JP3426649B2 - Method for producing nickel active material for alkaline storage battery - Google Patents

Method for producing nickel active material for alkaline storage battery

Info

Publication number
JP3426649B2
JP3426649B2 JP12978993A JP12978993A JP3426649B2 JP 3426649 B2 JP3426649 B2 JP 3426649B2 JP 12978993 A JP12978993 A JP 12978993A JP 12978993 A JP12978993 A JP 12978993A JP 3426649 B2 JP3426649 B2 JP 3426649B2
Authority
JP
Japan
Prior art keywords
nickel
active material
zinc
electrode
storage battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12978993A
Other languages
Japanese (ja)
Other versions
JPH06338322A (en
Inventor
章史 山脇
真介 中堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP12978993A priority Critical patent/JP3426649B2/en
Publication of JPH06338322A publication Critical patent/JPH06338322A/en
Application granted granted Critical
Publication of JP3426649B2 publication Critical patent/JP3426649B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、アルカリ蓄電池用ニッ
ケル活物質の製造方法に関する。 【0002】 【従来の技術】従来より、ニッケル活物質の活性度(充
電効率)を高めるためには、水酸化ニッケル結晶に歪み
を生じさせる、つまり結晶の秩序性を乱すのが有効であ
ることが知られている。そして、この為の方法として、
ニッケルと亜鉛の固溶体を形成させる方法が提案されて
いる(特開平2−30061号公報)。 【0003】この方法は、ニッケルと亜鉛の混晶塩にア
ルカリを作用させ、ニッケル及び亜鉛を共沈させて固溶
体化を図る方法である。この方法によれば、亜鉛の存在
によって水酸化ニッケル結晶に歪みが生じて、結晶の秩
序が乱されるため、活物質の活性度が高まることにな
る。 【0004】 【発明が解決しようとする課題】しかしながら、上記方
法では次のような課題が残されていた。即ち、亜鉛はニ
ッケルよりも溶解度が高く析出速度が遅いため、混晶塩
中の亜鉛の一部がアルカリ溶液中に溶出した後、再度活
物質中に取り込まれて析出する。このため、固溶化しな
い亜鉛単独の結晶も形成され、不活性層となったり、
鉛ーニッケルの固溶体化が不十分なものとなったりす
。よって、活物質の活性度を充分に高めることができ
なかった。 【0005】本発明は係る課題を解決するためになされ
たものであって、ニッケルと亜鉛との固溶体化をより一
層促進するための方法を確立し、活性度に優れたアルカ
リ蓄電池用ニッケル活物質の製造方法を提供するのを目
的とする。 【0006】 【0007】【課題を解決するための手段】 上記目的を達成するため
請求項1の本発明は、アルカリ蓄電池用ニッケル活物質
の製造方法において、亜鉛を3mol%〜9mol%含
有するニッケル塩に、亜鉛を添加したアルカリ水溶液を
作用させてニッケル極の活物質を生成させることを特徴
とする。 【0008】 【0009】【作用】 上記構成の請求項1に係るアルカリ蓄電池用ニ
ッケル活物質の製造方法では、亜鉛を3mol%〜9m
ol%含有するニッケル塩に、予め亜鉛を添加したアル
カリ水溶液を作用させて活物質を生成させるので、ニッ
ケルおよび亜鉛を共沈させて固溶体化を図る際に、亜鉛
の溶解度がニッケルよりも高く析出速度が遅というメカ
ニズムを用いて、亜鉛―ニッケルの固溶体化が不十分と
なるのを抑制することが出来る。 従って、ニッケルと亜
鉛の混晶塩を形成させるに際し、ニッケルと亜鉛の析出
速度を近づけ、固溶体化を好適に進行させることができ
る。 【0010】 【実施例】 〔実施例〕水酸化ナトリウム水溶液に酸化亜鉛を飽和に
達するまで溶解させて、亜鉛飽和のアルカリ水溶液を調
製し、他方、硝酸亜鉛を、0,3,6,9mol%をそ
れぞれ含有させた硝酸ニッケル溶液を調整する。 【0011】次いで、化学含浸法により、多孔度85%
の焼結式ニッケル基板にニッケル活物質を充填した。こ
の充填における特徴的事項について説明すると、先ず前
記硝酸ニッケル溶液を前記ニッケル基板に含浸させ
後、この基板を前記亜鉛−アルカリ水溶液に浸漬し、細
孔内に、ニッケルと亜鉛の固溶体を形成した水酸化ニッ
ケル活物質を充填した。尚、前記以外の操作は常法に従
って行なった。 【0012】このようにして、亜鉛をそれぞれ0,3,
6,9mol%含有した水酸化ニッケル活物質の充填さ
れたニッケル電極(正極)を作製した。尚、以上のよう
にして作製された亜鉛含有量が0mol%及び9mol
%の水酸化ニッケル電極についても、説明の都合上、以
下では本発明電極として扱うこととする。 〔比較例〕 亜鉛化合物を添加していない水酸化ナトリウム水溶液を
用いたこと以外は、上記実施例と同様にして水酸化ニッ
ケル電極を作製した。 〔実験1〕 上記で調整した本発明水酸化ニッケル活物質結晶、及び
比較例の水酸化ニッケル活物質結晶について、下記条件
でX線回析分析法を行ない、(001)面の面間隔を求
めた。 【0013】そして、両結晶の前記面間隔の比較によ
り、固溶化状態を評価した。 (X線回析分析の条件) ・TARGET/FILTER(MONOCHRO):CuKα ・VOLTAGE/CURRENT :30kV/12.5mA ・SCAN SPEED :5 DEG/MIN 尚、結晶の固溶体化が進行すると、結晶構造に均一な
みが生じるので、X線回析ピークの位置がシフトする。 【0014】従って、面間隔の大小から歪みの程度を知
り、固溶化状態を評価できることになる。表1にX線回
析分析法により測定された(001)面の面間隔を示
し、図1に活物質中の亜鉛含有量(mol%)と面間隔
(Å)の関係をグラフで示す。 【0015】 【表1】 【0016】表1から明らかなように、亜鉛含有量0%
では本発明品と比較品に差が認められなかった。これは
亜鉛によって結晶構造が乱れることがないからである。
一方、亜鉛含有量が3%〜9%の場合では、本発明品が
比較品に比べ、明らかに面間隔が小さくなっていた。ま
た図1から、活物質中の亜鉛含有量が増加するにつれ面
間隔が小さくなることが判り、その程度は本発明方法に
より調整された活物質の方が大きいことが判った。 【0017】これらのことから、本発明方法によれば、
ニッケルと亜鉛の固溶体化を充分に進行させることがで
きることが判る。 〔実験2〕 上記で作製した本発明電極及び比較例電極を用い、対極
にニッケル板を用いて、比重1.23の水酸化カリウム
水溶液の電解液中で、当該電極の充放電効率を調べた。 【0018】尚、充放電効率は、理論容量を1時間で充
電できる電流値を1Cとし、1/3Cで120分間充電
した後、1/3Cでニッケル板基準の電位が−0.8V
になるまで放電し、(放電量/充電量)×100
(%)で評価した。その結果を表2、及び図2に示す。 【0019】 【表2】 【0020】表2から、亜鉛含有量が3%〜9%の場合
において、本発明品が比較品に比べて、充放電効率が高
かったまた図2から、活物質中の亜鉛含有量(mol
%)が増加するに伴い、充電効率が上昇することが判
った。 〔実験3〕 上記で作製した本発明電極及び実施例電極について、そ
れらの極板利用率を求めた。 【0021】なお、極板利用率は、0.1Cで24時間
充電して、満充電状態とした後、1/3Cでニッケル板
基準の電位が−0.8Vになるまで放電して、(放電
量/充電量)×100(%)を算出することによって
求めた。結果を表3に示し、活物質中の亜鉛含有量と極
板利用率の関係を図3に示す。 【0022】 【表3】 【0023】表3及び図3から明らかなように、亜鉛含
有量が3〜9%の本発明品は比較品に比べ、いずれも極
板利用率が高かった。しかし、本発明品であっても亜鉛
含有量が9%の場合には、極板利用率が83.5%とか
なり低い値となった。このことから、ニッケル活物質中
の亜鉛含有量は6%以下が好ましいことが判る。 【0024】以上、実験1〜3の結果を総合すると、ニ
ッケル活物質中に亜鉛が少なくとも含有されている必要
がある(表1、2)。その一方、亜鉛含有量は6%以下
であるとが好ましい(表3)と結論される。 【0025】 【発明の効果】本発明によれば、亜鉛とニッケルとの固
溶体化を好適に進行させた水酸化ニッケル活物質となす
ことができ、斯かるニッケル活物質は高い活性度を有し
たものとなる。したがって、本発明に係るアルカリ蓄電
池用ニッケル活物質の製造方法によれば、活性度に優れ
たニッケル活物質を提供できることになる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is, Knitting for an alkaline storage battery
The present invention relates to a method for producing a keel active material . 2. Description of the Related Art Conventionally, in order to increase the activity (charging efficiency) of a nickel active material, a nickel hydroxide crystal has to be strained.
Cause, that is the disruptive of crystals are known to be effective. And as a method for this,
A method for forming a solid solution of nickel and zinc has been proposed (JP-A-2-30061). In this method, an alkali acts on a mixed crystal salt of nickel and zinc, and nickel and zinc are coprecipitated to form a solid solution. According to this method, distortion of the nickel hydroxide crystal is caused by the presence of zinc , and the order of the crystal is disturbed, so that the activity of the active material is increased. [0004] However, the above method has the following problems. That is, since zinc has a higher solubility and a lower deposition rate than nickel, a part of zinc in the mixed crystal salt is eluted into the alkaline solution and then taken in the active material again to precipitate. For this reason, crystals of zinc alone that do not form a solid solution are also formed, resulting in an inert layer or insufficient formation of a solid solution of zinc-nickel .
You . Therefore, the activity of the active material could not be sufficiently increased. The present invention has been made in order to solve the above-mentioned problems, and has established a method for further promoting the solid solution of nickel and zinc, and has established an alkali having an excellent activity.
An object of the present invention is to provide a method for producing a nickel active material for a rechargeable battery . [0006] [0007] [Means for Solving the Problems] In order to achieve the above purpose
The present invention according to claim 1 is a nickel active material for an alkaline storage battery.
The method for producing zinc, wherein zinc is contained in an amount of 3 to 9 mol%.
An alkaline aqueous solution obtained by adding zinc to a nickel salt having
It is characterized by producing an active material of nickel electrode by acting
And [0008] [0009] [action] d for an alkaline storage battery according to claim 1 of the structure
In the method for producing a nickel active material, zinc is added in an amount of 3 mol% to 9 m.
ol% containing nickel salt with zinc added in advance.
Since the active material is generated by the action of the potassium solution,
When co-precipitating Kel and zinc to form a solid solution, zinc
Is higher than nickel and has a slower deposition rate.
Insufficient solid solution of zinc-nickel
Can be suppressed. Therefore, when forming a mixed crystal salt of nickel and zinc, the deposition rate of nickel and zinc can be made close to each other, and the solid solution can be favorably advanced. [Example] [0010] Zinc oxide is dissolved in an aqueous sodium hydroxide solution until saturation is reached to prepare a zinc-saturated alkaline aqueous solution, while zinc nitrate is dissolved in 0, 3, 6, 9 mol%. To prepare a nickel nitrate solution. Then, a porosity of 85% was obtained by a chemical impregnation method.
Was filled with a nickel active material. To explain the characteristic matter in this filling, first, the nickel nitrate solution was impregnated into the nickel substrate .
Thereafter, the substrate is immersed in the aqueous solution of zinc-alkali to form a nickel-zinc solid solution in the pores.
Kell active material was charged. Operations other than those described above were performed according to a conventional method. In this way, zinc is added to each of 0, 3,
A nickel electrode (positive electrode) filled with a nickel hydroxide active material containing 6.9 mol% was prepared. In addition, the zinc content produced as described above is 0 mol% and 9 mol%.
% Nickel hydroxide electrode will be treated as the electrode of the present invention below for convenience of explanation. Comparative Example A nickel hydroxide electrode was produced in the same manner as in the above example, except that an aqueous solution of sodium hydroxide containing no zinc compound was used. Experiment 1 above adjusted invention nickel hydroxide active material crystal, and the nickel hydroxide active material crystals of Comparative Example, subjected to X-ray diffraction analysis under the following conditions, determine the spacing of (001) plane Was. Then, the solid solution state was evaluated by comparing the above-mentioned plane spacing of both crystals. (X-ray diffraction conditions of the diffraction analysis) · TARGET / FILTER (MONOCHRO) : CuKα · VOLTAGE / CURRENT: 30kV / 12.5mA · SCAN SPEED: 5 DEG / MIN Incidentally, the solid solution of the crystal proceeds, a uniform crystal structure Since distortion occurs, the position of the X-ray diffraction peak shifts. Therefore, it is possible to know the degree of distortion from the magnitude of the plane spacing and evaluate the solid solution state. Table 1 shows the plane spacing of the (001) plane measured by X-ray diffraction analysis, and FIG. 1 is a graph showing the relationship between the zinc content (mol%) in the active material and the plane spacing (Å). [Table 1] As is clear from Table 1, the zinc content is 0%.
No difference was observed between the product of the present invention and the comparative product. This is because the crystal structure is not disturbed by zinc.
On the other hand, when the zinc content was 3% to 9%, the product of the present invention clearly had a smaller interplanar spacing than the comparative product. FIG. 1 also shows that the interplanar spacing decreases as the zinc content in the active material increases, and that the degree of the decrease is greater in the active material adjusted by the method of the present invention. From these, according to the method of the present invention,
It can be seen that solid solution formation of nickel and zinc can be sufficiently advanced. [Experiment 2] Potassium hydroxide having a specific gravity of 1.23 using the electrode of the present invention and the electrode of the comparative example prepared above and a nickel plate as a counter electrode.
The charge / discharge efficiency of the electrode was examined in an aqueous electrolyte solution . The charge / discharge efficiency is calculated by charging the theoretical capacity in one hour.
The current value that can be charged is 1C, and after charging at 1 / 3C for 120 minutes, the potential of the nickel plate reference is -0.8V at 1 / 3C.
Discharged until, (discharge capacity / charge capacity) × 100
(%). The results are shown in Table 2 and FIG. [Table 2] From Table 2, it was found that when the zinc content was 3% to 9%, the product of the present invention had higher charge / discharge efficiency than the comparative product. From FIG. 2, it was found that the zinc content in the active material (mol
%) As the increase, charge discharge collection efficiency has been found to be elevated. [Experiment 3] With respect to the electrode of the present invention and the electrode of the example produced as described above, the electrode plate utilization was determined. The electrode utilization rate is as follows: after charging at 0.1 C for 24 hours to make the battery fully charged, at 1/3 C the nickel plate is used.
The potential of the reference is discharged to -0.8 V, it was determined by calculating the (discharge capacity <br/> amount / charge capacity) × 100 (%). The results are shown in Table 3, and the relationship between the zinc content in the active material and the electrode plate utilization is shown in FIG. [Table 3] As is clear from Table 3 and FIG. 3, all of the products of the present invention having a zinc content of 3 to 9% had higher electrode plate utilization rates than the comparative products. However, even in the case of the product of the present invention, when the zinc content was 9%, the electrode plate utilization was a very low value of 83.5%. This indicates that the zinc content in the nickel active material is preferably 6% or less. As described above, when the results of Experiments 1 to 3 are combined, it is necessary that at least zinc is contained in the nickel active material (Tables 1 and 2). On the other hand, it is concluded that the zinc content is preferably 6% or less (Table 3). According to the present invention, a nickel hydroxide active material in which solid solution of zinc and nickel has been suitably advanced can be obtained, and the nickel active material has a high activity. It will be. Therefore, the alkaline storage according to the present invention
According to the production method of the pond nickel active material, the activity is excellent
Thus, a nickel active material can be provided.

【図面の簡単な説明】 【図1】ニッケル活物質中の亜鉛含有量と充放電効率の
関係を示す図である。 【図2】ニッケル活物質中の亜鉛含有量と、水酸化ニッ
ケル活物質の(001)面面間隔との関係を示す図であ
る。 【図3】ニッケル活物質中の亜鉛含有量と、極板利用率
との関係を示す図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a view showing a relationship between a zinc content in a nickel active material and charge / discharge efficiency. FIG. 2 shows the zinc content in the nickel active material and the nickel hydroxide content.
It is a figure which shows the relationship with the (001) plane spacing of a Kell active material . FIG. 3 is a graph showing a relationship between a zinc content in a nickel active material and an electrode plate utilization factor.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01M 4/52 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 7 , DB name) H01M 4/52

Claims (1)

(57)【特許請求の範囲】 【請求項1】 亜鉛を3mol%〜9mol%含有する
ニッケル塩に、亜鉛を添加したアルカリ水溶液を作用さ
せてニッケル極の活物質を生成させることを特徴とする
アルカリ蓄電池用ニッケル活物質の製造方法。
(57) [Claim 1] Zinc is contained in an amount of 3 mol% to 9 mol%.
An alkaline aqueous solution containing zinc added is acted on the nickel salt.
The active material of the nickel electrode
A method for producing a nickel active material for an alkaline storage battery.
JP12978993A 1993-05-31 1993-05-31 Method for producing nickel active material for alkaline storage battery Expired - Fee Related JP3426649B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12978993A JP3426649B2 (en) 1993-05-31 1993-05-31 Method for producing nickel active material for alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12978993A JP3426649B2 (en) 1993-05-31 1993-05-31 Method for producing nickel active material for alkaline storage battery

Publications (2)

Publication Number Publication Date
JPH06338322A JPH06338322A (en) 1994-12-06
JP3426649B2 true JP3426649B2 (en) 2003-07-14

Family

ID=15018274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12978993A Expired - Fee Related JP3426649B2 (en) 1993-05-31 1993-05-31 Method for producing nickel active material for alkaline storage battery

Country Status (1)

Country Link
JP (1) JP3426649B2 (en)

Also Published As

Publication number Publication date
JPH06338322A (en) 1994-12-06

Similar Documents

Publication Publication Date Title
KR100454542B1 (en) Non-Sintered Nickel Electrode For Alkaline Battery
JPH09237630A (en) Active material and positive electrode for alkali storage battery
JP3371473B2 (en) Paste positive electrode plate for alkaline storage batteries
JP4330832B2 (en) Positive electrode active material for alkaline storage battery, positive electrode and alkaline storage battery
JP3426649B2 (en) Method for producing nickel active material for alkaline storage battery
CN1337750A (en) Method for preparing active material of positive electrode of alkali accumulator and nickle and electrode and alkali accumulator
JP2889669B2 (en) Non-sintered nickel positive electrode plate for alkaline storage batteries
JP3408008B2 (en) Non-sintered nickel electrode for alkaline storage battery and method for producing the same
JP3623320B2 (en) Nickel electrode active material and nickel electrode using the nickel electrode active material
JPH09147905A (en) Paste type nickel electrode for alkaline storage battery
JP3324781B2 (en) Alkaline secondary battery
JPH0845508A (en) Active material for nickel electrode and nickel electrode
JP3253476B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP3594322B2 (en) Non-sintered nickel positive electrode for alkaline storage battery and method for producing the same
JP2735887B2 (en) Zinc active material for alkaline storage battery and method for producing the same
JP3204275B2 (en) Nickel electrode for alkaline storage battery
JPH10172562A (en) Cathode active material, manufacture thereof, and manufacture of cathode
JPH11185746A (en) Positive electrode material for alkaline storage battery
JPH09147904A (en) Paste type nickel electrode for alkaline storage battery
JP2562669B2 (en) Alkaline storage battery
JP2975130B2 (en) Electrodes for alkaline storage batteries
JP2810460B2 (en) Positive plate for alkaline storage battery
JPH0619985B2 (en) Cathode for alkaline storage battery
JP2638055B2 (en) Manufacturing method of paste-type cadmium negative electrode for alkaline storage battery
JP2975673B2 (en) Method for producing cadmium negative electrode plate

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080509

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090509

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090509

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100509

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees