある。ここで、「回転軸が強制的に上
下動される」とは、例えば、回転軸が地盤側の硬さ等に
影響されず常に設計速度で昇降されることを指し、公知
のラック・ピニオン機構やチェーン機構等の機械的な動
きに連動して上下移動される意味である。第2に、前記
改良材が少なくとも前記回転軸の貫入過程で吐出される
構成である。これは、改良材の吐出時期として、貫入過
程だけ吐出する形態と、貫入及び引抜過程共に吐出する
形態とがあるが、本発明の如く貫入と引抜時の合計とし
て、目標羽根切回数を所定深さ毎に満たす構成の場合に
貫入過程で専ら吐出する方が全体の混合品質をより均一
化できるからである。但し、吐出時期は、貫入過程にお
いて必要深さ範囲だけ吐出したり、引抜過程でも必要部
に吐出しても何ら差し支えない。
The present invention described above is more preferably configured as described in claims 2 and 3. That is, first, the rotary shaft is forcibly moved up and down via a rack and pinion mechanism or the like attached along the support leader. This configuration
When the rotary shaft is forcibly moved up and down via a rack and pinion mechanism or the like, for example, the above-mentioned penetration speed v becomes mechanically constant, so that the operation of the construction management device of the present invention is simple and reliable. . Further, there is an advantage that more accurate control is possible even when controlling the drawing speed. Here, "the rotating shaft is forcibly moved up and down" refers to, for example, that the rotating shaft is always moved up and down at a design speed without being affected by the hardness of the ground side, and the known rack and pinion mechanism. It means moving up and down in conjunction with the mechanical movement of the chain mechanism and the like. Secondly, the improving material is discharged at least during the penetration process of the rotating shaft. As the discharge timing of the improved material, there are a mode of discharging only in the penetration process and a mode of discharging both in the penetration process and the withdrawal process. This is because, in the case of a structure that is satisfied every time, it is possible to make the overall mixing quality more uniform by exclusively discharging in the penetration process. However, it does not matter if the discharge timing is such that only the required depth range is discharged during the penetration process, or that discharge is performed to the necessary portion during the drawing process.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施形態例につい
て図面を参照しながら説明する。この説明では、まず、
本発明を実施するときに用いられる施工装置及び施工管
理装置例について述べた後、施工方法に言及する。な
お、図1は施工装置及び管理装置全体の模式構成を示
し、図2は本発明方法の制御例を模式的に示し、図3は
オペレータ用指示部の表示例を模式的に示している。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. In this explanation, first,
After describing an example of a construction device and a construction management device used when implementing the present invention, a construction method will be referred to. Note that FIG. 1 shows a schematic configuration of the entire construction apparatus and management apparatus, FIG. 2 schematically shows a control example of the method of the present invention, and FIG. 3 schematically shows a display example of an operator instruction unit.

【0013】(施工装置例)図1において、地盤改良用
の施工装置は、走行式ベースマシン1と、ベースマシン
1に油圧式バックステー3等を介し起立された支持リー
ダ2と、支持リーダ2の一側上下方向に移動される駆動
装置4と、駆動装置4を介し回転される回転軸5などを
備えている。ここで、駆動装置4は、支持リーダ2の上
下に配設されたラック部材6に対し可動体7が機械的な
噛み合いによって強制的に昇降されると共に、該可動体
7に対し油圧モータ及びギヤ等の連結機構を設置しそれ
らにより回転軸5を回転するものである。駆動装置4の
昇降つまり上下動は後述する操作部23で可変制御され
る。前記油圧モータは、ベースマシン1側に設置された
油圧制御装置10の油圧源が兼用され、不図示の油圧ポ
ンプ及び管路を介し給排される作動油により駆動され
る。回転軸5は、不図示の供給管が内部に配置され、撹
拌翼8が下部側に1段−合計3枚の翼構成(この翼構成
は段数及び枚数共に適宜に設定される)で設けられてい
る。そして、改良材は、製造プラント9から前記供給管
を通じ移送されて、撹拌翼8の付け根部等に設けられる
吐出口から撹拌翼8の回転によって形成される空隙部に
吐出される。これらの構造は従来と同じ。
(Example of Construction Device) In FIG. 1, a construction device for ground improvement is a traveling base machine 1, a support leader 2 erected on the base machine 1 via a hydraulic backstay 3 and the like, and a support leader 2. It includes a drive device 4 that is vertically moved on one side, a rotary shaft 5 that is rotated via the drive device 4, and the like. Here, the drive unit 4 is configured such that the movable body 7 is forcibly moved up and down by the mechanical engagement with the rack members 6 arranged above and below the support leader 2, and the hydraulic motor and the gear are moved relative to the movable body 7. The rotating shaft 5 is rotated by installing a connecting mechanism such as. The raising / lowering, that is, the vertical movement of the drive unit 4 is variably controlled by the operation unit 23 described later. The hydraulic motor doubles as a hydraulic power source of the hydraulic control device 10 installed on the base machine 1 side, and is driven by hydraulic oil supplied and discharged via a hydraulic pump and a pipe line (not shown). The rotating shaft 5 is provided with a supply pipe (not shown) inside, and the stirring blade 8 is provided on the lower side in a one-stage-total three blade configuration (this blade configuration is set appropriately in both the number of stages and the number of sheets). ing. Then, the improving material is transferred from the manufacturing plant 9 through the supply pipe, and is discharged from a discharge port provided at a root portion of the stirring blade 8 or the like into a void portion formed by rotation of the stirring blade 8. These structures are the same as before.

【0014】(管理装置例)以上の施工装置は、駆動装
置4側に付設された回転計(回転センサー)11と、支
持リーダ6の下部側に設置された回転軸ガイド兼用の機
構部12と、該機構部12に付設された深度計(深度セ
ンサー)13及びタイマー14並びに速度計15と、演
算手段としての演算処理部16と、表示手段としての表
示部17と、オペレータ用指示部18とを有している。
(Example of management device) The construction device described above includes a tachometer (rotation sensor) 11 attached to the drive device 4 side, and a mechanism portion 12 also installed on the lower side of the support leader 6 and serving as a rotation axis guide. A depth meter (depth sensor) 13 and a timer 14 and a speedometer 15 attached to the mechanism section 12, an arithmetic processing section 16 as arithmetic means, a display section 17 as display means, and an operator instruction section 18. have.

【0015】このうち、回転計11は回転軸5の回転数
を検出して、該検出データを演算処理部16に送信す
る。深度計13は回転軸5の先端部の現在深さを検出
し、速度計15は深度計13の検出データ及びタイマー
14から回転軸5の貫入や引抜速度を検出し、それらの
検出データを演算処理部16に送信する。タイマー14
及び速度計15は、演算処理部16に内蔵するようにし
てもよい。演算処理部16、表示部17、指示部18等
は模式化されているが、実際にはベースマシン1のオペ
ーレータ室に設置されている。
Of these, the tachometer 11 detects the number of rotations of the rotary shaft 5 and sends the detected data to the arithmetic processing section 16. The depth meter 13 detects the current depth of the tip of the rotary shaft 5, and the speedometer 15 detects the detection data of the depth meter 13 and the penetration or withdrawal speed of the rotary shaft 5 from the timer 14, and calculates the detected data. It is transmitted to the processing unit 16. Timer 14
The speedometer 15 may be built in the arithmetic processing unit 16. Although the arithmetic processing unit 16, the display unit 17, the instruction unit 18, and the like are schematically illustrated, they are actually installed in the operator room of the base machine 1.

【0016】この演算処理部16は、演算部(CPU)
に対し入力部19から予め決められた設計上の目標羽根
切回数が入力されると共に、回転計11及び速度計15
から送信される検出データを基にして次のような演算処
理を行う。即ち、回転軸5の貫入過程においては、全撹
拌翼8の羽根切回数が上記式(1)に準拠し単位深さ毎
に演算されて図2の如く、単位深さ毎(0−1m、1−
2m、・・・4−5m)に行われた羽根切回数(回/m)
を得る。同時に、その単位深さ毎の羽根切回数から不足
羽根切回数が算出される。この不足羽根切回数は、目標
羽根切回数と演算された当該単位深さの羽根切回数との
差で、図2の下側に例示したTn1に相当している。同
時に、引抜過程で使用される回転軸5の引抜速度が上記
式(1)を利用して単位深さ毎に算出される。その単位
深さ毎の引抜速度は指示部18へ送られて回転軸5の引
抜過程で使用される。
The arithmetic processing unit 16 is an arithmetic unit (CPU).
Is input from the input unit 19 with a predetermined design target number of blade cutting, and the tachometer 11 and the speedometer 15
The following arithmetic processing is performed based on the detection data transmitted from the. That is, in the process of penetration of the rotating shaft 5, the number of blade cutting of all the stirring blades 8 is calculated for each unit depth according to the above formula (1), and as shown in FIG. 2, for each unit depth (0-1 m, 1-
2m, ... 4-5m) Number of blade cuttings (times / m)
To get At the same time, the number of insufficient blade cuts is calculated from the number of blade cuts for each unit depth. The number of insufficient blade cuts is the difference between the target number of blade cuts and the calculated number of blade cuts of the unit depth, and corresponds to Tn1 illustrated in the lower side of FIG. At the same time, the drawing speed of the rotary shaft 5 used in the drawing process is calculated for each unit depth using the above equation (1). The drawing speed for each unit depth is sent to the instruction unit 18 and used in the drawing process of the rotary shaft 5.

【0017】この指示部18は、図3の例の如く前記し
た単位深さ毎の引抜速度が送信され、オペレータがそれ
に基づいて駆動装置4を制御する操作部23の操作を容
易に行えるよう、回転軸5の現在の深さを表示する画像
部20と、引抜速度を切り換える深さと指定速度をデジ
タル表示する画像部21と、引抜速度をメーターで表示
する画像部22等とから構成されている。そして、オペ
レータは、画像部21にの指定速度に応じて操作部23
を操作して、回転軸5の引抜速度を指定通りに変更する
と、画像部22でその変更後の速度を確認できるように
なっている。なお、このような指示部18は、音声によ
りオペレータに指示したり、他の画像表示であってもよ
い。更に、技術的には、例えば、演算処理部16から操
作部23へ直に必要データを入力し自動化することで指
示部18を省略することも可能である。
As shown in the example of FIG. 3, the instructing unit 18 transmits the pulling speed for each unit depth described above, so that the operator can easily operate the operating unit 23 for controlling the drive unit 4 based on it. It is composed of an image section 20 for displaying the current depth of the rotary shaft 5, an image section 21 for digitally displaying the depth for switching the drawing speed and a designated speed, an image section 22 for displaying the drawing speed with a meter, and the like. . Then, the operator operates the operation unit 23 according to the designated speed in the image unit 21.
When the pulling speed of the rotary shaft 5 is changed as specified by operating, the image unit 22 can confirm the changed speed. It should be noted that such an instruction unit 18 may give an instruction to the operator by voice or display another image. Further, technically, for example, the instruction unit 18 can be omitted by directly inputting necessary data from the arithmetic processing unit 16 to the operation unit 23 and automating the data.

【0018】(施工例)次に、上記管理装置を用いたと
きの施工例を概説しながら、本発明の利点をより明らか
にする。実施工に際しては、上述した如く対象となる地
盤強度や性状等が予備試験により把握され、改良材の吐
出量と共に貫入や引抜速度、撹拌翼の枚数、撹拌翼の深
さ方向1m当たりの回転数つまり目標羽根切回数等が設
計される。目標羽根切回数は、入力部19から演算処理
部16の演算プログラムへ入力される。そして、回転軸
5は、従来と同じく駆動装置4の油圧モータにより回転
されつつ同図の如く地盤へ貫入されたり、引抜かれる。
これら貫入や引抜過程では、回転軸5下端の現位置が深
度計13等により検出され、回転軸5の回転数が回転計
11で検出されている。
(Execution example) Next, the advantages of the present invention will be made clearer while reviewing an execution example using the management device. At the time of construction work, the target ground strength and properties are grasped by preliminary tests as described above, and the amount of improvement material discharged, penetration and withdrawal speed, the number of stirring blades, the number of rotations of the stirring blades per 1 m in the depth direction. That is, the target number of blade cuts and the like are designed. The target number of blade cuts is input from the input unit 19 to the calculation program of the calculation processing unit 16. Then, the rotary shaft 5 is penetrated into or pulled out from the ground as shown in the figure while being rotated by the hydraulic motor of the drive device 4 as in the conventional case.
In these penetration and withdrawal processes, the current position of the lower end of the rotary shaft 5 is detected by the depth meter 13 and the rotational speed of the rotary shaft 5 is detected by the rotary meter 11.

【0019】貫入過程では、上述した如く改良材が撹拌
翼8により形成される原位置土の隙間中に吐出され、撹
拌翼8の回転に伴って回転軌跡に散布されて、原位置土
と強制的に混合される。また、図2の如く回転軸5の単
位深さ毎に全撹拌翼8の羽根切回数が単位深さ毎、つま
り0−1m、1−2m、2−3m、3−4m、4−5m
に演算され、かつ当該単位深さ毎に不足羽根切回数が求
められる。引抜過程では、オペレータが上記した画像部
21の指定速度に応じて操作部23を操作して、回転軸
5の引抜速度を単位深さ毎に調整変更しながら進められ
る。従って、このうな施工管理では、例えば、貫入過程
において地盤が部分的に硬く(図2の下側で、貫入時の
深度3−4mの範囲)、該深さ部分の羽根切回数が他の
部分よりも小さくなるような場合、その不足分が引抜過
程において当該深さ部分の羽根切回数(図2の下側で、
引抜時の深度3−4mの範囲)を他の部分よりも多くな
るよう調整、つまり目標羽根切回数が常に充足されるよ
うに引抜速度にて調整される。このため、本発明方法
は、課題で述べた如く駆動装置4が油圧モータにより回
転軸5を回転する場合に生じ易い回転数の変動の問題に
対し充分対応できること、羽根切回数が部分的に不足し
たり過剰となることを確実になくして迅速で効率的な施
工を実現できること、目標羽根切回数が充足されている
ことを深さ毎に評価できること、等を実現できる。
In the penetration process, the improving material is discharged into the gap of the in-situ soil formed by the stirring blade 8 as described above, and is sprayed on the rotation locus along with the rotation of the stirring blade 8 to force the in-situ soil. Are mixed together. Further, as shown in FIG. 2, the number of blade cutting of the total stirring blades 8 is unit depth, that is, 0-1 m, 1-2 m, 2-3 m, 3-4 m, 4-5 m, for each unit depth of the rotary shaft 5.
And the number of insufficient blade cutting is calculated for each unit depth. In the drawing process, the operator operates the operation unit 23 according to the specified speed of the image unit 21 to proceed while adjusting and changing the drawing speed of the rotary shaft 5 for each unit depth. Therefore, in this construction management, for example, the ground is partially hard in the penetration process (the lower side of FIG. 2, a depth range of 3-4 m at the time of penetration), and the number of blade cutting in the depth part is different from that in other parts. If it becomes smaller than the above, the shortage is the number of times of blade cutting of the depth portion in the drawing process (the lower side of FIG. 2,
The range of the depth of 3-4 m at the time of pulling out) is adjusted to be larger than that of other portions, that is, the pulling speed is adjusted so that the target number of times of blade cutting is always satisfied. For this reason, the method of the present invention can sufficiently cope with the problem of the fluctuation of the rotational speed that tends to occur when the drive device 4 rotates the rotary shaft 5 by the hydraulic motor as described in the problem, and the number of blade cutting is partially insufficient. It is possible to surely eliminate the excessive or excessive work and to realize a quick and efficient construction, to evaluate whether the target number of blade cutting is satisfied for each depth, and the like.

【0020】なお、本発明は、請求項1から4で特定さ
れた技術要素を備えておればよく、これをベースにして
色々に変形可能である。例えば、回転軸5は多軸構成、
土の共回り防止構成等の機能が必要に応じて追加され
る。撹拌翼8は多段構成にしたり、翼形状を変形する等
である。又、上記した油圧モータは、連結機構を介して
回転軸5を回転するものであればよく、形態例の如く回
転軸5の上部に設けられる態様に限らず、例えば、図1
の機構部12のように回転軸5の途中の箇所に設けられ
ることもある。
The present invention only needs to have the technical elements specified in claims 1 to 4, and can be variously modified on the basis of the technical elements. For example, the rotating shaft 5 has a multi-axis structure,
Functions such as soil co-rotation prevention structure will be added as needed. The stirring blade 8 has a multi-stage configuration, or the blade shape is deformed. Further, the hydraulic motor described above may be one that rotates the rotary shaft 5 via a coupling mechanism, and is not limited to the mode provided above the rotary shaft 5 as in the embodiment, and for example, as shown in FIG.
It may be provided in the middle of the rotary shaft 5 like the mechanical part 12 of FIG.

【0021】[0021]

【発明の効果】以上説明したように、本発明によれば、
実施工での羽根切回数は貫入及び引抜時の合計で、目標
羽根切回数を所定深さ毎に確実に充足することから、ま
た、駆動モータとして油圧モータを問題なく採用可能に
することから、施工効率、経費削減及び施工の信頼性を
より向上できる。
As described above, according to the present invention,
The number of blade cutting in the actual work is the sum of penetration and withdrawal, because the target number of blade cutting is surely satisfied for each predetermined depth, and since it is possible to adopt a hydraulic motor as a drive motor without problems, The construction efficiency, cost reduction and construction reliability can be further improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法及び管理装置の全体構成を示す模式
図である。
FIG. 1 is a schematic diagram showing an overall configuration of a method and a management device of the present invention.

【図2】本発明の管理装置で得られる演算結果例を示す
グラフである。
FIG. 2 is a graph showing an example of a calculation result obtained by the management device of the present invention.

【図3】図2の指示部の画像例を示す模式図である。FIG. 3 is a schematic diagram showing an example of an image of an instruction unit in FIG.

【符号の説明】[Explanation of symbols]

2は支持リーダ 4は駆動装置(油圧モータ、連結機構) 5は回転軸 8は撹拌翼 6はラック部材 16は演算処理部(演算手段) 17は表示部(表示手段) 18は指示部(指示手段) 2 is a support leader 4 is a drive device (hydraulic motor, connecting mechanism) 5 is the rotation axis 8 is a stirring blade 6 is a rack member 16 is an arithmetic processing unit (arithmetic means) 17 is a display unit (display means) 18 is an instruction unit (instruction means)

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平7−158056(JP,A) 特開2000−282454(JP,A) 特開2000−220134(JP,A) 特開 昭64−46020(JP,A) 特開 平10−121460(JP,A) (58)調査した分野(Int.Cl.7,DB名) E02D 3/12 102 ─────────────────────────────────────────────────── --- Continuation of the front page (56) References JP-A-7-158056 (JP, A) JP-A-2000-282454 (JP, A) JP-A-2000-220134 (JP, A) JP-A 64-46020 ( JP, A) JP-A-10-121460 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) E02D 3/12 102

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 支持リーダに沿って上下動されると共に
油圧式の駆動モータにより回転される回転軸と、該回転
軸と一体に回転される撹拌翼とを有し、前記回転軸を回
転しながら地盤中の所定深さまで貫入したり引抜く過程
で、前記撹拌翼により、地盤中に吐出される改良材と原
位置土とを混合する地盤改良施工方法において、 前記貫入時には、前記回転軸の所定深さ毎に前記撹拌翼
の羽根切回数を演算すると共に、該演算値と目標羽根切
回数との差を前記所定深さ毎に不足羽根切回数として算
出し、 前記引抜時には、前記目標羽根切回数に達するよう前記
不足羽根切回数に基づいて前記所定深さ毎に応じ前記回
転軸の引抜速度を制御する、ことを特徴とする地盤改良
施工方法。
1. A rotary shaft that is moved up and down along a support leader and is rotated by a hydraulic drive motor, and a stirring blade that is rotated integrally with the rotary shaft. While in the process of penetrating or extracting to a predetermined depth in the ground, by the stirring blade, in the ground improvement construction method of mixing the improvement material and the in-situ soil discharged into the ground, at the time of the penetration, of the rotating shaft The number of blade cutting of the stirring blade is calculated for each predetermined depth, and the difference between the calculated value and the target number of blade cutting is calculated as the number of insufficient blade cutting for each predetermined depth. A method for ground improvement construction, characterized in that the extraction speed of the rotary shaft is controlled according to the predetermined depth based on the number of times of insufficient blade cutting so as to reach the number of times of cutting.
【請求項2】 前記回転軸が、支持リーダに沿って付設
されたラック・ピニオン機構等を介し強制的に上下動さ
れる請求項1に記載の地盤改良施工方法。
2. The ground improvement construction method according to claim 1, wherein the rotating shaft is forcibly moved up and down via a rack and pinion mechanism attached along a support leader.
【請求項3】 前記改良材が少なくとも前記回転軸の貫
入過程で吐出される請求項1又は2に記載の地盤改良施
工方法。
3. The ground improvement construction method according to claim 1, wherein the improvement material is discharged at least during the penetration process of the rotary shaft.
【請求項4】 請求項1から3の何れかの地盤改良施工
方法に用いられて、 前記回転軸の回転数等から、前記回転軸の所定深さ毎に
前記撹拌翼の羽根切回数を演算し、該演算値と目標羽根
切回数との差を不足羽根切回数として所定深さ毎に算出
すると共に、前記回転軸の引抜速度について前記不足羽
根切回数を補うよう所定深さに応じ算出する演算手段
と、 前記演算手段で得られた前記回転軸の引抜速度を所定深
さに対応させて表示する表示手段と、を少なくとも有し
ている施工管理装置。
4. The method for ground improvement construction according to any one of claims 1 to 3, wherein the blade cutting frequency of the stirring blade is calculated for each predetermined depth of the rotating shaft from the rotating speed of the rotating shaft. Then, the difference between the calculated value and the target number of times of blade cutting is calculated as the number of times of insufficient blade cutting for each predetermined depth, and the extraction speed of the rotary shaft is calculated according to the predetermined depth so as to compensate for the number of times of insufficient blade cutting. A construction management apparatus comprising at least a computing means and a display means for displaying the drawing speed of the rotary shaft obtained by the computing means in association with a predetermined depth.
JP2000381257A 2000-12-15 2000-12-15 Ground improvement construction method and construction management device Expired - Lifetime JP3430148B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000381257A JP3430148B2 (en) 2000-12-15 2000-12-15 Ground improvement construction method and construction management device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000381257A JP3430148B2 (en) 2000-12-15 2000-12-15 Ground improvement construction method and construction management device

Publications (2)

Publication Number Publication Date
JP2002180452A JP2002180452A (en) 2002-06-26
JP3430148B2 true JP3430148B2 (en) 2003-07-28

Family

ID=18849289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000381257A Expired - Lifetime JP3430148B2 (en) 2000-12-15 2000-12-15 Ground improvement construction method and construction management device

Country Status (1)

Country Link
JP (1) JP3430148B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4608327B2 (en) * 2005-01-31 2011-01-12 新日本製鐵株式会社 The tip structure of a steel pipe pile used in the medium digging method.
JP5863579B2 (en) * 2012-06-27 2016-02-16 東亜建設工業株式会社 Generator control system for ground improvement work
JP6564240B2 (en) * 2014-09-18 2019-08-21 株式会社ワイビーエム Column improved pile construction system
JP6699135B2 (en) * 2015-11-05 2020-05-27 株式会社大林組 Electric resistivity detector and quality control method for soil cement body
JP6423121B1 (en) * 2018-07-24 2018-11-14 五洋建設株式会社 Deep layer processing method and apparatus
JP7081809B2 (en) * 2018-08-31 2022-06-07 株式会社ワイビーエム Control method in ground construction machine and ground construction machine

Also Published As

Publication number Publication date
JP2002180452A (en) 2002-06-26

Similar Documents

Publication Publication Date Title
KR101765312B1 (en) Apparatus and method for soft soil improving ungi automated management system
JP3430148B2 (en) Ground improvement construction method and construction management device
JP3437108B2 (en) Management method of ground improvement method and management device of ground improvement machine
JP5959887B2 (en) Crushed stone pile formation control device and crushed stone pile formation method
JP6763655B2 (en) Ground improvement system and ground improvement method
JP3583307B2 (en) Construction management system in ground improvement method
JPH11280055A (en) Support ground position detection method in ground improving machine and support ground position detector
JP3432802B2 (en) Trencher type ground improvement machine, its construction management device and ground improvement method
JP4954166B2 (en) Control system for stirring and mixing equipment
JP2007016586A (en) Bottoming control method in foundation improvement and foundation improving device
JP4491274B2 (en) Steel pile construction management method
JP2014145192A (en) Improvement body construction system
JP3126909B2 (en) Automatic soil augmentation control method of soil cement column in foundation ground
JP4459272B2 (en) Ground agitator management system
JP7008383B1 (en) Ground improvement method
JP7453071B2 (en) Ground improvement equipment and construction equipment
JP7470974B2 (en) Method for controlling drive of ground improvement device and ground improvement device
JP4993719B2 (en) Soil columnar improvement equipment and its control program.
JPH09296442A (en) Cast-in-place piling device
JP2015137485A (en) Management system for stirring mixer
JP3734976B2 (en) Construction management device and construction management method for Nakabori Root Firming Method
JP2003213667A (en) Control device for ground improving machine
JPH1088568A (en) Automatic control device for ground improving machine
JP2009052257A (en) Management system for ground agitating apparatus
JP3443065B2 (en) Drilling torque control device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3430148

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090516

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090516

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090516

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100516

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140516

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term