JP3428264B2 - Rotational accuracy measuring device for rolling bearings - Google Patents

Rotational accuracy measuring device for rolling bearings

Info

Publication number
JP3428264B2
JP3428264B2 JP33501995A JP33501995A JP3428264B2 JP 3428264 B2 JP3428264 B2 JP 3428264B2 JP 33501995 A JP33501995 A JP 33501995A JP 33501995 A JP33501995 A JP 33501995A JP 3428264 B2 JP3428264 B2 JP 3428264B2
Authority
JP
Japan
Prior art keywords
bearing
race
displacement
rolling bearing
holder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP33501995A
Other languages
Japanese (ja)
Other versions
JPH09178613A (en
Inventor
昭治 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP33501995A priority Critical patent/JP3428264B2/en
Publication of JPH09178613A publication Critical patent/JPH09178613A/en
Application granted granted Critical
Publication of JP3428264B2 publication Critical patent/JP3428264B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】この発明に係る転がり軸受用回転
精度測定装置は、より高性能の回転支持部を実現すべ
く、各種回転支持部に組み込む転がり軸受の回転精度を
測定する為に利用する。 【0002】 【従来の技術】玉軸受、ころ軸受、テーパころ軸受等の
転がり軸受には、玉、ころ、テーパころ等の転動体の形
状に起因して、回転非同期振れと呼ばれる、1回転毎に
繰り返されないラジアル方向の微小変位が発生する事が
知られている。ハードディスクドライブ装置(HDD)
等の高精度機器の回転支持部に組み込まれる転がり軸受
の場合には、この様な微小変位が性能に影響を及ぼす場
合もある。従って、転がり軸受の回転精度を測定し、上
回転非同期振れが存在した場合に、これをなくすべく
対応する事が、各種機器の性能向上を図る上で重要であ
る。 【0003】この様な目的で転がり軸受の回転精度を測
定する装置として従来から、特開平7−103815号
公報に記載されたものが知られている。図4〜5は、こ
の公報に記載された従来装置を示している。スピンドル
軸1は、精密軸受装置2により回転自在に支持され、モ
ータ3によりベルト4を介して回転駆動される。このス
ピンドル軸1の先端部(図4の右端部)には、被測定物
である転がり軸受5の内輪6を外嵌固定している。この
内輪6の周囲には、複数の転動体7、7を介して外輪8
を、この内輪6に対する相対回転を自在に支持してい
る。 【0004】上記外輪8の一端面(図4の右端面)には
予圧治具9の一端面(図4の左端面)を突き当て、この
予圧治具9を、防振ゴム10を介して、上記外輪8に向
け押圧している。従って、測定時に上記転がり軸受5に
は予圧が付与された状態となり、又、上記内輪6の回転
に拘らず、上記外輪8が回転を阻止される。そして、こ
の様な外輪8の周囲には非接触式の変位センサ11a、
11bを1対、円周方向に90度位相をずらせた状態で
設けている。これら両変位センサ11a、11bの検出
信号は、増幅器12を介して制御部13に入力してい
る。 【0005】上記転がり軸受5の回転非同期振れを測定
する際には、上記モータ3によりスピンドル軸1を介し
て内輪6を回転駆動しつつ、上記1対の変位センサ11
a、11bにより、上記外輪8のラジアル方向に関する
変位を測定する。この変位測定は、上記スピンドル軸1
の回転位相との関係で行なう。上記制御部13は、上記
両変位センサ11a、11bの測定値と上記スピンドル
軸1の回転位相とから、上記転がり軸受5の回転非同期
振れを求める。 【0006】 【発明が解決しようとする課題】図4〜5に示した従来
装置の場合、予圧治具9により外輪8のラジアル方向変
位が或る程度拘束されるので、得られた測定値が実際の
値よりも低めになり易い。即ち、上記予圧治具9は、防
振ゴム10を介して外輪8の一端面に押圧されているの
で、或る程度ラジアル方向に変位する事はできる。但
し、このラジアル方向の変位に対する抵抗となる事は避
けられない。そして、この抵抗の分だけ、上記測定値が
低めになる。 【0007】回転非同期振れを測定する為の転がり軸受
用回転精度測定装置としてはこの他にも、間隔をあけて
配置された1対の転がり軸受により1本のスピンドル軸
を支承し、このスピンドル軸の回転時の挙動を測定する
装置が、従来から広く使用されている。しかしながら、
この様な従来装置の場合には、転がり軸受の回転非同期
振れを転がり軸受単体で測定する訳ではないので、信頼
できる測定値を得にくい。本発明の転がり軸受用回転精
度測定装置は、この様な事情に鑑みて発明したものであ
る。 【0008】 【課題を解決するための手段】本発明の転がり軸受用回
転精度測定装置は、第一の軌道輪と第二の軌道輪との間
に複数の転動体を設けて成る転がり軸受の非回転同期振
れを測定するものである。この様な本発明の転がり軸受
用回転精度測定装置は、上記第一の軌道輪をラジアル方
向の位置決めを図った状態で回転駆動する駆動装置と、
上記第二の軌道輪を回転しない状態で支持する支持装置
と、この第二の軌道輪のラジアル方向に関する変位を測
定する変位センサとを備える。そして、上記支持装置
は、上記第二の軌道輪を抱持する為のホルダの上面に直
径方向に形成された凸部と、このホルダの上方に設けら
れた係止板の下面に直径方向に形成された凸部と、これ
らホルダの上面と係止板の下面との間に挟持された、上
下両面にそれぞれ上記各凸部の幅寸法よりも大きな幅寸
法を有する凹溝を、互いに直角方向にずらせて形成した
多孔質材とから成る静圧気体軸受により、第二の軌道輪
のラジアル方向への円滑な変位を自在とすると共に、ア
キシャル荷重を、上記静圧気体軸受部分の圧縮空気の膜
を介して付加自在としている。 【0009】 【作用】上述の様に構成される本発明の転がり軸受用回
転精度測定装置により、転がり軸受の回転非同期振れを
測定する場合には、駆動装置により第一の軌道輪を回転
させ、支持装置により第二の軌道輪にアキシャル荷重を
付加しつつ、変位センサにより第二の軌道輪のラジアル
方向に関する変位を測定する。第二の軌道輪は支持装置
により、ラジアル方向に亙る円滑な変位を自在に支持さ
れているので、転動体の歪み等により上記第二の軌道輪
にラジアル方向の力が加わると、この第二の軌道輪が上
記歪み等の分だけ、ラジアル方向に変位する。そして、
この変位を変位センサが検出する。 【0010】本発明の転がり軸受用回転精度測定装置の
場合には、第二の軌道輪がラジアル方向に変位する事に
対して作用する抵抗を僅少に抑えているので、回転非
期振れの測定値が低めにならず、正確に求められる。 【0011】 【発明の実施の形態】図1〜3は、本発明の実施の形態
の1例を示している。被測定物である転がり軸受5(深
溝型玉軸受)は、第一の軌道輪である内輪6と第二の軌
道輪である外輪8との間に複数の転動体7、7(玉)を
設けて成る。本例の転がり軸受用回転精度測定装置は、
この様な転がり軸受5を構成する外輪8のラジアル方向
関する変位を測定する事により、この転がり軸受5の
回転非同期振れを測定する。 【0012】この様な本例の転がり軸受用回転精度測定
装置は、互いに平行な上板14と下板15とを支柱1
6、16により結合して成るフレーム17を含んで構成
される。このうちの下板15には、駆動装置18を支持
固定している。この駆動装置18は上記内輪6を、ラジ
アル方向の位置決めを図った状態で回転駆動するもの
で、鉛直方向に配置されて図示しないモータにより回転
駆動されるスピンドル軸1aと、このスピンドル軸1a
を回転自在に支持する精密軸受装置2aとから構成され
る。この精密軸受装置2aは、上記スピンドル軸1aを
極めて高精度に、より具体的にはラジアル方向に亙る変
位を僅少に抑えて支持するもので、静圧気体軸受を使用
する。上記内輪6はこの様なスピンドル軸1aの上端部
に、がたつきなく外嵌固定されている。 【0013】一方、上記上板14には、支持装置19を
支持固定している。この支持装置19は、上記外輪8を
回転しない状態で支持するもので、上記外輪8にアキシ
ャル荷重を付加する機能と、この外輪8がラジアル方向
に円滑に変位する事を許容する機能とを有する。上記ア
キシャル荷重を付与する機能を発揮させる為、上記上板
14の中央部に形成した保持孔20部分に、シリンダ部
材21を固定している。そして、このシリンダ部材21
の底板部22に形成した通孔23に押圧ロッド27を、
昇降のみ自在に(回転不能に)挿通している。この押圧
ロッド27の上端部に固設した鍔部24の上面と、上記
シリンダ部材21の中間部に昇降自在に嵌装した受板2
5の下面との間には、圧縮ばね26を設けている。従っ
て、上記押圧ロッド27は、この圧縮ばね26の弾力に
見合う力で下方に押圧されている。又、上記シリンダ部
材21の上端開口部に被着した蓋板28の中心部にはね
じ孔(図示せず)を形成し、このねじ孔に調節ねじ29
を螺合させている。上記受板25の上下位置は、この調
節ねじ29を回転させる事により調節自在である。従っ
て、上記圧縮ばね26により上記押圧ロッド27に付与
されるアキシャル荷重も、上記調節ねじ29を回転させ
る事により調節自在である。 【0014】一方、上記外輪8がラジアル方向に円滑に
変位する事を許容する機能を発揮させるべく、上記支持
装置19は次の様に構成している。この支持装置19の
下端部には、上記外輪8を抱持する為のホルダ30を設
けている。このホルダ30の下面には、上記外輪8を
(隙間嵌めで)抱持する為の円形凹孔31を、上面には
直径方向に亙る凸部32を、それぞれ形成している。
尚、上記円形凹孔31に外輪8を隙間嵌めで抱持するの
は、締まり嵌めにする事により、この外輪8が弾性変形
する事を防止する為である。但し、これらホルダ30と
外輪8とが一体的に動く様に、上記円形凹孔31の内側
で外輪8ががたつかない様にしている。従って、外輪8
とホルダ30とを一体的に取り扱える様にすべく、これ
ら両部材8、30を(例えば外輪8の外周面と円形凹孔
31の内周面との間に接着剤を塗布する事により)接着
する事は差し支えない。又、上記押圧ロッド27の下端
部には、係止板33を固定し、この係止板33の下面
に、やはり直径方向に亙る凸部34を形成している。そ
して、これらホルダ30の上面と係止板33の下面との
間に、燒結材料等により造られた多孔質材35を挟持し
て、ラジアル方向に亙る変位を許容する静圧気体軸受3
6を構成している。 【0015】即ち、上記多孔質材35の下面には上記ホ
ルダ30上面の凸部32の幅寸法W32よりも僅かに大き
な幅寸法W37(W37>W32)を有する凹溝37を、同じ
く多孔質材35の上面には上記係止板33下面の凸部3
4の幅寸法W34よりも僅かに大きな幅寸法W38を有する
凹溝38を、それぞれ多孔質材35の直径方向に亙っ
て、互いに直角方向にずらせて形成している。これら各
凸部32、34及び凹溝37、38の幅寸法W32
34、W37、W38は、それぞれの長さ方向に亙り変化す
る事なく一定である。又、多孔質材35の一部には給気
口39を設けて、この多孔質材35内に圧縮空気を送り
込み自在としている。更に好ましくは、上記多孔質材3
5の外周面に塗装を施す、粘着テープを貼付する等の
所謂目つぶし加工を施して、この外周面部分から圧縮空
気が噴出するのを防止している。従って、上記給気口3
9から多孔質材35内に送り込まれた圧縮空気は、上記
各凹溝37、38の内面から上記各凸部32、34の表
面に向けて噴出し、これら各凹溝37、38の内面と各
凸部32、34の表面との間に圧縮空気の膜を形成す
る。同様に上記圧縮空気は、上記多孔質材35の上下両
面から係止板33の下面及びホルダ30の上面に向けて
噴出し、これら上下両面同士の間に圧縮空気の膜を形成
する。この状態で上記ホルダ30は上記係止板33の下
側に非接触状態で支持されて、この係止板33に対して
回転する事はないが、ラジアル方向に関しては極く軽い
力で変位自在となる。又、前記圧縮ばね26によるアキ
シャル荷重は、上記圧縮空気の膜を介して伝達自在であ
る。 【0016】更に、前記フレーム17の一部で上板14
の下面と下板15の上面との間に存在し、上記外輪8を
保持したホルダ30の外周面に対向する部分には、非接
触式の変位センサ11を設けている。この変位センサ1
1としては、レーザドップラ振動計等、被測定物である
外輪8を保持したホルダ30の外周面に接触する事な
く、この外周面の微小変位を測定自在なものを使用す
る。図示の例では、この様な変位センサ11を1個のみ
設けているが、前述した従来構造の場合と同様に2個設
ける事もできる。 【0017】上述の様に構成される本発明の転がり軸受
用回転精度測定装置により、転がり軸受の回転非同期振
れを測定する場合には、駆動装置18のスピンドル軸1
aを回転させる事により、このスピンドル軸1aの上端
部に固定した内輪6を回転させる。又、支持装置19に
組み込まれた圧縮ばね26により外輪8にアキシャル荷
重を付加しつつ、上記変位センサ11により外輪8のラ
ジアル方向に関する変位を測定する。外輪8は支持装置
19に組み込まれた静圧気体軸受36により、ラジアル
方向に関する円滑な変位を自在に支持されているので、
転動体7、7の歪み等により上記外輪8にラジアル方向
の力が加わると、この外輪8が上記歪み等の分だけ、ラ
ジアル方向に変位する。即ち、前述した従来構造の場合
とは異なり、上記外輪8がラジアル方向に変位する事を
阻止する方向に作用する抵抗は極く小さいので、上記歪
み等が上記外輪8のラジアル方向に亙る変位として、ほ
ぼそのまま表われる。そして、この変位を上記変位セン
サ11が検出する。 【0018】尚、図示の例では、JIS B1515
(1988)に規定された転がり軸受のラジアル振れの
測定方法に準拠すべく、外輪8を回転させず、内輪6を
回転させる構造に就いて示したが、本発明の転がり軸受
用回転精度測定装置は、これとは逆の状態で実施する事
もできる。即ち、内輪に回転しない軸を内嵌支持すると
共に、外輪を回転させ、上記軸のラジアル方向に関する
変位を測定する事によっても、転がり軸受の回転非同期
振れを測定できる。この場合、外輪が第一の軌道輪とな
り、内輪が第二の軌道輪となる。そして、上記軸を、静
圧気体軸受により支持する。 【0019】 【発明の効果】本発明の転がり軸受用回転精度測定装置
は、以上に述べた通り構成され作用するので、各種転が
り軸受の回転非同期振れを正確に測定する事ができる。
従って、転がり軸受の回転非同期振れの低減を目的とす
る開発の為のデータの信頼性を高めて、転がり軸受並び
に転がり軸受を組み込んだ各種機器の性能向上に寄与す
る事ができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rotational accuracy measuring device for a rolling bearing, wherein the rolling bearing is incorporated into various types of rotating supports in order to realize a higher-performance rotating support. It is used to measure the rotation accuracy. [0002] ball bearing, roller bearing, a rolling bearing such as a tapered roller bearing, ball, roller, due to the shape of the rolling element such as a tapered roller portion, called the rotation asynchronous vibration, one rotation It is known that a minute displacement in the radial direction that is not repeated every time occurs. Hard disk drive (HDD)
In the case of a rolling bearing incorporated in a rotation support portion of a high-precision device such as the one described above, such a small displacement may affect the performance. Thus, by measuring the rotation accuracy of the rolling bearing, when the rotating asynchronous runout is present, is possible corresponding to eliminate this, it is important to improve the performance of various devices. [0003] As a device for measuring the rotational accuracy of a rolling bearing for such a purpose, a device described in JP-A-7-103815 is conventionally known. 4 and 5 show a conventional apparatus described in this publication. The spindle shaft 1 is rotatably supported by a precision bearing device 2, and is rotationally driven by a motor 3 via a belt 4. An inner ring 6 of a rolling bearing 5 which is an object to be measured is externally fitted and fixed to a tip end portion (right end portion in FIG. 4) of the spindle shaft 1. Around the inner ring 6, an outer ring 8 is provided via a plurality of rolling elements 7, 7.
Are freely supported relative to the inner ring 6. [0004] One end face (left end face in FIG. 4) of the preloading jig 9 is abutted against one end face (right end face in FIG. 4) of the outer ring 8, and this preloading jig 9 is interposed via a vibration isolating rubber 10. , Against the outer ring 8. Therefore, a preload is applied to the rolling bearing 5 at the time of measurement, and the rotation of the outer ring 8 is prevented regardless of the rotation of the inner ring 6. A non-contact type displacement sensor 11a is provided around the outer ring 8 as described above.
11b are provided in a state of being shifted in phase by 90 degrees in the circumferential direction. The detection signals of these two displacement sensors 11a and 11b are input to the control unit 13 via the amplifier 12. [0005] The in measuring rotational deflection asynchronous rolling bearing 5, while rotating the inner ring 6 via the spindle shaft 1 by the motor 3, the displacement sensor 11 of the pair
a, by 11b, measuring the <br/> displacement about the radial direction of the outer ring 8. This displacement measurement is based on the spindle 1
Is performed in relation to the rotation phase. The control unit 13, the both displacement sensor 11a, and a 11b measured value and the spindle shaft 1 of the rotation phase, obtaining the rotational run asynchronous to the rolling bearing 5. In the case of the conventional apparatus shown in FIGS. 4 and 5, since the radial displacement of the outer ring 8 is restrained to some extent by the preloading jig 9, the measured value obtained is It tends to be lower than the actual value. That is, since the preloading jig 9 is pressed against one end surface of the outer ring 8 via the vibration-proof rubber 10, it can be displaced to some extent in the radial direction. However, it is inevitable that the resistance to the displacement in the radial direction is caused. Then, the measured value becomes lower by the resistance. [0007] Rotation Non In addition the synchronous deflection as a rolling bearing for rotation accuracy measuring device for measuring also bearing a single spindle shaft by a pair of rolling bearings which are spaced apart, the spindle Devices for measuring the behavior of a shaft during rotation have been widely used. However,
Such is the case of the conventional device, since the rotational run asynchronous rolling bearing not be measured in the rolling bearing itself, difficult to obtain measurements reliable. The rotation accuracy measuring device for a rolling bearing of the present invention has been invented in view of such circumstances. [0008] A rotation accuracy measuring device for a rolling bearing according to the present invention is a rolling bearing comprising a plurality of rolling elements provided between a first race and a second race. The non-rotational synchronous runout is measured. Such a rotation accuracy measuring device for a rolling bearing of the present invention is a driving device that rotationally drives the first bearing ring in a state of positioning in the radial direction,
A support device for supporting the second bearing ring in a non-rotating state, and a displacement sensor for measuring a displacement of the second bearing ring in the radial direction are provided. The support device is directly on the upper surface of a holder for holding the second race.
The protrusion formed in the radial direction and the
Diametrically formed projections on the underside of the locking plate
Between the upper surface of the holder and the lower surface of the locking plate.
Widths larger than the width of each of the above protrusions on both lower surfaces
Concave grooves formed in the direction perpendicular to each other
The second bearing ring is formed by a hydrostatic gas bearing made of a porous material.
The radial displacement can be smoothly changed in the radial direction.
The axial load is applied to the compressed air film
It can be added via the . [0009] By the action] above rolling bearing rotation accuracy measuring device of the present invention constructed as in the case of measuring the rotational run asynchronous rolling bearing rotates the first bearing ring by a drive device while adding an axial load to the second bearing ring by a support device, for measuring the displacement about the radial direction of the second bearing ring by the displacement sensor. Since the second race is freely supported by the support device to smoothly displace in the radial direction, when a radial force is applied to the second race due to a deformation of a rolling element or the like, the second race is rotated. Is displaced in the radial direction by the amount of the distortion or the like. And
This displacement is detected by a displacement sensor. [0010] In the case of the rolling bearing rotation accuracy measuring device of the present invention, since the second bearing ring is suppressed slight resistance acting against that displacement in the radial direction, the rotation non-homogeneous <br / > The measured value of period fluctuation does not become low, and it can be obtained accurately. 1 to 3 show an example of an embodiment of the present invention. A rolling bearing 5 (deep groove ball bearing) as an object to be measured includes a plurality of rolling elements 7, 7 (balls) between an inner ring 6 as a first race and an outer ring 8 as a second race. It is provided. The rotation accuracy measuring device for rolling bearings of this example is:
By measuring the radial <br/> about the displacement of the outer ring 8 constituting such a rolling bearing 5, of the rolling bearing 5
Rotation asynchronous runout is measured. The rotation accuracy measuring device for a rolling bearing according to the present embodiment as described above comprises an upper plate 14 and a lower plate 15 which are parallel to each other.
It is configured to include a frame 17 connected by 6 and 16. The driving device 18 is supported and fixed to the lower plate 15 among them. The driving device 18 rotationally drives the inner ring 6 in a state of positioning in the radial direction. The driving device 18 is arranged in a vertical direction and is rotated by a motor (not shown).
And a precision bearing device 2a that rotatably supports. The precision bearing device 2a supports the spindle shaft 1a with extremely high precision, more specifically, with a small displacement in the radial direction, and uses a hydrostatic gas bearing. The inner ring 6 is externally fitted and fixed to the upper end of the spindle shaft 1a without play. On the other hand, a supporting device 19 is supported and fixed to the upper plate 14. The support device 19 supports the outer ring 8 in a non-rotating state, and has a function of applying an axial load to the outer ring 8 and a function of allowing the outer ring 8 to be smoothly displaced in the radial direction. . In order to exert the function of applying the axial load, a cylinder member 21 is fixed to a holding hole 20 formed in the center of the upper plate 14. And, this cylinder member 21
The pressing rod 27 is inserted into the through hole 23 formed in the bottom plate portion 22 of
It is inserted freely (not rotatable) only up and down. An upper surface of a flange portion 24 fixedly provided at an upper end portion of the pressing rod 27 and a receiving plate 2 fitted to an intermediate portion of the cylinder member 21 so as to be movable up and down.
5, a compression spring 26 is provided. Therefore, the pressing rod 27 is pressed downward by a force corresponding to the elasticity of the compression spring 26. A screw hole (not shown) is formed at the center of the cover plate 28 attached to the upper end opening of the cylinder member 21, and an adjusting screw 29 is formed in the screw hole.
Is screwed. The vertical position of the receiving plate 25 can be adjusted by rotating the adjusting screw 29. Therefore, the axial load applied to the pressing rod 27 by the compression spring 26 can also be adjusted by rotating the adjusting screw 29. On the other hand, in order to exhibit a function of allowing the outer ring 8 to be smoothly displaced in the radial direction, the supporting device 19 is configured as follows. At the lower end of the support device 19, a holder 30 for holding the outer ring 8 is provided. On the lower surface of the holder 30, a circular concave hole 31 for holding the outer ring 8 (by fitting a gap) is formed, and on the upper surface, a convex portion 32 extending in the diameter direction is formed.
The reason why the outer ring 8 is held in the circular concave hole 31 by a clearance fit is to prevent the outer ring 8 from being elastically deformed by a tight fit. However, the outer ring 8 is prevented from rattling inside the circular recess 31 so that the holder 30 and the outer ring 8 move integrally. Therefore, the outer ring 8
The two members 8, 30 are bonded (for example, by applying an adhesive between the outer peripheral surface of the outer ring 8 and the inner peripheral surface of the circular concave hole 31) so that the holder and the holder 30 can be integrally handled. You can do it. At the lower end of the pressing rod 27, a locking plate 33 is fixed, and on the lower surface of the locking plate 33, a convex portion 34 also extending in the diameter direction is formed. Then, a porous material 35 made of a sintering material or the like is sandwiched between the upper surface of the holder 30 and the lower surface of the locking plate 33 to allow displacement in the radial direction.
6. That is, a concave groove 37 having a width W 37 (W 37 > W 32 ) slightly larger than the width W 32 of the projection 32 on the upper surface of the holder 30 is formed on the lower surface of the porous material 35. Similarly, on the upper surface of the porous material 35, the projection 3 on the lower surface of the locking plate 33 is provided.
The concave groove 38 having a width dimension W 38 slightly larger than the width W 34 of 4, respectively over the diameter direction of the porous material 35 are formed to be shifted in mutually perpendicular directions. The width dimension W 32 of each of the convex portions 32, 34 and the concave grooves 37, 38,
W 34 , W 37 , and W 38 are constant without changing in the length direction. Further, an air supply port 39 is provided in a part of the porous material 35 so that compressed air can be sent into the porous material 35 freely. More preferably, the porous material 3
The outer peripheral surface of 5, subjected to coating, subjected to so-called blinding processing where such sticking the adhesive tape, the compressed air is prevented from being ejected from the outer peripheral surface portion. Therefore, the air supply port 3
The compressed air sent into the porous material 35 from the nozzle 9 blows out from the inner surface of each of the concave grooves 37, 38 toward the surface of each of the convex portions 32, 34, and the inner surface of each of the concave grooves 37, 38 A film of compressed air is formed between the projections 32 and 34 and the surfaces thereof. Similarly, the compressed air is ejected from the upper and lower surfaces of the porous material 35 toward the lower surface of the locking plate 33 and the upper surface of the holder 30 to form a film of compressed air between the upper and lower surfaces. The holder 30 in this state is supported in a non-contact state on the lower side of the locking plate 33, but it is not to rotate relative to the locking plate 33, with very light force is related to the radial direction It can be displaced freely. The axial load of the compression spring 26 can be transmitted through the compressed air film. Further, a part of the frame 17 is
A non-contact type displacement sensor 11 is provided in a portion that is present between the lower surface of the lower plate 15 and the upper surface of the lower plate 15 and faces the outer peripheral surface of the holder 30 holding the outer ring 8. This displacement sensor 1
As 1, a device such as a laser Doppler vibrometer capable of measuring a minute displacement of the outer peripheral surface without contacting the outer peripheral surface of the holder 30 holding the outer ring 8 as an object to be measured is used. In the illustrated example, only one such displacement sensor 11 is provided, but two such displacement sensors may be provided as in the case of the above-described conventional structure. [0017] The above rolling bearing rotation accuracy measuring device of the present invention constructed as in the case of measuring the rotational run asynchronous rolling bearings, the spindle shaft 1 of the driving device 18
By rotating a, the inner ring 6 fixed to the upper end of the spindle shaft 1a is rotated. Also, while adding an axial load to the outer ring 8 by a compression spring 26 incorporated in the supporting device 19, for measuring the displacement about the radial direction of the outer ring 8 by the displacement sensor 11. The outer ring 8 is supported device externally pressurized gas bearing 36 incorporated in 19, because it is supported so smooth displacement about the radial direction,
When a radial force is applied to the outer ring 8 due to the distortion of the rolling elements 7, the outer ring 8 is displaced in the radial direction by the distortion or the like. That is, unlike the above-described conventional structure, the resistance acting in the direction for preventing the outer ring 8 from being displaced in the radial direction is extremely small, so that the distortion or the like is a displacement of the outer ring 8 in the radial direction. Appears almost as is. Then, the displacement is detected by the displacement sensor 11. In the example shown, JIS B1515
In order to comply with the method for measuring the radial run-out of a rolling bearing specified in (1988), a structure in which the inner ring 6 is rotated without rotating the outer ring 8 is shown. Can be implemented in the opposite situation. That is, while the inner fitting supporting a shaft that does not rotate the inner ring to rotate the outer ring, also by measuring the <br/> displacement about the radial direction of the shaft, it can measure the rotational run asynchronous rolling bearing. In this case, the outer race becomes the first race, and the inner race becomes the second race. Then, the shaft is supported by a hydrostatic gas bearing. [0019] [Effect of the Invention rolling bearing rotation accuracy measuring device of the present invention, because they act configured as mentioned above, the rotational run asynchronous various rolling bearings can be accurately measured.
Therefore, the reduction of the rotational run asynchronous rolling bearing increase the reliability of data for the development of interest, it can contribute to the improved performance of various devices incorporating a rolling bearing and the rolling bearing.

【図面の簡単な説明】 【図1】本発明の実施の形態の1例を示す部分縦断正面
図。 【図2】支持装置部分の部分分解斜視図。 【図3】図1のA部拡大図。 【図4】従来装置の1例を示す部分縦断側面図。 【図5】図4の部分B−B視図。 【符号の説明】 1、1a スピンドル軸 2、2a 精密軸受装置 3 モータ 4 ベルト 5 転がり軸受 6 内輪 7 転動体 8 外輪 9 予圧治具 10 防振ゴム 11、11a、11b 変位センサ 12 増幅器 13 制御部 14 上板 15 下板 16 支柱 17 フレーム 18 駆動装置 19 支持装置 20 保持孔 21 シリンダ部材 22 底板部 23 通孔 24 鍔部 25 受板 26 圧縮ばね 27 押圧ロッド 28 蓋板 29 調節ねじ 30 ホルダ 31 円形凹孔 32 凸部 33 係止板 34 凸部 35 多孔質材 36 静圧気体軸受 37、38 凹溝 39 給気口
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a partial vertical sectional front view showing an example of an embodiment of the present invention. FIG. 2 is a partially exploded perspective view of a support device. FIG. 3 is an enlarged view of a portion A in FIG. 1; FIG. 4 is a partial vertical sectional side view showing one example of a conventional apparatus. FIG. 5 is a view taken along a line BB in FIG. 4; [Description of Signs] 1, 1a Spindle shaft 2, 2a Precision bearing device 3 Motor 4 Belt 5 Rolling bearing 6 Inner ring 7 Rolling element 8 Outer ring 9 Preloading jig 10 Anti-vibration rubber 11, 11a, 11b Displacement sensor 12 Amplifier 13 Control unit 14 upper plate 15 lower plate 16 column 17 frame 18 driving device 19 support device 20 holding hole 21 cylinder member 22 bottom plate 23 through hole 24 flange 25 receiving plate 26 compression spring 27 pressing rod 28 cover plate 29 adjusting screw 30 holder 31 circular Concave hole 32 Convex part 33 Lock plate 34 Convex part 35 Porous material 36 Static pressure gas bearing 37, 38 Concave groove 39 Air supply port

Claims (1)

(57)【特許請求の範囲】 【請求項1】 第一の軌道輪と第二の軌道輪との間に複
数の転動体を設けて成る転がり軸受の非回転同期振れを
測定する転がり軸受用回転精度測定装置であって、上記
第一の軌道輪をラジアル方向の位置決めを図った状態で
回転駆動する駆動装置と、上記第二の軌道輪を回転しな
い状態で支持する支持装置と、この第二の軌道輪のラジ
アル方向に関する変位を測定する変位センサとを備え、
上記支持装置は、上記第二の軌道輪を抱持する為のホル
ダの上面に直径方向に形成された凸部と、このホルダの
上方に設けられた係止板の下面に直径方向に形成された
凸部と、これらホルダの上面と係止板の下面との間に挟
持された、上下両面にそれぞれ上記各凸部の幅寸法より
も大きな幅寸法を有する凹溝を、互いに直角方向にずら
せて形成した多孔質材とから成る静圧気体軸受により、
第二の軌道輪のラジアル方向への円滑な変位を自在とす
ると共に、アキシャル荷重を、上記静圧気体軸受部分の
圧縮空気の膜を介して付加自在とした転がり軸受用回転
精度測定装置。
(57) [Claim 1] For a rolling bearing for measuring non-rotational synchronous runout of a rolling bearing having a plurality of rolling elements provided between a first race and a second race. A rotation accuracy measuring device, a driving device that rotationally drives the first raceway in a state of positioning in the radial direction, a support device that supports the second raceway without rotating, A displacement sensor for measuring displacement of the second race in the radial direction,
The support device includes a holder for holding the second race.
The protrusion formed in the upper surface of the holder in the diameter direction and the holder
Diameter direction formed on the lower surface of the locking plate provided above
Between the projection and the upper surface of these holders and the lower surface of the locking plate.
On both upper and lower sides
Grooves with a large width are shifted in the direction perpendicular to each other.
With a hydrostatic gas bearing consisting of a porous material
Enables smooth radial displacement of the second bearing ring
And the axial load of the static pressure gas bearing
A rotation accuracy measuring device for rolling bearings that can be freely added via a film of compressed air .
JP33501995A 1995-12-22 1995-12-22 Rotational accuracy measuring device for rolling bearings Expired - Lifetime JP3428264B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33501995A JP3428264B2 (en) 1995-12-22 1995-12-22 Rotational accuracy measuring device for rolling bearings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33501995A JP3428264B2 (en) 1995-12-22 1995-12-22 Rotational accuracy measuring device for rolling bearings

Publications (2)

Publication Number Publication Date
JPH09178613A JPH09178613A (en) 1997-07-11
JP3428264B2 true JP3428264B2 (en) 2003-07-22

Family

ID=18283841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33501995A Expired - Lifetime JP3428264B2 (en) 1995-12-22 1995-12-22 Rotational accuracy measuring device for rolling bearings

Country Status (1)

Country Link
JP (1) JP3428264B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014167425A (en) * 2013-02-28 2014-09-11 Honda Motor Co Ltd Inspection equipment for hollow assembly and inspection method of hollow assembly
CN108507785A (en) * 2018-04-10 2018-09-07 西安交通大学 A kind of dynamic characteristic test device and method under main shaft gyration state
CN109238706A (en) * 2018-10-18 2019-01-18 东莞市国森科精密工业有限公司 A kind of tooling device of crossed roller bearing running accuracy detection

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3405235B2 (en) 1998-11-24 2003-05-12 日本精工株式会社 Rotational accuracy and dynamic torque measuring device for radial rolling bearings
JP4744699B2 (en) * 2001-01-09 2011-08-10 株式会社ミツトヨ Rotating shaft holding method and runout check bush
JP2003004592A (en) * 2001-06-22 2003-01-08 Koyo Seiko Co Ltd Device for measuring rotational accuracy of rolling bearing
EP2371992B1 (en) * 2010-04-01 2013-06-05 Applied Materials, Inc. End-block and sputtering installation
JP6091970B2 (en) 2013-04-12 2017-03-08 Ntn株式会社 Inspection device
CN103411760B (en) * 2013-07-31 2017-05-10 江苏鑫信润科技有限公司 Service life performance test bench of flexible sealing structure of rotary air pre-heater
CN103543013B (en) * 2013-10-17 2015-12-02 华中科技大学 A kind of static pressure Axial and radial load maintainer
CN106032973B (en) * 2015-03-12 2018-08-14 成都豪能科技股份有限公司 Straight oil groove synchronizes ring forging comprehensive check tool
CN105004293B (en) * 2015-05-05 2017-09-29 萧山工业研究院 A kind of axial integrated location variation measuring method of hub bearing lasso part raceway groove
CN106769050B (en) * 2017-02-16 2023-06-16 通用技术集团昆明机床股份有限公司 Measuring device for measuring rigidity of bearing group of machine tool spindle
CN113478412B (en) * 2021-06-30 2022-11-18 人本股份有限公司 Microminiature bearing ring diameter class detects fixture device
CN114777706B (en) * 2022-05-30 2024-04-05 山东洛轴所轴承研究院有限公司 High-precision measuring device for rotation precision of double-row cylindrical roller bearing
CN114942138B (en) * 2022-07-27 2022-10-21 中科雷凌激光科技(山东)有限公司 Bearing performance testing device convenient to detect
CN116940798A (en) * 2022-08-25 2023-10-24 嘉兴倍创网络科技有限公司 Bearing inner ring fixing device for bearing detection

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014167425A (en) * 2013-02-28 2014-09-11 Honda Motor Co Ltd Inspection equipment for hollow assembly and inspection method of hollow assembly
CN108507785A (en) * 2018-04-10 2018-09-07 西安交通大学 A kind of dynamic characteristic test device and method under main shaft gyration state
CN109238706A (en) * 2018-10-18 2019-01-18 东莞市国森科精密工业有限公司 A kind of tooling device of crossed roller bearing running accuracy detection

Also Published As

Publication number Publication date
JPH09178613A (en) 1997-07-11

Similar Documents

Publication Publication Date Title
JP3428264B2 (en) Rotational accuracy measuring device for rolling bearings
JP3405235B2 (en) Rotational accuracy and dynamic torque measuring device for radial rolling bearings
US6446339B2 (en) Preloading method for preload-adjustable rolling bearing
JP3419015B2 (en) Manufacturing method of rolling bearing device to which preload is applied
US6394657B1 (en) Preloading method for preload-adjustable rolling bearing and manufacture of the same
JPH0510835A (en) Method and device for measuring pre-load of antifriction bearing
JP3452010B2 (en) Rotation accuracy measuring device for rolling bearings
JPH10115315A (en) Method for reducing shaft run out of rolling bearing unit and rolling bearing unit reduced in shaft runout
JP3254825B2 (en) Manufacturing method of rolling bearing device to which preload is applied
JP3736250B2 (en) Method and apparatus for measuring radial resonance frequency of rolling bearing unit
JP5253358B2 (en) Rotary encoder controlled air spindle
JP2002317819A (en) Preload applying device for double row rolling bearing device
JPH047815B2 (en)
JP2003056559A (en) Roller bearing device provided with pre-load
JPH102329A (en) Bearing device
JP4075358B2 (en) Bearing unit assembly method and bearing preload applying device
JP3832217B2 (en) Disk runout measurement method for input shaft assembly unit
JP2002235739A (en) Double row ball bearing unit
JP2002327765A (en) Manufacturing method of rolling bearing unit
JPH06307439A (en) Rolling bearing device for electrically driven motor
JP2001059519A (en) Double row rolling bearing device
JP2000230547A (en) Pivot bearing device
JPH0430366A (en) Spindle mechanism of magnetic disk device
JP2002349560A (en) Double row preload bearing device
JP2006070918A (en) Bearing device and method of manufacturing the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080516

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090516

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100516

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100516

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140516

Year of fee payment: 11

EXPY Cancellation because of completion of term