JP3426208B2 - Method of regenerating silicon single crystal wafer with copper film and reclaimed wafer - Google Patents

Method of regenerating silicon single crystal wafer with copper film and reclaimed wafer

Info

Publication number
JP3426208B2
JP3426208B2 JP2000355475A JP2000355475A JP3426208B2 JP 3426208 B2 JP3426208 B2 JP 3426208B2 JP 2000355475 A JP2000355475 A JP 2000355475A JP 2000355475 A JP2000355475 A JP 2000355475A JP 3426208 B2 JP3426208 B2 JP 3426208B2
Authority
JP
Japan
Prior art keywords
copper
film
wafer
copper film
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000355475A
Other languages
Japanese (ja)
Other versions
JP2002158207A (en
Inventor
文明 丸山
貴信 内田
仁 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mimasu Semiconductor Industry Co Ltd
Original Assignee
Mimasu Semiconductor Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mimasu Semiconductor Industry Co Ltd filed Critical Mimasu Semiconductor Industry Co Ltd
Priority to JP2000355475A priority Critical patent/JP3426208B2/en
Publication of JP2002158207A publication Critical patent/JP2002158207A/en
Application granted granted Critical
Publication of JP3426208B2 publication Critical patent/JP3426208B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • ing And Chemical Polishing (AREA)
  • Weting (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、例えば銅膜の付着
した半導体シリコン単結晶ウエーハから銅膜を除去して
ウエーハを再生する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for recovering a wafer by removing a copper film from a semiconductor silicon single crystal wafer having a copper film attached thereto.

【0002】[0002]

【従来の技術】半導体基板等の再生加工において、例え
ばシリコン単結晶基板上の金属膜の除去を行う工程で
は、従来からフッ酸、硫酸等を使用していた。除去する
金属膜としては、Al、W、Ti等があり、高濃度の上
記酸類にウエーハを浸漬処理することにより容易に除去
することができた。
2. Description of the Related Art In the process of recycling a semiconductor substrate or the like, hydrofluoric acid, sulfuric acid or the like has been conventionally used in the step of removing a metal film on a silicon single crystal substrate, for example. The metal film to be removed includes Al, W, Ti, etc., and could be easily removed by immersing the wafer in a high concentration of the above acids.

【0003】ところで、近年、デバイスの高速化に対応
するため、低抵抗の配線材料として銅配線が実用化され
ており、銅膜を付着したウエーハが多くなってきてい
る。しかし、銅自身は従来の薬品では除去できず、ま
た、銅はシリコン基板バルク内へ容易に拡散してしまう
こと、および再生処理すると工程が銅で汚染され、他の
製品を銅で汚染させる可能性があるため、今までは銅膜
付着シリコン単結晶ウエーハは再生加工できないものと
されていた。
By the way, in recent years, copper wiring has been put to practical use as a low resistance wiring material in order to cope with the speeding up of devices, and the number of wafers to which a copper film is attached is increasing. However, copper itself cannot be removed by conventional chemicals, and copper easily diffuses into the silicon substrate bulk, and reprocessing can contaminate the process with copper and contaminate other products. Therefore, it has been considered that a copper film-adhered silicon single crystal wafer cannot be reprocessed until now.

【0004】[0004]

【発明が解決しようとする課題】そこで、本発明は、こ
のような従来の問題点に鑑みてなされたもので、シリコ
ン単結晶ウエーハ上の銅膜を容易に溶解除去可能なエッ
チング薬液組成を探索し、効率的で確実な除去方法と銅
汚染の殆ど無いシリコン単結晶ウエーハを得ることがで
きる再生方法を提供することを主たる目的とする。
Therefore, the present invention has been made in view of such conventional problems, and searches for an etching chemical solution composition capable of easily dissolving and removing a copper film on a silicon single crystal wafer. However, it is a main object to provide an efficient and reliable removal method and a recycling method capable of obtaining a silicon single crystal wafer with almost no copper contamination.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に、本発明に関わる銅膜付着シリコン単結晶ウエーハの
再生方法は、銅膜の付着したシリコン単結晶ウエーハを
再生する方法であって、少なくとも硫酸−過酸化水素液
で銅膜を溶解除去する工程、銅膜を除去したウエーハの
表面を鏡面研磨する工程を含むことを特徴としている。
In order to solve the above-mentioned problems, a method of reclaiming a copper film-adhered silicon single crystal wafer according to the present invention is a method of remanufacturing a silicon single crystal wafer having a copper film adhered thereto, that are characterized by comprising the step of step of dissolving and removing the copper film with hydrogen peroxide solution, the surface of the wafer to remove the copper film mirror polished - at least sulfuric acid.

【0006】このように、少なくとも硫酸−過酸化水素
液で銅膜を溶解除去する工程と銅膜を除去したウエーハ
の表面を鏡面研磨する工程とを行えば、銅膜を容易にし
かも急速に溶解、除去することができるとともに、銅汚
染のない、極めて清浄な鏡面ウエーハに再生することが
できる。
Thus, if at least the step of dissolving and removing the copper film with a sulfuric acid-hydrogen peroxide solution and the step of mirror-polishing the surface of the wafer from which the copper film has been removed are performed, the copper film can be easily and rapidly dissolved. It can be removed and can be regenerated into a very clean mirror-polished wafer without copper contamination.

【0007】この場合、硫酸−過酸化水素液の組成(容
積比)を、硫酸(96%):過酸化水素(30%)=
1:10〜40とすることが好ましい。このような組成
範囲内では、高いエッチングレートで銅を選択的に効率
よく溶解除去することができる。好ましくは1:15〜
25、さらに好ましくは1:20である。1:10未満
では激しく発熱して反応するとともに銅エッチングレー
トは急速に低下し、膜除去分布にムラが生じることがあ
る。1:40を越えるとエッチングレートが低減し、生
産性の低下を招くようになる。また、この組成ならば薬
液を昇温することなく常温にて銅をエッチングすること
ができるという利点もある。
In this case, the composition (volume ratio) of the sulfuric acid-hydrogen peroxide solution is defined as sulfuric acid (96%): hydrogen peroxide (30%) =
1: 10 to 40 and it is not preferable to be. Within such a composition range, copper can be selectively and efficiently dissolved and removed at a high etching rate. Preferably from 1:15
25, more preferably 1:20. If it is less than 1:10, heat is generated violently to react with the copper etching rate, and the copper etching rate is rapidly lowered, which may cause unevenness in the film removal distribution. When it exceeds 1:40, the etching rate is reduced and the productivity is lowered. This composition also has the advantage that copper can be etched at room temperature without raising the temperature of the chemical solution.

【0008】そしてこの場合、銅膜の溶解除去を、スピ
ンエッチング方式、多段浸漬エッチング方式あるいは銅
分離機能付き浸漬エッチング方式で行うことが好まし
い。これらの方式によれば、処理ウエーハはエッチング
中に、銅を含まない新硫酸−過酸化水素液あるいは銅が
低濃度の硫酸−過酸化水素液と接触することになるの
で、銅膜が除去されたウエーハ表面や元々銅膜の無かっ
た裏面が溶解した銅によって再汚染されることがなく、
銅汚染の殆ど無い清浄な再生ウエーハに仕上げることが
できる。
In this case, it is preferable that the copper film is dissolved and removed by a spin etching method, a multi-step immersion etching method, or an immersion etching method with a copper separation function.
Yes. According to these methods, the copper film is removed because the treated wafer comes into contact with new sulfuric acid-hydrogen peroxide solution containing no copper or copper with a low-concentration sulfuric acid-hydrogen peroxide solution during etching of the treated wafer. The front surface of the wafer and the back surface, which originally had no copper film, are not recontaminated by the molten copper,
A clean recycled wafer with almost no copper contamination can be finished.

【0009】次に、本発明に関わる銅膜付着シリコン単
結晶ウエーハの再生方法は、銅膜付着シリコン単結晶ウ
エーハが、銅膜下層として銅拡散バリア膜またはSiO
2 膜を有するものであることが好ましい。すなわち、本
発明の再生方法が適用される銅膜付着シリコン単結晶ウ
エーハは、その銅膜下層として銅拡散バリア膜を有する
もの、銅拡散バリア膜の下層である酸化膜(SiO2
やウエーハバルク内部まで銅が拡散浸透し、汚染されて
いないものには特に有効である。銅拡散バリア膜がない
場合は、銅膜形成時等に、銅がウエーハバルク内部にま
で拡散浸透することがあり、著しい場合はウエーハの再
生が困難になることがあるからである。
Next, in the method for reproducing a copper film-adhered silicon single crystal wafer according to the present invention, the copper film-adhered silicon single crystal wafer is a copper diffusion barrier film or SiO as a copper film lower layer.
It is not preferable are those having 2 film. That is, a copper film-adhered silicon single crystal wafer to which the reproducing method of the present invention is applied has a copper diffusion barrier film as a lower layer of the copper film, and an oxide film (SiO 2 ) which is a lower layer of the copper diffusion barrier film.
Copper is diffused and permeated into the inside of wafer bulk, and it is especially effective for those not contaminated. This is because if there is no copper diffusion barrier film, copper may diffuse and permeate into the inside of the wafer bulk when the copper film is formed, and if it is remarkable, it may be difficult to regenerate the wafer.

【0010】この場合、銅膜を溶解除去した後、鏡面研
磨をする前に、銅拡散バリア膜を溶解除去することが好
ましい。このように銅膜を溶解除去した後に、銅拡散バ
リア膜を溶解除去すれば、現われた表面には銅は全く存
在せず、例え存在しても原子レベルのものが極めて低濃
度で付着しているに過ぎないのでその後の研磨等の工程
で完全に除去され、再生ウエーハとして使用することが
できる。
[0010] In this case, after dissolving and removing the copper film, before the mirror-polishing, it is not better good <br/> to dissolve and remove the copper diffusion barrier film. If the copper diffusion barrier film is dissolved and removed after the copper film is thus dissolved and removed, copper does not exist at all on the surface that appears, and even if it exists, atomic level ones are attached at an extremely low concentration. Since it is merely present, it is completely removed in the subsequent steps such as polishing and can be used as a recycled wafer.

【0011】そしてこの場合、銅拡散バリア膜の除去
を、フッ酸−過酸化水素液で行うことが有効である。
のように銅拡散バリア膜を、フッ酸−過酸化水素液でエ
ッチングすれば、容易にかつ急速に溶解除去することが
できる。また、銅拡散バリア膜の下層に酸化膜(SiO
2 )が存在する場合は、これもほぼ同時に容易に溶解除
去することができるので効率的である。
[0011] Then, in this case, the removal of the copper diffusion barrier film, hydrofluoric acid - Ru is valid der be performed with hydrogen peroxide solution. By etching the copper diffusion barrier film with a hydrofluoric acid-hydrogen peroxide solution in this way, the copper diffusion barrier film can be easily and rapidly dissolved and removed. Further, an oxide film (SiO 2) is formed under the copper diffusion barrier film.
When 2 ) is present, it can be easily dissolved and removed almost simultaneously, which is efficient.

【0012】さらにこの場合、銅拡散バリア膜を溶解除
去した後、鏡面研磨をする前に、硫酸−過酸化水素液ま
たは硝酸で洗浄することが好ましい。このように銅拡散
バリア膜を溶解除去した後にウエーハ表面に原子レベル
の銅が付着している場合もあるので、硫酸−過酸化水素
液または硝酸で再度洗浄することによって、表面の銅濃
度を所定の原子濃度以下まで確実に低減することができ
る。
[0012] Further, in this case, after dissolving and removing copper diffusion barrier film, prior to the mirror polishing, sulfate - have preferably be washed with hydrogen peroxide solution or nitric acid. After the copper diffusion barrier film is dissolved and removed in this way, atomic level copper may be attached to the wafer surface.Therefore, the copper concentration on the surface can be adjusted to a predetermined level by washing again with sulfuric acid-hydrogen peroxide solution or nitric acid. It is possible to reliably reduce the atomic concentration to less than or equal to.

【0013】加えてこの場合、硫酸−過酸化水素液また
は硝酸で洗浄した後、鏡面研磨をする前に、アルカリま
たは酸エッチングを行うことが好ましい。このように、
硫酸−過酸化水素液または硝酸で洗浄した後、仕上げに
アルカリまたは酸エッチングを行なえば、殆ど銅原子汚
染の無い清浄なウエーハに再生することができる。
[0013] Additionally this case, the sulfuric acid - washed with hydrogen peroxide solution or nitric acid, before mirror polishing, have preferably be made alkali or acid etching. in this way,
After cleaning with a sulfuric acid-hydrogen peroxide solution or nitric acid, if an alkaline or acid etching is carried out for finishing, a clean wafer having almost no copper atom contamination can be regenerated.

【0014】そして、本発明の方法で再生された再生ウ
エーハは、殆ど銅原子汚染の無い清浄なウエーハとな
る。
The regenerated wafer regenerated by the method of the present invention is a clean wafer with almost no copper atom contamination.
It

【0015】さらに本発明の再生ウエーハは、銅膜付着
シリコンウエーハを再生したウエーハであるにもかかわ
らず、表面銅濃度が1.0×1010atoms/cm2
以下と殆ど銅原子汚染の無い極めて清浄なウエーハとな
る。
Further, although the reclaimed wafer of the present invention is a reclaimed wafer of a copper film-adhered silicon wafer, the surface copper concentration is 1.0 × 10 10 atoms / cm 2.
An extremely clean wafer with almost no copper atom contamination below
It

【0016】以下、本発明を詳細に説明するが、本発明
はこれらに限定されるものではない。本発明者らは、銅
膜付着シリコン単結晶ウエーハの再生に際し、シリコン
単結晶ウエーハ上の銅膜を容易に溶解除去するために
は、硫酸−過酸化水素液が極めて有効であることを知見
し、諸条件を精査して本発明を完成させたものである。
The present invention will be described in detail below, but the present invention is not limited thereto. The present inventors have found that a sulfuric acid-hydrogen peroxide solution is extremely effective for easily dissolving and removing the copper film on the silicon single crystal wafer when the copper film-adhered silicon single crystal wafer is regenerated. The present invention has been completed by carefully examining various conditions.

【0017】先ず、銅膜エッチング液を探索し、その適
切な組成を求めた。これまでの各種知見からシリコンウ
エーハを侵さないとともに銅を溶解し得る溶液として硫
酸−過酸化水素液に絞り込み、下記のような試験を行っ
て、銅との反応性を観察し、エッチングレートを求め
た。
First, a copper film etching solution was searched for and an appropriate composition thereof was determined. From various knowledge so far, narrow down to sulfuric acid-hydrogen peroxide solution as a solution that can dissolve copper while not attacking silicon wafers, and perform the following test to observe the reactivity with copper and obtain the etching rate. It was

【0018】エッチング装置:スピンエッチング機、処
理ウエーハ:銅膜蒸着ウエーハ、直径200mm(8イ
ンチ)、銅膜厚さ:10μm、 銅拡散バリア膜:50
Å、 酸化膜:1000Å、銅膜除去用薬液:硫酸(9
6%)と過酸化水素(30%)の組成比(容積)を表1
のように変えて試験した、ウエーハ回転数:1000r
pm、薬液流量:1L/min、 エッチング時間:約
15秒、 温度:常温(22〜28℃)。
Etching apparatus: spin etching machine, processing wafer: copper film vapor deposition wafer, diameter 200 mm (8 inches), copper film thickness: 10 μm, copper diffusion barrier film: 50
Å 、 Oxide film: 1000Å 、 Copper film removal chemical: Sulfuric acid
6%) and hydrogen peroxide (30%) composition ratio (volume) is shown in Table 1.
Wafer rotation speed: 1000r
pm, chemical flow rate: 1 L / min, etching time: about 15 seconds, temperature: normal temperature (22 to 28 ° C.).

【0019】評価:エッチングレートは、エッチング前
後のウエーハの重量変化を取り代に換算することによっ
て求めた。また銅との反応性は、反応状態を目視により
観察した。試験の結果を表1と図1に示す。図1は、硫
酸:過酸化水素の組成比に対するエッチングレートを表
している。
Evaluation: The etching rate was determined by converting the weight change of the wafer before and after etching into a stock removal. Regarding the reactivity with copper, the reaction state was visually observed. The test results are shown in Table 1 and FIG. FIG. 1 shows the etching rate with respect to the composition ratio of sulfuric acid: hydrogen peroxide.

【0020】[0020]

【表1】 [Table 1]

【0021】表1と図1から、硫酸−過酸化水素液の組
成比が1:10〜40の範囲で銅との反応性がよく、銅
を効率的に溶解除去し、エッチングレートが高いことが
判る。特に1:20前後が好ましい。1:10未満では
全く反応しない(1:0)か、発熱を伴い急激に反応し
た後、直ぐに黒色酸化銅を生成し、溶解反応は停止して
しまう。従って、面内膜除去分布にムラが発生し易い
(1:0〜10未満)。また1:40を越えるとエッチ
ングレートは低下し、遂には溶解反応は起こらなくなる
(0:1)。1:20の反応においては、銅の溶解量1
g/1Lにつき約1℃液温が上昇する発熱反応であるこ
とが判明した。そして上記銅膜溶解除去反応によって得
られた銅膜の全く無いウエーハ表面の銅汚染濃度は、V
PD−AAS法(気相分解−原子吸光分光法)で分析を
行った結果、約1.4×1011atoms/cm2 であ
った。従って、硫酸−過酸化水素液の組成比は、1:1
0〜40の範囲がよく、好ましくは1:15〜25、さ
らに好ましくは1:20とするのがよい。ここでVPD
−AAS法とは、ウエーハ表面をフッ酸蒸気にて気相分
解し、その後酸溶液にてウエーハ表面を液滴走査するこ
とにより不純物イオンを酸溶液中にとりこみ、この酸溶
液(回収液)を原子吸光分析にかける方法である。
From Table 1 and FIG. 1, when the composition ratio of the sulfuric acid-hydrogen peroxide solution is in the range of 1:10 to 40, the reactivity with copper is good, the copper is efficiently dissolved and removed, and the etching rate is high. I understand. Particularly, about 1:20 is preferable. If it is less than 1:10, it does not react at all (1: 0), or after reacting rapidly with heat generation, black copper oxide is immediately produced and the dissolution reaction is stopped. Therefore, unevenness in the in-plane film removal distribution is likely to occur (1: 0 to less than 10). On the other hand, if it exceeds 1:40, the etching rate lowers and finally the dissolution reaction does not occur (0: 1). In the reaction of 1:20, the dissolution amount of copper is 1
It was found to be an exothermic reaction in which the liquid temperature rises by about 1 ° C. per g / 1L. The copper contamination concentration on the surface of the wafer having no copper film obtained by the above copper film dissolution removal reaction is V
As a result of analysis by the PD-AAS method (gas phase decomposition-atomic absorption spectroscopy), it was about 1.4 × 10 11 atoms / cm 2 . Therefore, the composition ratio of sulfuric acid-hydrogen peroxide solution is 1: 1.
The range of 0 to 40 is good, preferably 1:15 to 25, and more preferably 1:20. VPD here
-The AAS method is to vapor-decompose the wafer surface with hydrofluoric acid vapor, and then to perform droplet scanning of the wafer surface with an acid solution to incorporate impurity ions into the acid solution, and to collect the acid solution (recovered solution). This is a method for atomic absorption analysis.

【0022】次に、銅膜の下層として銅拡散バリア膜が
存在する場合は、これを溶解除去する必要がある。例え
ば銅拡散バリア膜が厚さ50Åの場合は、フッ酸:過酸
化水素:水=100〜170:1:100〜170によ
って常温で容易に溶解除去することができる。また、銅
拡散バリア膜の下層として酸化膜(厚さ:約1000
Å)が存在する場合は、このフッ酸−過酸化水素液によ
って同時に容易に溶解除去することができる。
Next, if there is a copper diffusion barrier film as a lower layer of the copper film, it is necessary to dissolve and remove it. For example, when the copper diffusion barrier film has a thickness of 50Å, it can be easily dissolved and removed at room temperature with hydrofluoric acid: hydrogen peroxide: water = 100 to 170: 1: 100 to 170. An oxide film (thickness: about 1000 is formed as a lower layer of the copper diffusion barrier film.
When Å) is present, it can be easily dissolved and removed simultaneously with this hydrofluoric acid-hydrogen peroxide solution.

【0023】上記銅拡散バリア膜あるいは銅拡散バリア
膜+酸化膜(SiO2 )の無い銅膜付着ウエーハの場合
は、元々銅膜蒸着時やその後の熱処理等により銅がウエ
ーハバルク部まで深く拡散浸透している場合があり、銅
膜を溶解除去しただけではウエーハ表面からバルク部に
かけて銅が高濃度で残って再生ウエーハを作製すること
が困難な場合がある。すなわち、たとえ、その後の研磨
工程により汚染部分を除去するとしてもウエーハの厚さ
が不足し再生ウエーハを得ることができない場合もあ
る。従って本発明の再生方法は、銅膜の下層に銅拡散バ
リア膜を有する銅膜付着ウエーハに適用するとより有効
である。
In the case of the above-mentioned copper diffusion barrier film or the copper film adhesion wafer without the copper diffusion barrier film + oxide film (SiO 2 ), copper is diffused and penetrated deeply into the wafer bulk portion by vapor deposition of the copper film or subsequent heat treatment. In some cases, only by dissolving and removing the copper film, it may be difficult to produce a recycled wafer because copper remains at a high concentration from the wafer surface to the bulk portion. That is, even if the contaminated portion is removed by the subsequent polishing step, the thickness of the wafer may be insufficient and a reclaimed wafer may not be obtained. Therefore, the recycling method of the present invention is more effective when applied to a copper film-adhered wafer having a copper diffusion barrier film under the copper film.

【0024】次に、上記銅拡散バリア膜を溶解除去した
後のウエーハ表面にはまだ原子レベルの銅が付着してい
ることがあり、再生ウエーハとするにはこれを除去する
のが好ましい。再生ウエーハとしての目標値をVPD−
AAS法で1.0×1010atoms/cm2 以下、よ
り好ましくは1×109 atoms/cm2 以下として
このような原子レベルの銅を洗浄除去するには、もう一
度硫酸−過酸化水素液(例えば1:20)または硝酸を
用いれば良い。その結果、ウエーハ表面の銅濃度を、容
易に1.0×1010atoms/cm2 以下まで低減す
ることができる。
Next, atomic level copper may still adhere to the surface of the wafer after the copper diffusion barrier film has been dissolved and removed, and it is preferable to remove this to obtain a recycled wafer. The target value as a recycled wafer is VPD-
To remove such atomic level copper by washing with AAS method at 1.0 × 10 10 atoms / cm 2 or less, more preferably 1 × 10 9 atoms / cm 2 or less, sulfuric acid-hydrogen peroxide solution ( For example, 1:20) or nitric acid may be used. As a result, the copper concentration on the wafer surface can be easily reduced to 1.0 × 10 10 atoms / cm 2 or less.

【0025】前記硫酸−過酸化水素液(1:20)また
は硝酸による洗浄で1×109 atoms/cm2 以下
にならないウエーハは、仕上げにアルカリエッチング
(例えばNaOH)または酸エッチングで5〜10μm
エッチングすればほぼ確実に検出限界以下を達成するこ
とができる。従って、銅膜付着ウエーハから、極めて高
品質の再生ウエーハを得ることが可能になる。
Wafers which have not been washed with sulfuric acid-hydrogen peroxide solution (1:20) or nitric acid so as to have a density of 1 × 10 9 atoms / cm 2 or less are finished by alkali etching (for example, NaOH) or acid etching to 5-10 μm.
By etching, it is possible to almost certainly achieve the detection limit or lower. Therefore, it is possible to obtain an extremely high quality recycled wafer from the copper film-adhered wafer.

【0026】以上のような工程を行うことで表面の銅が
殆ど除去されたウエーハは、最後に鏡面研磨を行うこと
によって清浄な銅汚染の無い再生ウエーハに仕上げるこ
とができる。尚、鏡面研磨は、一般的な手法を用いれば
良く、例えば、研磨布を貼り付けた定盤に裏面を保持し
たウエーハの表面を回転させながら摺動するとともに研
磨剤を供給する方式で行えばよい。
The wafer from which most of the copper on the surface has been removed by performing the above steps can be finished into a clean recycled wafer free of copper contamination by finally performing mirror polishing. The mirror polishing may be carried out by a general method, for example, by a method of sliding while rotating the surface of the wafer having the back surface held on a surface plate having a polishing cloth attached thereto and supplying an abrasive. Good.

【0027】[0027]

【発明の実施の形態】以下、本発明の実施の形態を添付
した図面に基づいて具体的に説明するが、本発明はこれ
らに限定されるものではない。ここで、図2は本発明の
一例を示すフロー図である。図3は本発明の銅膜溶解除
去で使用する装置の例を示したもので、(a)スピンエ
ッチング方式、(b)銅分離機能付き浸漬エッチング装
置を説明する概要図である。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be specifically described below with reference to the accompanying drawings, but the present invention is not limited thereto. Here, FIG. 2 is a flowchart showing an example of the present invention. FIG. 3 shows an example of an apparatus used for dissolving and removing a copper film according to the present invention, and is a schematic view for explaining (a) a spin etching method and (b) an immersion etching apparatus with a copper separation function.

【0028】図2に基づき本発明の工程概要を述べる。
図2の(A)は、銅膜溶解除去工程で、銅膜付着シリコ
ン単結晶ウエーハの銅膜を硫酸ー過酸化水素液によって
溶解除去する工程である。(B)は、銅膜の下層として
銅拡散バリア膜あるいは銅拡散バリア膜と酸化膜(Si
2 )が存在する場合にはフッ酸−過酸化水素液により
これらの膜を溶解除去する工程である。(C)は、銅拡
散バリア膜を溶解除去した後のウエーハ表面にはまだ原
子レベルの銅が付着している場合があり、硫酸ー過酸化
水素液または硝酸で洗浄する工程である。(D)は、ウ
エーハ表面の銅濃度を一層低減し、確実に目標値以下に
する場合に行うアルカリまたは酸エッチング工程であ
る。(E)は、最後に行う鏡面研磨工程で清浄な銅汚染
の無い再生ウエーハに仕上げることができる。
The process outline of the present invention will be described with reference to FIG.
FIG. 2A is a step of dissolving and removing the copper film, which is a step of dissolving and removing the copper film of the copper film-adhered silicon single crystal wafer with a sulfuric acid-hydrogen peroxide solution. (B) is a copper diffusion barrier film or a copper diffusion barrier film and an oxide film (Si
When O 2 ) is present, it is a step of dissolving and removing these films with a hydrofluoric acid-hydrogen peroxide solution. (C) is a step of cleaning with a sulfuric acid-hydrogen peroxide solution or nitric acid, where atomic level copper may still adhere to the wafer surface after the copper diffusion barrier film is dissolved and removed. (D) is an alkali or acid etching step performed when the copper concentration on the surface of the wafer is further reduced and is surely made equal to or less than the target value. In the case of (E), a recycled wafer free from copper contamination can be finished in the final mirror polishing step.

【0029】ここで、本発明のポイントとなる銅膜の溶
解除去は、スピンエッチング、多段浸漬エッチングまた
は銅分離機能付き浸漬エッチング等で行うことができ
る。スピンエッチングで行うには、図3(a)に示した
ような装置を用いればよい。このスピンエッチングは、
例えば、図3(a)に示すように、ウエーハ支持台10
上にウエーハ11をその表面側がエッチング液供給ノズ
ル12に向けられるように固定し、ウエーハを回転させ
ながら、前記したようなエッチング液を供給する。この
ようなスピンエッチングによれば、エッチング液は表面
側にのみ接触し振り飛ばされるので、裏面の保護の必要
もなく表面側の銅膜のみを簡便に除去することができ
る。
Here, the dissolution and removal of the copper film, which is the point of the present invention, can be performed by spin etching, multi-step immersion etching, immersion etching with a copper separation function, or the like. In order to perform the spin etching, an apparatus as shown in FIG. 3 (a) may be used. This spin etching
For example, as shown in FIG.
The wafer 11 is fixed so that the front surface side thereof faces the etching solution supply nozzle 12, and the etching solution as described above is supplied while rotating the wafer. According to such spin etching, since the etching liquid contacts only the front surface side and is shaken off, it is not necessary to protect the back surface and only the copper film on the front surface side can be easily removed.

【0030】このスピンエッチング機を使用する方式で
は、銅膜溶解中は絶えず新硫酸−過酸化水素液をかけ流
し、かけ捨てにすれば被エッチングウエーハが再汚染さ
れる恐れはなく、高い生産性で銅膜溶解除去工程を行う
ことができる。
In the method using this spin etching machine, the fresh sulfuric acid-hydrogen peroxide solution is constantly sprinkled during the dissolution of the copper film, and if it is thrown away, there is no risk of recontamination of the wafer to be etched, and high productivity is achieved. The copper film dissolution and removal step can be performed.

【0031】また、図3(b)に示すように、銅分離機
能付き浸漬エッチング装置を用いてもよい。この装置
は、オーバーフロー受け樋4付きの浸漬エッチング槽3
を中心に、薬液供給装置5と循環ポンプ6と銅分離槽7
を配置して構成されている。該浸漬エッチング装置1に
おいて、銅膜溶解除去用の硫酸−過酸化水素液は薬液供
給装置5から浸漬エッチング槽3に供給され、該槽3内
に浸漬されているウエーハ2の銅膜と反応する。銅を溶
存した硫酸−過酸化水素液はオーバーフローされ、オー
バーフロー受け樋4を経て循環ポンプ6で銅分離槽7に
送られて銅を分離した後、浸漬エッチング槽3に戻り再
度オーバーフローとなって循環を続ける。一方、銅膜付
着ウエーハ2は浸漬エッチング槽3内に浸漬され、銅膜
が溶解除去されれば速やかに引上げられてリンス槽(不
図示)に移される。そして新銅膜付着ウエーハ2を新た
に浸漬する。
Further, as shown in FIG. 3B, an immersion etching apparatus with a copper separating function may be used. This equipment consists of an immersion etching tank 3 with an overflow receiving gutter 4.
Centered on the chemical solution supply device 5, circulation pump 6 and copper separation tank 7
Are arranged. In the immersion etching apparatus 1, a sulfuric acid-hydrogen peroxide solution for dissolving and removing a copper film is supplied from a chemical solution supply device 5 to the immersion etching tank 3 and reacts with the copper film of the wafer 2 immersed in the tank 3. . The sulfuric acid-hydrogen peroxide solution in which copper is dissolved overflows, is sent to the copper separation tank 7 by the circulation pump 6 through the overflow receiving gutter 4 to separate the copper, and then returns to the immersion etching tank 3 to be overflowed again and circulated. Continue. On the other hand, the copper film-adhered wafer 2 is immersed in the immersion etching bath 3 and, if the copper film is dissolved and removed, it is immediately pulled up and transferred to a rinse bath (not shown). Then, the new copper film-adhered wafer 2 is newly immersed.

【0032】前記銅分離槽7を例えば電極を設けた電解
槽とし、電解をかけて逆メッキして銅イオンを分離す
る。銅を分離した硫酸−過酸化水素液は浸漬エッチング
槽3に戻されて循環する。そして銅を分離した硫酸−過
酸化水素液はその反応性が劣化しているのでその一部を
連続的に系外に排出し、その排出量に見合う量を連続的
に供給して、槽内の銅イオン濃度を再汚染が起こらない
平衡値に保持するようにすれば、銅膜が除去されたウエ
ーハ2が銅イオンによって再汚染される可能性はなくな
ると共に、所定の銅溶解反応性(エッチングレート)を
保持することができる。
The copper separation tank 7 is, for example, an electrolytic tank provided with an electrode, and electrolysis is performed to carry out reverse plating to separate copper ions. The sulfuric acid-hydrogen peroxide solution from which copper has been separated is returned to the immersion etching tank 3 and circulated. Since the reactivity of the sulfuric acid-hydrogen peroxide solution from which copper was separated has deteriorated, a portion of it is continuously discharged to the outside of the system, and an amount commensurate with the discharged amount is continuously supplied to the inside of the tank. If the copper ion concentration in the wafer is kept at an equilibrium value at which recontamination does not occur, the wafer 2 from which the copper film has been removed is not likely to be recontaminated by the copper ions, and a predetermined copper dissolution reactivity (etching Rate) can be held.

【0033】また、多段浸漬エッチング方式は、複数の
浸漬エッチング槽を直列に並べ、各槽内の硫酸−過酸化
水素液中銅イオン濃度を順次低濃度になるように設定し
たものである。例えば3槽から構成されるものとして、
先ず銅イオンが比較的高濃度の第1浸漬エッチング槽に
被エッチングウエーハを浸漬して銅膜の大部分を溶解除
去し、純水リンスを行った後、第1槽より銅の濃度を低
濃度に維持した第2浸漬エッチング槽に浸漬して残りの
大部分を溶解除去し、純水リンスを行った後、さらに第
2槽より低濃度に維持された第3浸漬エッチング槽に浸
漬して残りの全てを溶解除去した後、リンスして引上げ
る方式である。この方式でも、被エッチングウエーハの
銅膜を除去できるとともに槽内の溶出した銅イオンによ
ってウエーハを再汚染される恐れは殆どない。
In the multi-stage immersion etching method, a plurality of immersion etching baths are arranged in series and the concentration of copper ions in the sulfuric acid-hydrogen peroxide solution in each bath is set to be gradually lowered. For example, assuming that it consists of 3 tanks,
First, the wafer to be etched is immersed in a first immersion etching tank with a relatively high concentration of copper ions to dissolve and remove most of the copper film, followed by rinsing with pure water. After immersing it in the second immersion etching bath maintained at 10 to dissolve and remove most of the rest, and rinsing with pure water, further immersing it in the third immersion etching bath maintained at a lower concentration than the second bath This is a method of rinsing and pulling up after dissolving and removing all of the above. Even with this method, the copper film on the wafer to be etched can be removed, and there is almost no risk of recontamination of the wafer by the eluted copper ions in the bath.

【0034】[0034]

【実施例】以下、本発明の実施例を挙げて本発明を具体
的に説明するが、本発明はこれらに限定されるものでは
ない。 (実施例)下記条件の銅膜蒸着シリコンウエーハを、以
下の条件でスピンエッチングすることにより銅膜を溶解
除去した。ウエーハ:直径200mm、 銅膜厚さ:1
0μm、 銅拡散バリア膜:50Å、 酸化膜:100
0Å、エッチング装置:スピンエッチング機、 ウエー
ハ回転数:1000rpm、薬液流量:1L/min、
エッチング時間:約15秒、 温度:常温(22〜2
8℃)。銅膜除去用薬液:硫酸(96%)と過酸化水素
水(30%)の組成比(容積)=1:20。
EXAMPLES The present invention will be specifically described below with reference to examples of the present invention, but the present invention is not limited thereto. (Example) A copper film-deposited silicon wafer under the following conditions was spin-etched under the following conditions to dissolve and remove the copper film. Wafer: Diameter 200 mm, Copper film thickness: 1
0 μm, copper diffusion barrier film: 50Å, oxide film: 100
0Å, etching equipment: spin etching machine, wafer rotation speed: 1000 rpm, chemical flow rate: 1 L / min,
Etching time: about 15 seconds, temperature: normal temperature (22-2
8 ° C). Chemical composition for removing copper film: composition ratio (volume) of sulfuric acid (96%) and hydrogen peroxide solution (30%) = 1:20.

【0035】上記銅膜溶解除去反応によって得られた銅
膜を除去したウエーハ表面の銅汚染濃度は、VPD−A
AS法で分析の結果、約1.4×1011atoms/c
2であった。
The copper contamination concentration on the wafer surface from which the copper film obtained by the above copper film dissolution removal reaction is VPD-A
As a result of analysis by AS method, about 1.4 × 10 11 atoms / c
It was m 2 .

【0036】次に、銅膜の下層として存在する銅拡散バ
リア膜と酸化膜をスピンエッチング方式により溶解除去
した。銅拡散バリア膜(50Å)と酸化膜(1000
Å)を、フッ酸:過酸化水素:水=100:1:100
によって常温で溶解除去した。
Next, the copper diffusion barrier film and the oxide film existing as the lower layer of the copper film were dissolved and removed by the spin etching method. Copper diffusion barrier film (50Å) and oxide film (1000
Å), hydrofluoric acid: hydrogen peroxide: water = 100: 1: 100
Was dissolved and removed at room temperature.

【0037】上記銅拡散バリア膜を溶解除去した後のウ
エーハをさらに硫酸−過酸化水素液(1:20)を用い
てスピン洗浄を行った。その結果、表面銅濃度は、1.
0×1010atoms/cm2 まで低減することができ
た。
After the copper diffusion barrier film was dissolved and removed, the wafer was spin-washed with a sulfuric acid-hydrogen peroxide solution (1:20). As a result, the surface copper concentration was 1.
It could be reduced to 0 × 10 10 atoms / cm 2 .

【0038】さらに仕上げとしてアルカリエッチング液
(NaOH:50%)に浸漬することによって表面を5
μmエッチングを行った。そして、再びVPD−AAS
法で表面濃度を測定したところ、目標の1×109 at
oms/cm2 以下まで低減していた。
Further, as a finishing, the surface is made 5 by immersing in an alkaline etching solution (NaOH: 50%).
μm etching was performed. And again VPD-AAS
The surface concentration was measured by the method, and the target was 1 × 10 9 at
It was reduced to oms / cm 2 or less.

【0039】最後に、銅膜を除去した表面を鏡面研磨
(取り代:約5μm)することによって、清浄で銅汚染
の無い再生ウエーハに再生することができた。
Finally, the surface from which the copper film was removed was mirror-polished (removal allowance: about 5 μm), whereby a clean and free copper-contaminated recycled wafer could be regenerated.

【0040】なお、本発明は、上記実施形態に限定され
るものではない。上記実施形態は、例示であり、本発明
の特許請求の範囲に記載された技術的思想と実質的に同
一な構成を有し、同様な作用効果を奏するものは、いか
なるものであっても本発明の技術的範囲に包含される。
The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, has substantially the same configuration as the technical idea described in the scope of the claims of the present invention, and has any similar effect to the present invention. It is included in the technical scope of the invention.

【0041】例えば、上記実施形態においては、直径8
インチの銅膜付着シリコン単結晶ウエーハを再生する場
合につき例を挙げて説明したが、本発明はこれには限定
されず、直径10〜16インチあるいはそれ以上の銅膜
付着シリコン単結晶ウエーハあるいは6インチ以下の銅
膜付着シリコン単結晶ウエーハにも適用できる。
For example, in the above embodiment, the diameter is 8
Although the case of reclaiming an inch-sized copper film-adhered silicon single crystal wafer has been described by way of example, the present invention is not limited to this, and a copper film-adhered silicon single crystal wafer having a diameter of 10 to 16 inches or more or 6 is used. It can also be applied to silicon single crystal wafers with an inch or smaller copper film.

【0042】また、銅膜の溶解除去に、スピンエッチン
グ方式、多段浸漬エッチング方式または銅分離機能付き
浸漬エッチング方式が有効であると説明したが、本発明
はこれには限定されず、他の方式を用いてもよい。ま
た、本発明の工程には、適宜、純水によるリンスや、研
磨後の洗浄等の工程が付加されることがあり、このよう
な場合にも本発明が及ぶことは言うまでもない。
It has been explained that the spin etching method, the multi-step immersion etching method or the immersion etching method with a copper separation function is effective for dissolving and removing the copper film, but the present invention is not limited to this and other methods. May be used. In addition, it is needless to say that the process of the present invention may appropriately include a process of rinsing with pure water, a process of cleaning after polishing, and the like, and the present invention also applies to such a case.

【0043】[0043]

【発明の効果】以上、詳細に述べたように、本発明の銅
膜付着シリコン単結晶ウエーハの再生方法によれば、シ
リコン単結晶ウエーハ上の銅膜を容易にかつ確実に溶解
除去することができ、銅膜付着ウエーハの再生を図るこ
とができる。特に、銅拡散バリア膜下層に存在する原子
レベルの銅もほぼ完全にエッチング除去が可能で、銅汚
染の殆ど無い清浄なシリコン単結晶ウエーハに再生する
ことができる。
As described in detail above, according to the method for reclaiming a copper film-adhered silicon single crystal wafer of the present invention, the copper film on the silicon single crystal wafer can be easily and surely removed by dissolution. Therefore, it is possible to regenerate the copper film-adhered wafer. In particular, atomic level copper existing in the lower layer of the copper diffusion barrier film can be almost completely removed by etching, and can be regenerated into a clean silicon single crystal wafer with almost no copper contamination.

【図面の簡単な説明】[Brief description of drawings]

【図1】硫酸−過酸化水素液組成と銅エッチングレート
の関係を示す結果図である。
FIG. 1 is a result diagram showing a relationship between a sulfuric acid-hydrogen peroxide solution composition and a copper etching rate.

【図2】本発明の一例を示すフロー図である。FIG. 2 is a flow chart showing an example of the present invention.

【図3】銅膜の溶解除去で使用する装置の図である。 (a)スピンエッチング方式、 (b)銅分離機能付き
浸漬エッチング方式。
FIG. 3 is a diagram of an apparatus used for dissolving and removing a copper film. (A) Spin etching method, (b) Immersion etching method with copper separation function.

【符号の説明】[Explanation of symbols]

1…銅分離機能付き浸漬エッチング装置、 2…ウエー
ハ、3…浸漬エッチング槽、 4…オーバーフロー受け
樋、5…薬液供給装置、 6…循環ポンプ、 7…銅分
離槽、10…ウエーハ支持台、 11…ウエーハ、12
…エッチング液供給ノズル。
DESCRIPTION OF SYMBOLS 1 ... Immersion etching device with copper separation function, 2 ... Wafer, 3 ... Immersion etching tank, 4 ... Overflow receiving gutter, 5 ... Chemical supply device, 6 ... Circulation pump, 7 ... Copper separation tank, 10 ... Wafer support stand, 11 ... wafer, 12
… Etching liquid supply nozzle.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開2000−138192(JP,A) 特開 昭61−591(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 21/304,21/306 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP 2000-138192 (JP, A) JP 61-591 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H01L 21 / 304,21 / 306

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 銅膜の付着したシリコン単結晶ウエーハ
を再生する方法であって、前記銅膜付着シリコン単結晶
ウエーハは、銅膜下層として銅拡散バリア膜を有するも
のであり、少なくとも硫酸−過酸化水素液で銅膜を溶解
除去する工程、銅膜を除去したウエーハの表面を鏡面研
磨する工程を含み、前記銅膜を溶解除去した後、鏡面研
磨をする前に、前記銅拡散バリア膜を溶解除去すること
を特徴とする銅膜付着シリコン単結晶ウエーハの再生方
法。
1. A method for reclaiming a silicon single crystal wafer having a copper film adhered thereon, wherein the copper film adhered silicon single crystal wafer has a copper diffusion barrier film as a lower layer of the copper film, and at least sulfuric acid-peroxide is used. A step of dissolving and removing the copper film with a hydrogen oxide solution, including a step of mirror-polishing the surface of the wafer from which the copper film has been removed, after the copper film is dissolved and removed, before the mirror-polishing, the copper diffusion barrier film is removed. A method for reclaiming a copper film-adhered silicon single crystal wafer, which comprises melting and removing.
【請求項2】 前記硫酸−過酸化水素液の組成(容積
比)を、硫酸(96%):過酸化水素(30%)=1:
10〜40とすることを特徴とする請求項1に記載した
銅膜付着シリコン単結晶ウエーハの再生方法。
2. The composition (volume ratio) of the sulfuric acid-hydrogen peroxide solution is sulfuric acid (96%): hydrogen peroxide (30%) = 1:
The method for reclaiming a copper film-adhered silicon single crystal wafer according to claim 1, wherein the method is 10 to 40.
【請求項3】 前記銅膜の溶解除去を、スピンエッチン
グ方式、多段浸漬エッチング方式または銅分離機能付き
浸漬エッチング方式で行うことを特徴とする請求項1ま
たは請求項2に記載した銅膜付着シリコン単結晶ウエー
ハの再生方法。
3. The copper film-attached silicon according to claim 1, wherein the copper film is dissolved and removed by a spin etching method, a multi-step immersion etching method, or an immersion etching method with a copper separation function. Method for recycling single crystal wafer.
【請求項4】 前記銅膜付着シリコン単結晶ウエーハ
は、銅拡散バリア膜の下層としてSiO2 膜を有するも
のであることを特徴とする請求項1ないし請求項3のい
ずれか1項に記載した銅膜付着シリコン単結晶ウエーハ
の再生方法。
4. The silicon single crystal wafer to which the copper film is attached has an SiO 2 film as a lower layer of the copper diffusion barrier film, according to any one of claims 1 to 3. Method for reclaiming silicon single crystal wafer with copper film attached.
【請求項5】 前記銅拡散バリア膜の除去を、フッ酸−
過酸化水素液で行うことを特徴とする請求項1ないし請
求項4のいずれか1項に記載した銅膜付着シリコン単結
晶ウエーハの再生方法。
5. The removal of the copper diffusion barrier film is performed with hydrofluoric acid-
5. The method for reclaiming a copper film-adhered silicon single crystal wafer according to claim 1, wherein the method is performed with a hydrogen peroxide solution.
【請求項6】 前記銅拡散バリア膜を溶解除去した後、
鏡面研磨をする前に、硫酸−過酸化水素液または硝酸で
洗浄することを特徴とする請求項1ないし請求項5のい
ずれか1項に記載した銅膜付着シリコン単結晶ウエーハ
の再生方法。
6. After the copper diffusion barrier film is dissolved and removed,
The method for reclaiming a copper film-adhered silicon single crystal wafer according to any one of claims 1 to 5, wherein the method is a cleaning with a sulfuric acid-hydrogen peroxide solution or nitric acid before mirror polishing.
【請求項7】 前記硫酸−過酸化水素液または硝酸で洗
浄した後、鏡面研磨をする前に、アルカリまたは酸エッ
チングを行うことを特徴とする請求項6に記載した銅膜
付着シリコン単結晶ウエーハの再生方法。
7. A copper film-adhered silicon single crystal wafer according to claim 6, wherein alkali or acid etching is performed after the cleaning with the sulfuric acid-hydrogen peroxide solution or the nitric acid and before the mirror polishing. How to play.
【請求項8】 請求項1ないし請求項7のいずれか1項
に記載の方法で再生されたことを特徴とする再生ウエー
ハ。
8. A reclaimed wafer that has been reclaimed by the method according to any one of claims 1 to 7.
JP2000355475A 2000-11-22 2000-11-22 Method of regenerating silicon single crystal wafer with copper film and reclaimed wafer Expired - Lifetime JP3426208B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000355475A JP3426208B2 (en) 2000-11-22 2000-11-22 Method of regenerating silicon single crystal wafer with copper film and reclaimed wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000355475A JP3426208B2 (en) 2000-11-22 2000-11-22 Method of regenerating silicon single crystal wafer with copper film and reclaimed wafer

Publications (2)

Publication Number Publication Date
JP2002158207A JP2002158207A (en) 2002-05-31
JP3426208B2 true JP3426208B2 (en) 2003-07-14

Family

ID=18827886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000355475A Expired - Lifetime JP3426208B2 (en) 2000-11-22 2000-11-22 Method of regenerating silicon single crystal wafer with copper film and reclaimed wafer

Country Status (1)

Country Link
JP (1) JP3426208B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6884634B2 (en) 2002-09-27 2005-04-26 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Specifying method for Cu contamination processes and detecting method for Cu contamination during reclamation of silicon wafers, and reclamation method of silicon wafers
US7699997B2 (en) 2003-10-03 2010-04-20 Kobe Steel, Ltd. Method of reclaiming silicon wafers
CN1329292C (en) * 2005-11-11 2007-08-01 山东大学 Method for reactivating and regenerating waste silicon powder
JP5134586B2 (en) * 2009-05-18 2013-01-30 濱田重工株式会社 Silicon wafer recycling method
JP2013137063A (en) * 2011-12-28 2013-07-11 Toyota Motor Corp Method for manufacturing connecting rod
CN102496569A (en) * 2011-12-31 2012-06-13 英利集团有限公司 Texturing method of monocrystal N type solar cell slice
JP7249880B2 (en) * 2019-05-30 2023-03-31 株式会社Screenホールディングス Substrate processing method and substrate processing apparatus

Also Published As

Publication number Publication date
JP2002158207A (en) 2002-05-31

Similar Documents

Publication Publication Date Title
JP3914842B2 (en) Method and apparatus for removing organic coating
US5954885A (en) Cleaning method
US5830280A (en) Washing liquid for post-polishing and polishing-cleaning method in semiconductor process
KR100220926B1 (en) A cleaning method for hydrophobic silicon wafers
JP3296405B2 (en) Cleaning method and cleaning device for electronic component members
WO2002068717A1 (en) Method for etching electronic components containing tantalum
JP3426208B2 (en) Method of regenerating silicon single crystal wafer with copper film and reclaimed wafer
JP3174561B2 (en) Method for removing liquid from substrate surface, method for manufacturing semiconductor device using the method, and apparatus for removing liquid from substrate surface
US5964953A (en) Post-etching alkaline treatment process
JP2005093869A (en) Method of regenerating silicon wafer, and regenerated wafer
JP4579619B2 (en) Silicon wafer reclamation method
CN101325152B (en) Process for cleaning, drying and hydrophilizing a semiconductor wafer
JP4482844B2 (en) Wafer cleaning method
JPH07183264A (en) Method of washing semiconductor substrate
JP3857314B2 (en) Silicon drying method
JP2003203856A (en) Removal method for organic coated film
JP3296407B2 (en) Cleaning method and cleaning device for electronic component members
KR0153393B1 (en) Polishing method of semiconductor substrate
JPH09266194A (en) Method for etching semiconductor wafer
JP3216125B2 (en) Chemical treatment method and chemical treatment device
JP2003500537A (en) Method for wet-treating an electronic component having a copper-containing surface
JPH05166777A (en) Washing of semiconductor wafer
JPH06120191A (en) Washing of semiconductor device
JP3411999B2 (en) Method for removing metal film on silicon wafer surface, acidic aqueous solution used therefor, and method for regenerating silicon wafer
JP2024078489A (en) Method for removing device pattern and method for evaluating crystal defect in silicon wafers using the same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3426208

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080509

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090509

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100509

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100509

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140509

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term