JP3424574B2 - 内燃機関 - Google Patents

内燃機関

Info

Publication number
JP3424574B2
JP3424574B2 JP32396498A JP32396498A JP3424574B2 JP 3424574 B2 JP3424574 B2 JP 3424574B2 JP 32396498 A JP32396498 A JP 32396498A JP 32396498 A JP32396498 A JP 32396498A JP 3424574 B2 JP3424574 B2 JP 3424574B2
Authority
JP
Japan
Prior art keywords
amount
combustion
fuel
soot
combustion chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32396498A
Other languages
English (en)
Other versions
JP2000145505A (ja
Inventor
静夫 佐々木
雅人 後藤
丈和 伊藤
康二 吉▲崎▼
宏樹 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP32396498A priority Critical patent/JP3424574B2/ja
Priority to EP99116224A priority patent/EP0982485B1/en
Priority to DE69930181T priority patent/DE69930181T2/de
Publication of JP2000145505A publication Critical patent/JP2000145505A/ja
Application granted granted Critical
Publication of JP3424574B2 publication Critical patent/JP3424574B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/09Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine
    • F02M26/10Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine having means to increase the pressure difference between the exhaust and intake system, e.g. venturis, variable geometry turbines, check valves using pressure pulsations or throttles in the air intake or exhaust system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/14Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system
    • F02M26/15Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system in relation to engine exhaust purifying apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は内燃機関に関する。
【0002】
【従来の技術】従来より内燃機関、例えばディーゼル機
関においてはNOx の発生を抑制するために機関排気通
路と機関吸気通路とを排気ガス再循環(以下、EGRと
称す)通路により連結し、このEGR通路を介して排気
ガス、即ちEGRガスを機関吸気通路内に再循環させる
ようにしている。この場合、EGRガスは比較的比熱が
高く、従って多量の熱を吸収することができるので、E
GRガス量を増大するほど、即ちEGR率(EGRガス
量/(EGRガス量+吸入空気量))を増大するほど燃
焼室内における燃焼温度が低下する。燃焼温度が低下す
るとNOx の発生量が低下し、従ってEGR率を増大す
ればするほどNOx の発生量は低下することになる。
【0003】このように従来よりEGR率を増大すれば
NOx の発生量を低下しうることはわかっている。しか
しながらEGR率を増大させていくとEGR率が或る限
度を越えたときに煤の発生量、即ちスモークが急激に増
大し始める。この点に関し従来より、それ以上EGR率
を増大すればスモークが限りなく増大していくものと考
えられており、従ってスモークが急激に増大し始めるE
GR率がEGR率の最大許容限界であると考えられてい
る。
【0004】従って従来よりEGR率はこの最大許容限
界を越えない範囲内に定められている。このEGR率の
最大許容限界は機関の形式や燃料によってかなり異なる
がおおよそ30パーセントから50パーセントである。
従って従来のディーゼル機関ではEGR率は最大でも3
0パーセントから50パーセント程度に抑えられてい
る。
【0005】このように従来ではEGR率に対して最大
許容限界が存在すると考えられていたので従来よりEG
R率はこの最大許容限界を越えない範囲内においてNO
x およびスモークの発生量ができるだけ少なくなるよう
に定められていた。しかしながらこのようにしてEGR
率をNOx およびスモークの発生量ができるだけ少なく
なるように定めてもNOx およびスモークの発生量の低
下には限度があり、実際には依然としてかなりの量のN
x およびスモークが発生してしまうのが現状である。
【0006】ところがディーゼル機関の燃焼の研究の過
程においてEGR率を最大許容限界よりも大きくすれば
上述の如くスモークが急激に増大するがこのスモークの
発生量にはピークが存在し、このピークを越えてEGR
率を更に大きくすると今度はスモークが急激に減少しは
じめ、アイドリング運転時においてEGR率を70パー
セント以上にすると、またEGRガスを強力に冷却した
場合にはEGR率をほぼ55パーセント以上にするとス
モークがほとんど零になる。即ち煤がほとんど発生しな
いことが見い出されたのである。また、このときにはN
x の発生量が極めて少量となることも判明している。
この後この知見に基づいて煤が発生しない理由について
検討が進められ、その結果これまでにない煤およびNO
x の同時低減が可能な新たな燃焼システムが構築される
に至ったのである。この新たな燃焼システムについては
後に詳細に説明するが簡単に言うと炭化水素が煤に成長
するまでの途中の段階において炭化水素の成長を停止さ
せることを基本としている。
【0007】即ち、実験研究を重ねた結果判明したこと
は燃焼室内における燃焼時の燃料およびその周囲のガス
温度が或る温度以下のときには炭化水素の成長が煤に至
る前の途中の段階で停止し、燃料およびその周囲のガス
温度が或る温度以上になると炭化水素は一気に煤まで成
長してしまうということである。この場合、燃料および
その周囲のガス温度は燃料が燃焼した際の燃料周りのガ
スの吸熱作用が大きく影響しており、燃料燃焼時の発熱
量に応じて燃料周りのガスの吸熱量を調整することによ
って燃料およびその周囲のガス温度を制御することがで
きる。
【0008】従って、燃焼室内における燃焼時の燃料お
よびその周囲のガス温度を炭化水素の成長が途中で停止
する温度以下に抑制すれば煤が発生しなくなり、燃焼室
内における燃焼時の燃料およびその周囲のガス温度を炭
化水素の成長が途中で停止する温度以下に抑制すること
は燃料周りのガスの吸熱量を調整することによって可能
となる。一方、煤に至る前に成長が途中で停止した炭化
水素は酸化触媒等を用いた後処理によって容易に浄化す
ることができる。これが新たな燃焼システムの基本的な
考え方である。この新たな燃焼システムを採用した内燃
機関については本出願人により既に出願されている(特
願平9−305850号)。
【0009】
【発明が解決しようとする課題】ところで新たな燃焼シ
ステムではアイドリング運転時にはスロットル弁が全閉
近くまで閉弁され、このとき要求負荷に応じた最適のE
GRガス量が得られるようにEGR制御弁が全閉近くま
で閉弁せしめられる。しかしながらアイドリング運転中
に機関振動を抑制するには例えば回転数や吸気管負圧を
或る目標値となるように制御する必要がある。
【0010】本発明の目的はアイドリング運転時におけ
る機関振動を確実に抑制することにある。
【0011】
【課題を解決するための手段】上記目的を達成するため
に、1番目の発明では、燃焼室内に供給される不活性ガ
ス量を増大していくと煤の発生量が次第に増大してピー
クに達し、燃焼室内に供給される不活性ガス量を更に増
大していくと燃焼室内における燃焼時の燃料およびその
周囲のガス温が煤の生成温度よりも低くなって煤がほと
んど発生しなくなる内燃機関において、煤の発生量がピ
ークとなる不活性ガス量よりも多い不活性ガス量を燃焼
室内に供給する燃焼を行っている間であって、機関のア
イドリング運転時には燃焼室内に供給される空気量をそ
の目標値とすべく制御した後に燃焼室内に供給される不
活性ガス量をその目標値とすべく制御するようにする。
即ちアイドリング運転時には順に吸入空気量が目標値と
され、不活性ガス量が目標値とされる。
【0012】2番目の発明によれば1番目の発明におい
て燃焼室内に供給される不活性ガス量をその目標値とす
べく制御した後に燃焼室内に噴射される燃料の量をその
目標値とすべく制御するようにする。即ちアイドリング
運転時には順に吸入空気量、不活性ガス量、噴射燃料量
がそれぞれの目標値とされる。3番目の発明によれば2
番目の発明において燃焼室内に噴射される燃料の量をそ
の目標値とすべく制御した後に燃焼室内に燃料を噴射す
る時期をその目標値とすべく制御するようにする。即ち
アイドリング運転時には順に吸入空気量、不活性ガス
量、噴射燃料量、燃料噴射時期がそれぞれの目標値とさ
れる。
【0013】4番目の発明によれば1番目の発明におい
て、燃焼室から排出された排気ガスを機関吸気通路内に
再循環させる再循環装置を具備し、上記不活性ガスが再
循環排気ガスからなる。5番目の発明によれば4番目の
発明において、排気ガス再循環率がほぼ55パーセント
以上である。
【0014】6番目の発明によれば1番目の発明におい
て機関排気通路内に酸化機能を有する触媒を配置する。
7番目の発明によれば6番目の発明において、該触媒が
酸化触媒、三元触媒又はNOx 吸収剤の少なくとも一つ
からなる。8番目の発明によれば1番目の発明において
煤の発生量がピークとなる不活性ガス量よりも燃焼室内
に供給される不活性ガス量が多く煤がほとんど発生しな
い第1の燃焼と、煤の発生量がピークとなる不活性ガス
量よりも燃焼室内に供給される不活性ガス量が少ない第
2の燃焼とを選択的に切換える切換手段を具備する。
【0015】9番目の発明によれば8番目の発明におい
て、機関の運転領域を低負荷側の第1の運転領域と高負
荷側の第2の運転領域に分割し、第1の運転領域では第
1の燃焼を行い、第2の運転領域では第2の燃焼を行う
ようにする。
【0016】
【発明の実施の形態】図1は本発明を4ストローク圧縮
着火式内燃機関に適用した場合を示している。図1を参
照すると、1は機関本体、2はシリンダブロック、3は
シリンダヘッド、4はピストン、5は燃焼室、6は電気
制御式燃料噴射弁、7は吸気弁、8は吸気ポート、9は
排気弁、10は排気ポートを夫々示す。吸気ポート8は
対応する吸気枝管11を介してサージタンク12に連結
され、サージタンク12は吸気ダクト13およびインタ
ークーラ14を介して過給機、例えば排気ターボチャー
ジャ15のコンプレッサ16の出口部に連結される。コ
ンプレッサ16の入口部は空気吸込管17を介してエア
クリーナ18に連結され、空気吸込管17内にはステッ
プモータ19により駆動されるスロットル弁20が配置
される。また、スロットル弁20上流の空気吸込管17
内には吸入空気の質量流量を検出するための質量流量検
出器21が配置される。
【0017】一方、排気ポート10は排気マニホルド2
2を介して排気ターボチャージャ15の排気タービン2
3の入口部に連結され、排気タービン23の出口部は排
気管24を介して酸化機能を有する触媒25を内蔵した
触媒コンバータ26に連結される。排気マニホルド22
内には空燃比センサ27が配置される。触媒コンバータ
26の出口部に連結された排気管28とスロットル弁2
0下流の空気吸込管17とは排気ガス再循環(以下、E
GRと称す)通路29を介して互いに連結され、EGR
通路29内にはステップモータ30により駆動されるE
GR制御弁31が配置される。また、EGR通路29内
にはEGR通路29内を流れるEGRガスを冷却するた
めのインタークーラ32が配置される。図1に示される
実施例では機関冷却水がインタークーラ32内に導か
れ、機関冷却水によってEGRガスが冷却される。
【0018】一方、燃料噴射弁6は燃料供給管33を介
して燃料リザーバ、いわゆるコモンレール34に連結さ
れる。このコモンレール34内へは電気制御式の吐出量
可変な燃料ポンプ35から燃料が供給され、コモンレー
ル34内に供給された燃料は各燃料供給管33を介して
燃料噴射弁6に供給される。コモンレール34にはコモ
ンレール34内の燃料圧を検出するための燃料圧センサ
36が取付けられ、燃料圧センサ36の出力信号に基づ
いてコモンレール34内の燃料圧が目標燃料圧となるよ
うに燃料ポンプ35の吐出量が制御される。
【0019】電子制御ユニット40はデジタルコンピュ
ータからなり、双方向性バス41によって互いに接続さ
れたROM(リードオンリメモリ)42、RAM(ラン
ダムアクセスメモリ)43、CPU(マイクロプロセッ
サ)44、入力ポート45および出力ポート46を具備
する。質量流量検出器21の出力信号は対応するAD変
換器47を介して入力ポート45に入力され、空燃比セ
ンサ27および燃料圧センサ36の出力信号も夫々対応
するAD変換器47を介して入力ポート45に入力され
る。アクセルペダル50にはアクセルペダル50の踏込
み量Lに比例した出力電圧を発生する負荷センサ51が
接続され、負荷センサ51の出力電圧は対応するAD変
換器47を介して入力ポート45に入力される。また、
入力ポート45にはクランクシャフトが例えば30°回
転する毎に出力パルスを発生するクランク角センサ52
が接続される。一方、出力ポート46は対応する駆動回
路48を介して燃料噴射弁6、スロットル弁制御用ステ
ップモータ19、EGR制御弁制御用ステップモータ3
0および燃料ポンプ35に接続される。
【0020】図2は機関低負荷運転時にスロットル弁2
0の開度およびEGR率を変化させることにより空燃比
A/F(図2の横軸)を変化させたときの出力トルクの
変化、およびスモーク、HC,CO,NOx の排出量の
変化を示す実験例を表している。図2からわかるように
この実験例では空燃比A/Fが小さくなるほどEGR率
が大きくなり、理論空燃比(≒14.6)以下のときに
はEGR率は65パーセント以上となっている。
【0021】図2に示されるようにEGR率を増大する
ことにより空燃比A/Fを小さくしていくとEGR率が
40パーセント付近となり空燃比A/Fが30程度にな
ったときにスモークの発生量が増大を開始する。次い
で、更にEGR率を高め、空燃比A/Fを小さくすると
スモークの発生量が急激に増大してピークに達する。次
いで更にEGR率を高め、空燃比A/Fを小さくすると
今度はスモークが急激に低下し、EGR率を65パーセ
ント以上とし、空燃比A/Fが15.0付近になるとス
モークがほぼ零となる。即ち、煤がほとんど発生しなく
なる。このとき機関の出力トルクは若干低下し、またN
x の発生量がかなり低くなる。一方、このときHC,
COの発生量は増大し始める。
【0022】図3(A)は空燃比A/Fが21付近でス
モークの発生量が最も多いときの燃焼室5内の燃焼圧変
化を示しており、図3(B)は空燃比A/Fが18付近
でスモークの発生量がほぼ零のときの燃焼室5内の燃焼
圧の変化を示している。図3(A)と図3(B)とを比
較すればわかるようにスモークの発生量がほぼ零である
図3(B)に示す場合はスモークの発生量が多い図3
(A)に示す場合に比べて燃焼圧が低いことがわかる。
【0023】図2および図3に示される実験結果から次
のことが言える。即ち、まず第1に空燃比A/Fが1
5.0以下でスモークの発生量がほぼ零のときには図2
に示されるようにNOx の発生量がかなり低下する。N
x の発生量が低下したということは燃焼室5内の燃焼
温度が低下していることを意味しており、従って煤がほ
とんど発生しないときには燃焼室5内の燃焼温度が低く
なっていると言える。同じことが図3からも言える。即
ち、煤がほとんど発生していない図3(B)に示す状態
では燃焼圧が低くなっており、従ってこのとき燃焼室5
内の燃焼温度は低くなっていることになる。
【0024】第2のスモークの発生量、即ち煤の発生量
がほぼ零になると図2に示されるようにHCおよびCO
の排出量が増大する。このことは炭化水素が煤まで成長
せずに排出されることを意味している。即ち、燃料中に
含まれる図4に示されるような直鎖状炭化水素や芳香族
炭化水素は酸素不足の状態で温度上昇せしめられると熱
分解して煤の前駆体が形成され、次いで主に炭素原子が
集合した固体からなる煤が生成される。この場合、実際
の煤の生成過程は複雑であり、煤の前駆体がどのような
形態をとるかは明確ではないがいずれにしても図4に示
されるような炭化水素は煤の前駆体を経て煤まで成長す
ることになる。従って、上述したように煤の発生量がほ
ぼ零になると図2に示される如くHCおよびCOの排出
量が増大するがこのときのHCは煤の前駆体又はその前
の状態の炭化水素である。
【0025】図2および図3に示される実験結果に基づ
くこれらの考察をまとめると燃焼室5内の燃焼温度が低
いときには煤の発生量がほぼ零になり、このとき煤の前
駆体又はその前の状態の炭化水素が燃焼室5から排出さ
れることになる。このことについて更に詳細に実験研究
を重ねた結果、燃焼室5内における燃料およびその周囲
のガス温度が或る温度以下である場合には煤の成長過程
が途中で停止してしまい、即ち煤が全く発生せず、燃焼
室5内における燃料およびその周囲の温度が或る温度以
上になると煤が生成されることが判明したのである。
【0026】ところで煤の前駆体の状態で炭化水素の生
成過程が停止するときの燃料およびその周囲の温度、即
ち上述の或る温度は燃料の種類や空燃比の圧縮比等の種
々の要因によって変化するので何度であるかということ
は言えないがこの或る温度はNOx の発生量と深い関係
を有しており、従ってこの或る温度はNOx の発生量か
ら或る程度規定することができる。即ち、EGR率が増
大するほど燃焼時の燃料およびその周囲のガス温度は低
下し、NOx の発生量が低下する。このときNOx の発
生量が10p.p.m 前後又はそれ以下になったときに煤が
ほとんど発生しなくなる。従って上述の或る温度はNO
x の発生量が10p.p.m 前後又はそれ以下になったとき
の温度にほぼ一致する。
【0027】一旦、煤が生成されるとこの煤は酸化機能
を有する触媒を用いた後処理でもって浄化することはで
きない。これに対して煤の前駆体又はその前の状態の炭
化水素は酸化機能を有する触媒を用いた後処理でもって
容易に浄化することができる。このように酸化機能を有
する触媒による後処理を考えると炭化水素を煤の前駆体
又はその前の状態で燃焼室5から排出されるか、或いは
煤の形で燃焼室5から排出させるかについては極めて大
きな差がある。本発明において採用されている新たな燃
焼システムは燃焼室5内において煤を生成させることな
く炭化水素を煤の前駆体又はその前の状態の形でもって
燃焼室5から排出させ、この炭化水素を酸化機能を有す
る触媒により酸化せしめることを核としている。なお酸
化機能を有する触媒には酸化触媒、三元触媒、NOx
収剤がある。
【0028】さて、煤が生成される前の状態で炭化水素
の成長を停止させるには燃焼室5内における燃焼時の燃
料およびその周囲のガス温度を煤が生成される温度より
も低い温度に抑制する必要がある。この場合、燃料およ
びその周囲のガス温度を抑制するには燃料が燃焼した際
の燃料周りのガスの吸熱作用が極めて大きく影響するこ
とが判明している。
【0029】即ち、燃料周りに空気しか存在しないと蒸
発した燃料はただちに空気中の酸素と反応して燃焼す
る。この場合、燃料から離れている空気の温度はさほど
上昇せず、燃料周りの温度のみが局所的に極めて高くな
る。即ち、このときには燃料から離れている空気の燃料
の燃焼熱の吸熱作用をほとんど行わない。この場合には
燃焼温度が局所的に極めて高くなるために、この燃焼熱
を受けた未燃炭化水素は煤を生成することになる。
【0030】一方、多量の不活性ガスと少量の空気の混
合ガス中に燃料が存在する場合には若干状況が異なる。
この場合には蒸発燃料は周囲に拡散して不活性ガス中に
混在する酸素と反応し、燃焼することになる。この場合
には燃焼熱は周りの不活性ガスに吸収されるために燃焼
温度はさほど上昇しなくなる。即ち、燃焼温度を低く抑
えることができることになる。即ち、燃焼温度を抑制す
るには不活性ガスの存在が重要な役割を果しており、不
活性ガスの吸熱作用によって燃焼温度を低く抑えること
ができることになる。
【0031】この場合、燃料およびその周囲のガス温度
を煤が生成される温度よりも低い温度に抑制するにはそ
うするのに十分な熱量を吸収しうるだけの不活性ガス量
が必要となる。従って燃料量が増大すれば必要となる不
活性ガス量はそれに伴なって増大することになる。な
お、この場合、不活性ガスの比熱が大きいほど吸熱作用
が強力となり、従って不活性ガスは比熱の大きなガスが
好ましいことになる。この点、CO2 やEGRガスは比
較的比熱が大きいので不活性ガスとしてEGRガスを用
いることは好ましいと言える。
【0032】図5は不活性ガスとしてEGRガスを用
い、EGRガスの冷却度合を変えたときのEGR率とス
モークとの関係を示している。即ち、図5において曲線
AはEGRガスを強力に冷却してEGRガス温をほぼ9
0℃に維持した場合を示しており、曲線Bは小型の冷却
装置でEGRガスを冷却した場合を示しており、曲線C
はEGRガスを強制的に冷却していない場合を示してい
る。
【0033】図5の曲線Aで示されるようにEGRガス
を強力に冷却した場合にはEGR率が50パーセントよ
りも少し低いところで煤の発生量がピークとなり、この
場合にはEGR率をほぼ55パーセント以上にすれば煤
がほとんど発生しなくなる。一方、図5の曲線Bで示さ
れるようにEGRガスを少し冷却した場合にはEGR率
が50パーセントよりも少し高いところで煤の発生量が
ピークとなり、この場合にはEGR率をほぼ65パーセ
ント以上にすれば煤がほとんど発生しなくなる。
【0034】また、図5の曲線Cで示されるようにEG
Rガスを強制的に冷却していない場合にはEGR率が5
5パーセントの付近で煤の発生量がピークとなり、この
場合にはEGR率をほぼ70パーセント以上にすれば煤
がほとんど発生しなくなる。なお、図5は機関負荷が比
較的高いときのスモークの発生量を示しており、機関負
荷が小さくなると煤の発生量がピークとなるEGR率は
若干低下し、煤がほとんど発生しなくなるEGR率の下
限も若干低下する。このような煤がほとんど発生しなく
なるEGR率の下限はEGRガスの冷却度合や機関負荷
に応じて変化する。
【0035】図6は不活性ガスとしてEGRガスを用い
た場合において燃焼時の燃料およびその周囲のガス温度
を煤が生成される温度よりも低い温度にするために必要
なEGRガスと空気の混合ガス量、およびこの混合ガス
量中の空気の割合、およびこの混合ガス中のEGRガス
の割合を示している。なお、図6において縦軸は燃焼室
5内に吸入される全吸入ガス量を示しており、鎖線Yは
過給が行われないときに燃焼室5内に吸入しうる全吸入
ガス量を示している。また、横軸は要求負荷を示してい
る。
【0036】図6を参照すると空気の割合、即ち混合ガ
ス中の空気量は噴射された燃料を完全に燃焼せしめるの
に必要な空気量を示している。即ち、図6に示される場
合では空気量と噴射燃料量との比は理論空燃比となって
いる。一方、図6においてEGRガスの割合、即ち混合
ガス中のEGRガス量は噴射燃料が燃焼せしめられたと
きに燃料およびその周囲のガス温度を煤が形成される温
度よりも低い温度にするのに必要最低限のEGRガス量
を示している。このEGRガス量はEGR率で表すとほ
ぼ55パーセント以上であり、図6に示す実施例では7
0パーセント以上である。即ち、燃焼室5内に吸入され
た全吸入ガス量を図6において実線Xとし、この全吸入
ガス量Xのうちの空気量とEGRガス量との割合を図6
に示すような割合にすると燃料およびその周囲のガス温
度は煤が生成される温度よりも低い温度となり、斯くし
て煤が全く発生しなくなる。また、このときのNOx
生量は10p.p.m 前後、又はそれ以下であり、従ってN
x の発生量は極めて少量となる。
【0037】燃料噴射量が増大すれば燃料が燃焼した際
の発熱量が増大するので燃料およびその周囲のガス温度
を煤が生成される温度よりも低い温度に維持するために
はEGRガスによる熱の吸収量を増大しなければならな
い。従って図6に示されるようにEGRガス量は噴射燃
料量が増大するにつれて増大せしめなければならない。
即ち、EGRガス量は要求負荷が高くなるにつれて増大
する必要がある。
【0038】ところで過給が行われていない場合には燃
焼室5内に吸入される全吸入ガス量Xの上限はYであ
り、従って図6において要求負荷がL0 よりも大きい領
域では要求負荷が大きくなるにつれてEGRガス割合を
低下させない限り空燃比を理論空燃比に維持することが
できない。云い換えると過給が行われていない場合に要
求負荷がL0 よりも大きい領域において空燃比を理論空
燃比に維持しようとした場合には要求負荷が高くなるに
つれてEGR率が低下し、斯くして要求負荷がL 0 より
も大きい領域では燃料およびその周囲のガス温度を煤が
生成される温度よりも低い温度に維持しえなくなる。
【0039】ところが図1に示されるようにEGR通路
29を介して過給機の入口側即ち排気ターボチャージャ
15の空気吸込管17内にEGRガスを再循環させると
要求負荷がL0 よりも大きい領域においてEGR率を5
5パーセント以上、例えば70パーセントに維持するこ
とができ、斯くして燃料およびその周囲のガス温度を煤
が生成される温度よりも低い温度に維持することができ
る。即ち、空気吸込管17内におけるEGR率が例えば
70パーセントになるようにEGRガスを再循環させれ
ば排気ターボチャージャ15のコンプレッサ16により
昇圧された吸入ガスのEGR率も70パーセントとな
り、斯くしてコンプレッサ16により昇圧しうる限度ま
で燃料およびその周囲のガス温度を煤が生成される温度
よりも低い温度に維持することができる。従って、低温
燃焼を生じさせることのできる機関の運転領域を拡大す
ることができることになる。要求負荷がL0 よりも大き
い領域でEGR率を55パーセント以上にする際にはE
GR制御弁31が全開せしめられ、スロットル弁20が
若干閉弁せしめられる。
【0040】前述したように図6は燃料を理論空燃比の
もとで燃焼させる場合を示しているが空気量を図6に示
される空気量よりも少なくしても、即ち空燃比をリッチ
にしても煤の発生を阻止しつつNOx の発生量を10p.
p.m 前後又はそれ以下にすることができ、また空気量を
図6に示される空気量よりも多くしても、即ち空燃比の
平均値を17から18のリーンにしても煤の発生を阻止
しつつNOx の発生量を10p.p.m 前後又はそれ以下に
することができる。
【0041】即ち、空燃比がリッチにされると燃料が過
剰となるが燃焼温度が低い温度に抑制されているために
過剰な燃料は煤まで成長せず、斯くして煤が生成される
ことがない。また、このときNOx も極めて少量しか発
生しない。一方、平均空燃比がリーンのとき、或いは空
燃比が理論空燃比のときでも燃焼温度が高くなれば少量
の煤が生成されるが本発明では燃焼温度が低い温度に抑
制されているので煤は全く生成されない。更に、NOx
も極めて少量しか発生しない。
【0042】このように、低温燃焼が行われているとき
には空燃比にかかわらずに、即ち空燃比がリッチであろ
うと、理論空燃比であろうと、或いは平均空燃比がリー
ンであろうと煤が発生されず、NOx の発生量が極めて
少量となる。従って燃料消費率の向上を考えるとこのと
き平均空燃比をリーンにすることが好ましいと言える。
【0043】ところで燃焼室内における燃焼時の燃料お
よびその周囲のガス温度を炭化水素の成長が途中で停止
する温度以下に抑制しうるのは燃焼による発熱量が比較
的少ない機関中低負荷運転時に限られる。従って本発明
による実施例では機関中低負荷運転時には燃焼時の燃料
およびその周囲のガス温度を炭化水素の成長が途中で停
止する温度以下に抑制して第1の燃焼、即ち低温燃焼を
行うようにし、機関高負荷運転時には第2の燃焼、即ち
従来より普通に行われている燃焼を行うようにしてい
る。なお、ここで第1の燃焼、即ち低温燃焼とはこれま
での説明から明らかなように煤の発生量がピークとなる
不活性ガス量よりも燃焼室内の不活性ガス量が多く煤が
ほとんど発生しない燃焼のことを言い、第2の燃焼、即
ち従来より普通に行われている燃焼とは煤の発生量がピ
ークとなる不活性ガス量よりも燃焼室内の不活性ガス量
が少ない燃焼のことを言う。
【0044】図7は第1の燃焼、即ち低温燃焼が行われ
る第1の運転領域Iと、第2の燃焼、即ち従来の燃焼方
法による燃焼が行われる第2の運転領域IIとを示してい
る。なお、図7において縦軸Lはアクセルペダル50の
踏込み量、即ち要求負荷を示しており、横軸Nは機関回
転数を示している。また、図7においてX(N)は第1
の運転領域Iと第2の運転領域IIとの第1の境界を示し
ており、Y(N)は第1の運転領域Iと第2の運転領域
IIとの第2の境界を示している。第1の運転領域Iから
第2の運転領域IIへの運転領域の変化判断は第1の境界
X(N)に基づいて行われ、第2の運転領域IIから第1
の運転領域Iへの運転領域の変化判断は第2の境界Y
(N)に基づいて行われる。
【0045】即ち、機関の運転状態が第1の運転領域I
にあって低温燃焼が行われているときに要求負荷Lが機
関回転数Nの関数である第1の境界X(N)を越えると
運転領域が第2の運転領域IIに移ったと判断され、従来
の燃焼方法による燃焼が行われる。次いで要求負荷Lが
機関回転数Nの関数である第2の境界Y(N)よりも低
くなると運転領域が第1の運転領域Iに移ったと判断さ
れ、再び低温燃焼が行われる。
【0046】このように第1の境界X(N)と第1の境
界X(N)よりも低負荷側の第2の境界Y(N)との二
つの境界を設けたのは次の二つの理由による。第1の理
由は、第2の運転領域IIの高負荷側では比較的燃焼温度
が高く、このとき要求負荷Lが第1の境界X(N)より
低くなったとしてもただちに低温燃焼を行えないからで
ある。即ち、要求負荷Lがかなり低くなったとき、即ち
第2の境界Y(N)よりも低くなったときでなければた
だちに低温燃焼が開始されないからである。第2の理由
は第1の運転領域Iと第2の運転領域II間の運転領域の
変化に対してヒステリシスを設けるためである。
【0047】ところで機関の運転領域が第1の運転領域
Iにあって低温燃焼が行われているときには煤はほとん
ど発生せず、その代り未燃炭化水素が煤の前駆体又はそ
の前の状態の形でもって燃焼室5から排出される。この
とき燃焼室5から排出された未燃炭化水素は後に詳述す
る酸化触媒により浄化される。図8は空燃比センサ27
の出力を示している。図8に示されるように空燃比セン
サ27の出力電流Iは空燃比A/Fに応じて変化する。
従って空燃比センサ27の出力電流Iから空燃比を知る
ことができる。
【0048】次に図9を参照しつつ第1の運転領域Iお
よび第2の運転領域IIにおける運転制御について概略的
に説明する。図9は要求負荷Lに対するスロットル弁2
0の開度、EGR制御弁31の開度、EGR率、空燃
比、噴射時期および噴射量を示している。図9に示され
るように要求負荷Lの低い第1の運転領域Iではスロッ
トル弁20の開度は要求負荷Lが高くなるにつれて全閉
近くから2/3開度程度まで徐々に増大せしめられ、E
GR制御弁31の開度は要求負荷Lが高くなるにつれて
全閉近くから全開まで徐々に増大せしめられる。また、
図9に示される例では第1の運転領域IではEGR率が
ほぼ70パーセントとされており、空燃比はわずかばか
りリーンなリーン空燃比とされている。
【0049】言い換えると第1の運転領域IではEGR
率がほぼ70パーセントとなり、空燃比がわずかばかり
リーンなリーン空燃比となるようにスロットル弁20の
開度およびEGR制御弁31の開度が制御される。ま
た、第1の運転領域Iでは圧縮上死点TDC前に燃料噴
射が行われる。この場合、噴射開始時期θSは要求負荷
Lが高くなるにつれて遅くなり、噴射完了時期θEも噴
射開始時期θSが遅くなるにつれて遅くなる。
【0050】なお、アイドリング運転時にはスロットル
弁20は全閉近くまで閉弁され、このときEGR制御弁
31も全閉近くまで閉弁せしめられる。スロットル弁2
0を全閉近くまで閉弁すると圧縮始めの燃焼室5内の圧
力が低くなるために圧縮圧力が小さくなる。圧縮圧力が
小さくなるとピストン4による圧縮仕事が小さくなるた
めに機関本体1の振動が小さくなる。即ち、アイドリン
グ運転時には機関本体1の振動を抑制するためにスロッ
トル弁20が全閉近くまで閉弁せしめられる。
【0051】一方、機関の運転領域が第1の運転領域I
から第2の運転領域IIに変わるとスロットル弁20の開
度が2/3開度程度から全開方向へステップ状に増大せ
しめられる。このとき図9に示す例ではEGR率がほぼ
70パーセントから40パーセント以下までステップ状
に減少せしめられ、空燃比がステップ状に大きくされ
る。即ち、EGR率が多量のスモークを発生するEGR
率範囲(図5)を飛び越えるので機関の運転領域が第1
の運転領域Iから第2の運転領域IIに変わるときに多量
のスモークが発生することがない。
【0052】第2の運転領域IIでは従来から行われてい
る燃焼が行われる。この第2の運転領域IIではスロット
ル弁20は一部を除いて全開状態に保持され、EGR制
御弁31の開度は要求負荷Lが高くなると次第に小さく
される。また、この運転領域IIではEGR率は要求負荷
Lが高くなるほど低くなり、空燃比は要求負荷Lが高く
なるほど小さくなる。ただし、空燃比は要求負荷Lが高
くなってもリーン空燃比とされる。また、第2の運転領
域IIでは噴射開始時期θSは圧縮上死点TDC付近とさ
れる。図10(A)は第1の運転領域Iにおける目標空
燃比A/Fを示している。図10(A)において、A/
F=15.5,A/F=16,A/F=17,A/F=
18で示される各曲線は夫々目標空燃比が15.5,1
6,17,18であるときを示しており、各曲線間の空
燃比は比例配分により定められる。図10(A)に示さ
れるように第1の運転領域Iでは空燃比がリーンとなっ
ており、更に第1の運転領域Iでは要求負荷Lが低くな
るほど目標空燃比A/Fがリーンとされる。
【0053】即ち、要求負荷Lが低くなるほど燃焼によ
る発熱量が少なくなる。従って要求負荷Lが低くなるほ
どEGR率を低下させても低温燃焼を行うことができ
る。EGR率を低下させると空燃比は大きくなり、従っ
て図10(A)に示されるように要求負荷Lが低くなる
につれて目標空燃比A/Fが大きくされる。目標空燃比
A/Fが大きくなるほど燃料消費率は向上し、従ってで
きる限り空燃比をリーンにするために本発明による実施
例では要求負荷Lが低くなるにつれて目標空燃比A/F
が大きくされる。
【0054】なお、図10(A)に示される目標空燃比
A/Fは図10(B)に示されるように要求負荷Lおよ
び機関回転数Nの関数としてマップの形で予めROM4
2内に記憶されている。また、空燃比を図10(A)に
示す目標空燃比A/Fとするのに必要なスロットル弁2
0の目標開度STが図11(A)に示されるように要求
負荷Lおよび機関回転数Nの関数としてマップの形で予
めROM42内に記憶されており、空燃比を図10
(A)に示す目標空燃比A/Fとするのに必要なEGR
制御弁31の目標開度SEが図11(B)に示されるよ
うに要求負荷Lおよび機関回転数Nの関数としてマップ
の形で予めROM42内に記憶されている。
【0055】また、第1の燃焼が行われているときには
燃料噴射量Qは要求負荷Lおよび機関回転数Nに基づい
て算出される。この燃料噴射量Qは図12に示されるよ
うに要求負荷Lおよび機関回転数Nの関数としてマップ
の形で予めROM42内に記憶されている。図13
(A)は第2の燃焼、即ち従来の燃焼方法による普通の
燃焼が行われるときの目標空燃比A/Fを示している。
なお、図13(A)においてA/F=24,A/F=3
5,A/F=45,A/F=60で示される各曲線は夫
々目標空燃比24,35,45,60を示している。図
13(A)に示される目標空燃比A/Fは図13(B)
に示されるように要求負荷Lおよび機関回転数Nの関数
としてマップの形で予めROM42内に記憶されてい
る。また、空燃比を図13(A)に示す目標空燃比A/
Fとするのに必要なスロットル弁20の目標開度STが
図14(A)に示されるように要求負荷Lおよび機関回
転数Nの関数としてマップの形で予めROM42内に記
憶されており、空燃比を図13(A)に示す目標空燃比
A/Fとするのに必要なEGR制御弁31の目標開度S
Eが図14(B)に示されるように要求負荷Lおよび機
関回転数Nの関数としてマップの形で予めROM42内
に記憶されている。
【0056】また、第2の燃焼が行われているときには
燃料噴射量Qは要求負荷Lおよび機関回転数Nに基づい
て算出される。この燃料噴射量Qは図15に示されるよ
うに要求負荷Lおよび機関回転数Nの関数としてマップ
の形で予めROM42内に記憶されている。ところで図
1においてケーシング26内にはNOx 吸収剤25が配
置されている。NOx 吸収剤25は例えばアルミナを担
体とし、この担体上に例えばカリウムK、ナトリウムN
a、リチウムLi、セシウムCsのようなアルカリ金
属、バリウムBa、カルシウムCaのようなアルカリ土
類、ランタンLa、イットリウムYのような希土類から
選ばれた少なくとも一つと、白金Ptのような貴金属と
が担持されている。機関吸気通路、燃焼室5およびNO
x 吸収剤25上流の排気通路内に供給された空気および
燃料(炭化水素)の比をNOx 吸収剤25への流入排気
ガスの空燃比と称するとこのNOx 吸収剤25は流入排
気ガスの空燃比がリーンのときにはNOx を吸収し、流
入排気ガスの空燃比が理論空燃比又はリッチになると吸
収したNOx を放出するNOx の吸放出作用を行う。
【0057】このNOx 吸収剤25を機関排気通路内に
配置すればNOx 吸収剤25は実際にNOx の吸放出作
用を行うがこの吸放出作用の詳細なメカニズムについて
は明らかでない部分もある。しかしながらこの吸放出作
用は図16に示すようなメカニズムで行われているもの
と考えられる。次にこのメカニズムについて担体上に白
金PtおよびバリウムBaを担持させた場合を例にとっ
て説明するが他の貴金属、アルカリ金属、アルカリ土
類、希土類を用いても同様なメカニズムとなる。
【0058】図1に示される圧縮着火式内燃機関では通
常燃焼室5における空燃比がリーンの状態で燃焼が行わ
れる。このように空燃比がリーンの状態で燃焼が行われ
ている場合には排気ガス中の酸素濃度は高く、このとき
には図16(A)に示されるようにこれら酸素O2 がO
2 - 又はO2-の形で白金Ptの表面に付着する。一方、
流入排気ガス中のNOは白金Ptの表面上でO2 - 又は
2-と反応し、NO2となる(2NO+O2 →2N
2 )。次いで生成されたNO2 の一部は白金Pt上で
酸化されつつ吸収剤内に吸収されて酸化バリウムBaO
と結合しながら図16(A)に示されるように硝酸イオ
ンNO3 - の形で吸収剤内に拡散する。このようにして
NOx がNOx 吸収剤25内に吸収される。流入排気ガ
ス中の酸素濃度が高い限り白金Ptの表面でNO2 が生
成され、吸収剤のNOx 吸収能力が飽和しない限りNO
2 が吸収剤内に吸収されて硝酸イオンNO3 - が生成さ
れる。
【0059】一方、流入排気ガスの空燃比がリッチにさ
れると流入排気ガス中の酸素濃度が低下し、その結果白
金Ptの表面でのNO2 の生成量が低下する。NO2
生成量が低下すると反応が逆方向(NO3 - →NO2
に進み、斯くして吸収剤内の硝酸イオンNO3 - がNO
2 の形で吸収剤から放出される。このときNOx 吸収剤
25から放出されたNOx は図16(B)に示されるよ
うに流入排気ガス中に含まれる多量の未燃HC,COと
反応して還元せしめられる。このようにして白金Ptの
表面上にNO2 が存在しなくなると吸収剤から次から次
へとNO2 が放出される。従って流入排気ガスの空燃比
がリッチにされると短時間のうちにNO x 吸収剤25か
らNOx が放出され、しかもこの放出されたNOx が還
元されるために大気中にNOx が排出されることはな
い。
【0060】なお、この場合、流入排気ガスの空燃比を
理論空燃比にしてもNOx 吸収剤25からNOx が放出
される。しかしながら流入排気ガスの空燃比を理論空燃
比にした場合にはNOx 吸収剤25からNOx が徐々に
しか放出されないためにNO x 吸収剤25に吸収されて
いる全NOx を放出させるには若干長い時間を要する。
【0061】上述したようにNOx 吸収剤25は白金P
tのような貴金属を含んでおり、従ってNOx 吸収剤2
5は酸化機能を有している。一方、前述したように機関
の運転状態が第1の運転領域Iにあって低温燃焼が行わ
れているときには煤はほとんど発生せず、その代り未燃
炭化水素が煤の前駆体又はその前の状態の形でもって燃
焼室5から排出される。ところが上述した如くNOx
収剤25は酸化機能を有しており、従ってこのとき燃焼
室5から排出された未燃炭化水素はNOx 吸収剤25に
より良好に酸化せしめられることになる。
【0062】ところでNOx 吸収剤25のNOx 吸収能
力には限界があり、NOx 吸収剤25のNOx 吸収能力
が飽和する前にNOx 吸収剤25からNOx を放出させ
る必要がある。そのためにはNOx 吸収剤25に吸収さ
れているNOx 量を推定する必要がある。そこで本発明
による実施例では第1の燃焼が行われているときの単位
時間当りのNOx 吸収量Aを要求負荷Lおよび機関回転
数Nの関数として図17(A)に示すようなマップの形
で予め求めておき、第2の燃焼が行われているときの単
位時間当りのNOx 吸収量Bを要求負荷Lおよび機関回
転数Nの関数として図17(B)に示すようなマップの
形で予め求めておき、これら単位時間当りのNOx 吸収
量A,Bを積算することによってNOx 吸収剤25に吸
収されているNOx 量ΣNOXを推定するようにしてい
る。
【0063】図18はNOx 吸収剤25からNOx を放
出すべきときにセットされるNOx放出フラグの処理ル
ーチンを示しており、このルーチンは一定時間毎の割込
みによって実行される。図18を参照するとまず初めに
ステップ100において機関の運転領域が第1の運転領
域Iであることを示すグラフIがセットされているか否
かが判別される。フラグIがセットされているとき、即
ち機関の運転領域が第1の運転領域Iであるときにはス
テップ101に進んで図17(A)に示すマップから単
位時間当りのNOx 吸収量Aが算出される。次いでステ
ップ102ではNOx 吸収量ΣNOXにAが加算され
る。次いでステップ103ではNOx 吸収量ΣNOXが
許容最大値MAX1を越えたか否かが判別される。ΣN
OX>MAX1になるとステップ104に時間だけNO
x 放出フラグ1をセットする処理が行われ、次いでステ
ップ105においてΣNOXが零とされる。
【0064】一方、ステップ100においてフラグIが
リセットされていると判断されたとき、即ち機関の運転
領域が第2の運転領域IIであるときにはステップ106
に進んで図17(B)に示すマップから単位時間当りの
NOx 吸収量Bが算出される。次いでステップ107で
はNOx 吸収量ΣNOXにBが加算される。次いでステ
ップ108ではNOx 吸収量ΣNOXが許容最大値MA
X2を越えたか否かが判別される。ΣNOX>MAX2
になるとステップ109に進んで予め定められた時間だ
けNOx 放出フラグ2をセットする処理が行われ、次い
でステップ110においてΣNOXが零とされる。
【0065】次に図19を参照しつつ運転制御について
説明する。図19を参照すると、まず初めにステップ2
00において機関の運転状態が第1の運転領域Iである
ことを示すフラグIがセットされているか否かが判別さ
れる。フラグIがセットされているとき、即ち機関の運
転状態が第1の運転領域Iであるときにはステップ20
1に進んで要求負荷Lが第1の境界X1(N)よりも大
きくなったか否かが判別される。L≦X1(N)のとき
にはステップ203に進んで低温燃焼が行われる。
【0066】即ち、ステップ203では図11(A)に
示すマップからスロットル弁20の目標開度STが算出
され、スロットル弁20の開度がこの目標開度STとさ
れる。次いでステップ204では図11(B)に示すマ
ップからEGR制御弁31の目標開度SEが算出され、
EGR制御弁31の開度がこの目標開度SEとされる。
次いでステップ205ではNOx 放出フラグ1がセット
されているか否かが判別される。NOx 放出フラグ1が
セットされていないときにはステップ206に進んで後
に詳述する噴射制御Iが行われる。
【0067】一方、ステップ205においてNOx 放出
フラグ1がセットされていると判別されたときにはステ
ップ208に進んで燃焼室5内における平均空燃比をリ
ッチにする噴射制御IIが行われる。このときNOx 吸収
剤25からNOx が放出される。一方、ステップ201
においてL>X(N)になったと判別されたときにはス
テップ202に進んでフラグIがリセットされ、次いで
ステップ211に進んで第2の燃焼が行われる。
【0068】即ち、ステップ211では図14(A)に
示すマップからスロットル弁20の目標開度STが算出
され、スロットル弁20の開度がこの目標開度STとさ
れる。次いでステップ211では図14(B)に示すマ
ップからEGR制御弁31の目標開度SEが算出され、
EGR制御弁31の開度がこの目標開度SEとされる。
次いでステップ213ではNOx 放出フラグ2がセット
されているか否かが判別される。NOx 放出フラグ2が
セットされていないときにはステップ214に進んで図
13に示される空燃比となるように図15のマップから
算出された量Qの燃料噴射が行われる。このときリーン
空燃比のもとで第2の燃焼が行われる。
【0069】一方、ステップ213においてNOx 放出
フラグ2がセットされていると判別されたときにはステ
ップ216に進んで噴射制御IVが行われる。即ち図13
に示される空燃比となるように図15のマップから算出
された量Qの燃料噴射が行われ、NOx 吸収剤25から
NOx を放出すべく膨張行程の後半又は排気行程中に追
加の燃料が噴射される。
【0070】フラグIがリセットされると次の処理サイ
クルではステップ200からステップ209に進んで要
求負荷Lが第2の境界Y(N)よりも低くなったか否か
が判別される。L≧Y(N)のときにはステップ211
に進み、リーン空燃比のもとで第2の燃焼が行われる。
一方、ステップ209においてL<Y(N)になったと
判別されたときにはステップ210に進んでフラグIが
セットされる。次いでステップ203に進んで低温燃焼
が行われる。
【0071】次に本発明の噴射制御Iを説明する。本発
明の噴射制御Iではまず現在、アイドリング運転中であ
るか否かを判別する。アイドリング運転中でないときに
はスロットル弁およびEGR弁をそれぞれステップ20
3および204にて算出した開度にしつつ、図10に示
された空燃比となるように燃料を噴射する。一方、アイ
ドリング運転中であるときにはこれとは異なる噴射制御
を行う。次にこのことについて詳しく説明する。
【0072】アイドリング運転中では機関振動が起こり
易く、この振動を抑制するために回転数を或る目標回転
数とし、且つ吸気管負圧を或る目標負圧とし、且つ空燃
比を或る目標空燃比とし、且つ燃焼室5内の圧力変化を
或る目標圧力変化とする必要がある。ところがこれらパ
ラメータ間には密接な関係があり、或るパラメータを目
標値とすべく制御し、次に別のパラメータを目標値とす
べく制御すると、既に制御したパラメータの実際の値が
変化してしまい、再びこのパラメータを目標値とすべく
制御し直す必要が生じる。即ち各パラメータの実際の値
を目標値とするには或る決められた順序に従って各パラ
メータを制御する必要がある。
【0073】そこで本発明ではアイドリング運転中であ
るときにはまず実際の回転数を目標の回転数とすべくス
ロットル弁20の開度STを補正する。次に吸気管負圧
を目標吸気管負圧とすべくEGR弁31の開度SEを補
正する。ところが吸気管負圧を目標吸気管負圧とすると
実際の吸入空気量が変化し、結果として回転数が変化し
てしまう。しかしながらこの変化は例えば実際の回転数
を目標回転数とすべくEGR弁31の開度SEを補正
し、次に実際の吸気管負圧を目標吸気管負圧とすべくス
ロットル弁20の開度STを補正する場合の変化より小
さい。即ち本発明の手順で回転数及び吸気管負圧を制御
するほうが早期にこれらパラメータを目標値とすること
ができる。
【0074】このようにスロットル弁20及びEGR弁
31の開度が補正された後、空燃比を目標空燃比とすべ
く噴射燃料量が補正される。即ち吸入空気量に基づいて
空燃比を目標空燃比とするための噴射燃料量が補正され
る。なおこの段階で噴射燃料量が補正されても回転数及
び吸気管負圧には大きな影響はなくこれらパラメータを
目標値とすべくスロットル弁20及びEGR弁31を再
び制御し直す必要はない。
【0075】このように噴射燃料量が補正された後、燃
焼室5内の圧力変化を目標圧力変化とすべく燃料噴射時
期が補正される。なおこの段階で燃料噴射時期が補正さ
れても回転数、吸気管負圧及び燃料噴射量に大きな影響
はなく、これらパラメータを目標値とすべく再び制御し
直す必要が生じたとしても極微少である。このように本
発明では或るパラメータを目標値とすべく機関構成要素
の作動を補正する場合、この補正の前に補正された機関
構成要素の作動を再度補正する必要があっても極微少で
あり、各目標値が発散し、制御上のハンチングを起こす
ことが極めて少ない。斯くして本発明によればアイドリ
ング運転中において機関振動を抑制するために制御を必
要とするパラメータを早期に目標値とすることができ
る。
【0076】図20は噴射制御Iを示すフローチャート
である。まずステップ300において要求負荷Lが第3
の境界Z(N)より小さいか否かが判別される。ここで
第3の境界Z(N)は第2の境界Y(N)より小さい。
ステップ300においてL≧Z(N)のときにはステッ
プ306に進んで噴射制御VIが行われる。即ち図10に
示された空燃比とすべく図12に示された量Qの燃料が
噴射される。一方、ステップ300においてL<Z
(N)であるときにはステップ301に進んで実際の回
転数を目標回転数とすべくスロットル弁20の開度ST
が補正される。次いでステップ302に進んで吸気管負
圧を目標吸気管負圧とすべくEGR弁31の開度SEを
補正する。なお本発明ではサージタング12に吸気管負
圧を検出するための圧力センサ53が配置される。圧力
センサ53の出力信号は対応するAD変換器47を介し
て入力ポート45に入力される。次いでステップ303
において吸入空気量に基づいて空燃比を目標空燃比とす
べく噴射燃料量Qが補正される。次いでステップ304
において燃焼室5内の圧力変化を目標圧力変化とすべく
燃料噴射時期θが補正される。なお本発明では燃焼室5
内に燃焼室5内の圧力を検出するための燃焼圧センサ5
4が配置される。燃焼圧センサ54の出力信号は対応す
るAD変換器47を介して入力ポート45に入力され
る。最後にステップ305において上記補正された制御
値に基づいて各機関構成要素の作動が制御される。
【0077】
【発明の効果】吸入空気量をその目標値とすべく制御す
ることにより機関回転数がその目標値となり、次いで不
活性ガス量をその目標値とすべく制御することにより吸
気管負圧がその目標値となる。このように吸入空気量を
目標値とした後に不活性ガス量を目標値とした場合、実
際には吸入空気量がその目標値からずれるが、そのずれ
量は小さく、アイドリング運転時における機関振動を抑
制するために制御する必要がある機関回転数と吸気管負
圧とがほぼそれぞれの目標値とされるといえる。従って
アイドリング運転時における機関振動が確実に抑制され
る。
【図面の簡単な説明】
【図1】圧縮着火式内燃機関の全体図である。
【図2】スモークおよびNOx の発生量等を示す図であ
る。
【図3】燃焼圧を示す図である。
【図4】燃料分子を示す図である。
【図5】スモークの発生量とEGR率との関係を示す図
である。
【図6】噴射燃料量と混合ガス量との関係を示す図であ
る。
【図7】第1の運転領域Iおよび第2の運転領域IIを示
す図である。
【図8】空燃比センサの出力を示す図である。
【図9】スロットル弁の開度等を示す図である。
【図10】第1の運転領域Iにおける空燃比等を示す図
である。
【図11】スロットル弁等の目標開度のマップを示す図
である。
【図12】燃料噴射量のマップを示す図である。
【図13】第2の運転領域における空燃比等を示す図で
ある。
【図14】スロットル弁等の目標開度のマップを示す図
である。
【図15】燃料噴射量のマップを示す図である。
【図16】NOx の吸放出作用を説明するための図であ
る。
【図17】単位時間当りのNOx 吸収量のマップを示す
図である。
【図18】NOx 放出フラグを処理するためのフローチ
ャートである。
【図19】機関の運転を制御するためのフローチャート
である。
【図20】機関の噴射制御Iを実行するためのフローチ
ャートである。
【符号の説明】
6…燃料噴射弁 15…排気ターボチャージャ 20…スロットル弁 29…EGR通路 31…EGR制御弁
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI F02D 43/00 301 F02D 43/00 301G F02M 25/07 570 F02M 25/07 570G 570J (72)発明者 吉▲崎▼ 康二 愛知県豊田市トヨタ町1番地 トヨタ自 動車株式会社内 (72)発明者 村田 宏樹 愛知県豊田市トヨタ町1番地 トヨタ自 動車株式会社内 (56)参考文献 特開 平7−4287(JP,A) 特開 平8−177654(JP,A) 特開 平8−86251(JP,A) 特開 平9−287527(JP,A) 特開 平9−287528(JP,A) (58)調査した分野(Int.Cl.7,DB名) F02D 41/00 - 41/40

Claims (9)

    (57)【特許請求の範囲】
  1. 【請求項1】 燃焼室内に供給される不活性ガス量を増
    大していくと煤の発生量が次第に増大してピークに達
    し、燃焼室内に供給される不活性ガス量を更に増大して
    いくと燃焼室内における燃焼時の燃料およびその周囲の
    ガス温が煤の生成温度よりも低くなって煤がほとんど発
    生しなくなる内燃機関において、煤の発生量がピークと
    なる不活性ガス量よりも多い不活性ガス量を燃焼室内に
    供給する燃焼を行っている間であって、機関のアイドリ
    ング運転時には燃焼室内に供給される空気量をその目標
    値とすべく制御した後に燃焼室内に供給される不活性ガ
    ス量をその目標値とすべく制御するようにした内燃機
    関。
  2. 【請求項2】 燃焼室内に供給される不活性ガス量をそ
    の目標値とすべく制御した後に燃焼室内に噴射される燃
    料の量をその目標値とすべく制御するようにした請求項
    1に記載の内燃機関。
  3. 【請求項3】 燃焼室内に噴射される燃料の量をその目
    標値とすべく制御した後に燃焼室内に燃料を噴射する時
    期をその目標値とすべく制御するようにした請求項2に
    記載の内燃機関。
  4. 【請求項4】 燃焼室から排出された排気ガスを機関吸
    気通路内に再循環させる再循環装置を具備し、上記不活
    性ガスが再循環排気ガスからなる請求項1に記載の内燃
    機関。
  5. 【請求項5】 排気ガス再循環率がほぼ55パーセント
    以上である請求項4に記載の内燃機関。
  6. 【請求項6】 機関排気通路内に酸化機能を有する触媒
    を配置した請求項1に記載の内燃機関。
  7. 【請求項7】 該触媒が酸化触媒、三元触媒又はNOx
    吸収剤の少なくとも一つからなる請求項6に記載の内燃
    機関。
  8. 【請求項8】 煤の発生量がピークとなる不活性ガス量
    よりも燃焼室内に供給される不活性ガス量が多く煤がほ
    とんど発生しない第1の燃焼と、煤の発生量がピークと
    なる不活性ガス量よりも燃焼室内に供給される不活性ガ
    ス量が少ない第2の燃焼とを選択的に切換える切換手段
    を具備した請求項1に記載の内燃機関。
  9. 【請求項9】 機関の運転領域を低負荷側の第1の運転
    領域と高負荷側の第2の運転領域に分割し、第1の運転
    領域では第1の燃焼を行い、第2の運転領域では第2の
    燃焼を行うようにした請求項8に記載の内燃機関。
JP32396498A 1998-08-21 1998-11-13 内燃機関 Expired - Fee Related JP3424574B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP32396498A JP3424574B2 (ja) 1998-11-13 1998-11-13 内燃機関
EP99116224A EP0982485B1 (en) 1998-08-21 1999-08-17 Internal combustion engine
DE69930181T DE69930181T2 (de) 1998-08-21 1999-08-17 Brennkraftmaschine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32396498A JP3424574B2 (ja) 1998-11-13 1998-11-13 内燃機関

Publications (2)

Publication Number Publication Date
JP2000145505A JP2000145505A (ja) 2000-05-26
JP3424574B2 true JP3424574B2 (ja) 2003-07-07

Family

ID=18160605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32396498A Expired - Fee Related JP3424574B2 (ja) 1998-08-21 1998-11-13 内燃機関

Country Status (1)

Country Link
JP (1) JP3424574B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5321244B2 (ja) * 2009-05-22 2013-10-23 日産自動車株式会社 内燃機関の異常診断装置

Also Published As

Publication number Publication date
JP2000145505A (ja) 2000-05-26

Similar Documents

Publication Publication Date Title
JPH11107861A (ja) 内燃機関
JP3092604B2 (ja) 内燃機関
JP3539238B2 (ja) 内燃機関
JP3409722B2 (ja) 排気ガス再循環量制御弁
JP3405217B2 (ja) 内燃機関
JP3551794B2 (ja) 内燃機関
JP3551788B2 (ja) 圧縮着火式内燃機関
JP3424574B2 (ja) 内燃機関
JP3463576B2 (ja) 内燃機関
JP3424571B2 (ja) 内燃機関
JP3551771B2 (ja) 内燃機関
JP3551768B2 (ja) 内燃機関
JP3331981B2 (ja) 内燃機関
JP3331974B2 (ja) 内燃機関
JP3344334B2 (ja) 内燃機関
JP3424554B2 (ja) 内燃機関
JP3424565B2 (ja) 内燃機関
JP3427754B2 (ja) 内燃機関
JP3424570B2 (ja) 内燃機関
JP3092597B2 (ja) 内燃機関
JP3409717B2 (ja) 内燃機関
JP3424563B2 (ja) 内燃機関
JP3551793B2 (ja) 内燃機関
JP2000064884A (ja) 内燃機関
JP3341683B2 (ja) 内燃機関

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080502

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090502

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100502

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140502

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees