JP3423601B2 - Distribution line transport method by quadrature amplitude modulation - Google Patents

Distribution line transport method by quadrature amplitude modulation

Info

Publication number
JP3423601B2
JP3423601B2 JP34365797A JP34365797A JP3423601B2 JP 3423601 B2 JP3423601 B2 JP 3423601B2 JP 34365797 A JP34365797 A JP 34365797A JP 34365797 A JP34365797 A JP 34365797A JP 3423601 B2 JP3423601 B2 JP 3423601B2
Authority
JP
Japan
Prior art keywords
carrier
channel
phase
data
carrier wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34365797A
Other languages
Japanese (ja)
Other versions
JPH11163769A (en
Inventor
勝広 川上
麻里 柏倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Denki Co Ltd
Original Assignee
Osaka Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Denki Co Ltd filed Critical Osaka Denki Co Ltd
Priority to JP34365797A priority Critical patent/JP3423601B2/en
Publication of JPH11163769A publication Critical patent/JPH11163769A/en
Application granted granted Critical
Publication of JP3423601B2 publication Critical patent/JP3423601B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、交流電力配電線路
を信号の伝送路として使用し、商用周波上に変調された
搬送波を重畳させてデータを伝送し、配電系統における
各種の監視、制御などを行う配電線搬送方法の改良に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention uses an AC power distribution line as a signal transmission line, superimposes a modulated carrier wave on a commercial frequency to transmit data, and performs various kinds of monitoring and control in a distribution system. The present invention relates to an improvement of a distribution line carrying method for carrying out.

【0002】[0002]

【従来の技術】交流電力配電線路の商用周波上に搬送波
を重畳させてデータ伝送を行う従来の配電線搬送方法で
は、送受信間で商用周波位相を単位とした同期方式を用
いており、商用周波50Hzにて100ボー(bou
d)の変調区間内に振幅または周波数の有意数2の変調
を行うことにより、データ伝送速度100bit/sを
実現させ、遠隔で各家庭電力量値を読み取る自動検針を
実施している。
2. Description of the Related Art In a conventional distribution line carrier method for transmitting data by superimposing a carrier wave on a commercial frequency of an AC power distribution line, a synchronization method using a commercial frequency phase as a unit between transmission and reception is used. 100 baud at 50 Hz
By performing a significant number 2 of amplitude or frequency in the modulation section of d), a data transmission rate of 100 bit / s is realized, and automatic meter reading for reading each home electric energy value is performed remotely.

【0003】[0003]

【発明が解決しようとする課題】今後予想される自動検
針以外の電力需要管理等の伝送情報の多様化、他メディ
ア情報の拡張性において、データ伝送速度100bit
/sでの配電線搬送方法では対応が難しい。
A data transmission rate of 100 bits is expected in view of diversification of transmission information such as power demand management other than automatic meter reading expected in the future and expandability of other media information.
It is difficult to use the distribution line transportation method of / s.

【0004】ところが、様々な機器が接続される配電線
路を媒体とした通信は、一般的な伝送品質の確保ができ
ず、データ伝送速度を向上させるためには、配電線路の
性質に耐え得る特有な伝送方式及び変復調処理が必要と
される。即ち、データ伝送速度を上げるために、商用周
波の1サイクル中のすべての位相範囲を使用してチャン
ネル数を多くしようとした場合、一定の振幅の信号を重
畳させても、位相が0,πの付近では振幅が大きく、π
/2,3π/2の付近では振幅が小さくなり、あたかも
振幅変調したようになってしまうので、位相が0,πの
付近の低ノイズ領域を使用せざるを得ない。この位相
0,π付近の低ノイズ領域を使って、1チャンネルの幅
を狭くしてチャンネル数を多くしようとした場合、線路
歪みの影響を受けて前後のチャンネルで符号の干渉度が
大きくなるので、1チャンネルの幅をあまり小さくする
ことはできない。また、直交位相変調を用いて位相変調
の相数を多くすれば、データ伝送速度は速くなるが、受
信側で位相の差を判別することが難しい。したがって、
従来通りの考え方では、データ伝送速度を向上させるこ
とは難しい。 (発明の目的)本発明の第1の目的は、データ伝送速度
の向上を可能にするために、配電線に接続される負荷機
器のインピーダンスの非線形性に起因してチャンネル間
で生じる位相及びレベルの変動の影響を解消することが
できる直交振幅変調による配電線搬送方法を提供するこ
とである。
However, in communication using a distribution line to which various devices are connected as a medium, general transmission quality cannot be ensured, and in order to improve the data transmission speed, it is peculiar to withstand the characteristics of the distribution line. Different transmission methods and modulation / demodulation processing are required. That is, in order to increase the number of channels by using all the phase ranges in one cycle of the commercial frequency in order to increase the data transmission rate, even if signals with a constant amplitude are superimposed, the phase is 0, π. The amplitude is large near
The amplitude becomes small in the vicinity of / 2,3π / 2, and it seems as if the amplitude was modulated. Therefore, it is unavoidable to use the low noise region near the phase of 0, π. If the width of one channel is narrowed and the number of channels is increased by using the low noise region near the phases 0 and π, the degree of code interference increases in the front and rear channels due to the influence of line distortion. The width of one channel cannot be made too small. Further, if the number of phases of phase modulation is increased by using quadrature phase modulation, the data transmission speed increases, but it is difficult to determine the phase difference on the receiving side. Therefore,
In the conventional way of thinking, it is difficult to improve the data transmission rate. (Object of the Invention) A first object of the present invention is to provide a phase and level generated between channels due to the non-linearity of impedance of a load device connected to a distribution line in order to enable improvement of data transmission rate. It is an object of the present invention to provide a method for conveying a distribution line by quadrature amplitude modulation, which can eliminate the influence of the fluctuation of

【0005】本発明の第2の目的は、データ伝送速度の
向上を可能にするために、時間の経過に伴う負荷変動の
影響による搬送波位相の同期ずれを解消することができ
る直交振幅変調による配電線搬送方法を提供することで
ある。
A second object of the present invention is to use a quadrature amplitude modulation method capable of eliminating a carrier phase synchronization deviation due to the influence of load fluctuations with the passage of time in order to improve the data transmission rate. It is to provide an electric wire transportation method.

【0006】[0006]

【課題を解決するための手段】上記第1の目的を達成す
るために、請求項1記載の本発明は、配電線路の商用周
波上に、データにより直交振幅変調された搬送波を重畳
させることによりデータ伝送を行う直交振幅変調による
配電線搬送方法であって、商用周波の位相0と位相πの
少なくともいずれか一方を中心とする搬送波重畳区間を
3つ以上のチャンネルに分割し、送信側では、データに
より直交振幅変調された搬送波の重畳に先立って、商用
周波の第1のサイクルの前記搬送波重畳区間のすべての
チャンネルに無変調の搬送波を基準信号として重畳し、
商用周波の第2のサイクルの前記搬送波重畳区間のチャ
ンネルに無変調の搬送波と該搬送波を極性反転した搬送
波とを同期信号として交互に重畳し、受信側では、前記
基準信号と前記同期信号を乗算検波した波形より、前記
各チャンネルの中心点を検出及び記憶すると共に、前記
乗算検波した波形に基づいて前記各チャンネル毎の判定
レベルを設定し、データにより直交振幅変調された搬送
波の復調に際して、前記各チャンネルの中心点での搬送
波の振幅を前記判定レベルにより判定するようにしたこ
とを特徴とするものである。
In order to achieve the first object, the present invention according to claim 1 superimposes a carrier wave quadrature amplitude modulated by data on a commercial frequency of a distribution line. A distribution line carrier method using quadrature amplitude modulation for data transmission, in which a carrier wave superimposing section centered on at least one of phase 0 and phase π of a commercial frequency is divided into three or more channels, and on the transmission side, Prior to superimposing the carrier quadrature-amplitude modulated by the data, an unmodulated carrier is superposed as a reference signal on all channels of the carrier superimposing section of the first cycle of the commercial frequency,
An unmodulated carrier and a carrier obtained by reversing the polarity of the carrier are alternately superposed as a synchronization signal on a channel in the carrier-superimposing section of the second cycle of the commercial frequency, and the reference signal and the synchronization signal are multiplied on the receiving side. From the detected waveform, the center point of each channel is detected and stored, and the determination level for each channel is set based on the multiplied and detected waveform. When demodulating the carrier quadrature amplitude modulated by the data, The amplitude of the carrier wave at the center point of each channel is judged by the judgment level.

【0007】また、上記第2の目的を達成するために、
請求項2記載の本発明は、送信側では、商用周波の第3
のサイクル以降の前記各搬送波重畳区間の先頭のチャン
ネルに無変調の搬送波をパイロット信号として重畳し、
該先頭チャンネル以外のチャンネルにデータにより直交
振幅変調された搬送波を重畳し、受信側では、前記パイ
ロット信号の検波同相成分及び検波直交成分に基づい
て、前記先頭チャンネル以外のチャンネルに重畳された
搬送波の検波出力の位相補正を前記各搬送波重畳区間毎
に行うようにしたことを特徴とするものである。
In order to achieve the above second object,
The present invention according to claim 2 is such that the third side of commercial frequency is used on the transmitting side.
Superimposing an unmodulated carrier as a pilot signal on the first channel of each carrier superimposing section after the cycle,
A carrier that is quadrature-amplitude-modulated by data is superimposed on a channel other than the first channel, and on the receiving side, based on the detected in-phase component and the detected quadrature component of the pilot signal, the carrier wave superimposed on the channel other than the first channel is detected. It is characterized in that the phase correction of the detection output is performed for each of the carrier wave superimposing sections.

【0008】[0008]

【発明の実施の形態】 図1は、本発明の実施の一形態
における商用周波上のチャンネル配置を示す図である。
50Hzまたは60Hzの商用周波1の位相0及びπを
中心とする低ノイズ領域を搬送波重畳区間2として使用
し、この搬送波重畳区間2を4つのチャンネルCH1,
CH2,CH3,CH4に分割する。そして、送信側で
は、各搬送波重畳区間2の先頭チャンネルCH1には、
無変調(基準位相)の搬送波(例えば搬送周波数が7.
kHz)からなるパイロット信号Pを重畳し、先頭チ
ャンネルCH1以外のチャンネルCH2〜CH4には、
データにより直交振幅変調(QAM)された搬送波D1
〜D9,……を重畳する。データとしては16値即ち4
ビットのもので、図2の位相配置図に示されるように、
同相4値、直交4値をとるように搬送波の振幅及び極性
が定められる。例えば、最大振幅を1とすれば、4値は
±1,±1/3の振幅のものに定められる。したがっ
て、1チャンネルで4ビットを伝送することができ、商
用周波1の1サイクルで2つの搬送波重畳区間2がある
ので、商用周波50Hzでは、4ビット×3チャンネル
×2搬送波重畳区間×50Hz=1200bit/sの
データ伝送速度とすることができる。なお、商用周波1
の位相がπ(あるいは0)を中心とする搬送波重畳区間
2のみを使用してもよい。その場合には、データ伝送速
度は600bit/sとなる。また、チャンネルの数は
4に限らず、3以上であればよい。
FIG. 1 is a diagram showing a channel arrangement on a commercial frequency according to an embodiment of the present invention.
A low noise region centered on phases 0 and π of the commercial frequency 1 of 50 Hz or 60 Hz is used as the carrier wave superimposing section 2, and the carrier wave superimposing section 2 is used for four channels CH1,
Divide into CH2, CH3 and CH4. Then, on the transmitting side, in the first channel CH1 of each carrier wave superimposing section 2,
Unmodulated (reference phase) carrier wave (for example, carrier frequency is 7.
5 kHz ), a pilot signal P is superimposed, and channels CH2 to CH4 other than the first channel CH1 are
Carrier wave D1 quadrature amplitude modulated (QAM) by data
Superimpose D9, .... 16 values as data, that is, 4
Bit, as shown in the phase layout diagram of FIG.
The amplitude and polarity of the carrier wave are determined so as to take in-phase 4-value and quadrature 4-value. For example, if the maximum amplitude is 1, the four values are determined to have amplitudes of ± 1 and ± 1/3. Therefore, one channel can transmit 4 bits, and since there are two carrier wave superimposing sections 2 in one cycle of the commercial frequency 1, at the commercial frequency 50 Hz, 4 bits × 3 channels × 2 carrier wave superimposing sections × 50 Hz = 1200 bit. It can be a data transmission rate of / s. Commercial frequency 1
Only the carrier wave superimposing section 2 whose phase is centered on π (or 0) may be used. In that case, the data transmission rate is 600 bit / s. Further, the number of channels is not limited to four and may be three or more.

【0009】直交振幅変調方式(QAM)を用いてデー
タを伝送する前に、送受信間の同期をとるために、基準
信号及び同期信号の伝送が必要である。図3に示される
ように、送信側では、まず、商用周波1の第1のサイク
ルの位相π及び0を中心とする搬送波重畳区間2a,2
bのすべてのチャンネルCH1〜CH4に、無変調の搬
送波I0 を基準信号として重畳し、次に、商用周波1の
第2のサイクルの搬送波重畳区間2c,2dのチャンネ
ルCH1,CH3に無変調の搬送波I0 を、チャンネル
CH2,CH4に図4に示されるように搬送波I0 を極
性反転した搬送波I1 を、同期信号としてそれぞれ交互
に重畳し、受信側では、搬送波重畳区間2aの基準信号
と搬送波重畳区間2cの同期信号とを乗算検波(同期検
波)し、搬送波重畳区間2bの基準信号と搬送波重畳区
間2dの同期信号とを乗算検波する。その乗算検波波形
3は図5に示されるようになり、その0クロス点を検出
してチャンネル切り換わり点として、そして、0クロス
点間の時間Tの1/2の点をチャンネルの中心点とし
て、それぞれ記憶する。また、図6に示されるように、
乗算検波波形3のチャンネル毎の最大振幅I0 の±2/
3をチャンネル毎の判定レベル±L1〜±L4としてそ
れぞれ設定し、記憶する。
Before transmitting data using the quadrature amplitude modulation method (QAM), it is necessary to transmit a reference signal and a synchronization signal in order to synchronize transmission and reception. As shown in FIG. 3, on the transmission side, first, carrier wave superimposing sections 2a, 2 centered on the phases π and 0 of the first cycle of the commercial frequency 1 are set.
The unmodulated carrier I 0 is superimposed on all the channels CH1 to CH4 of b as the reference signal, and then unmodulated on the channels CH1 and CH3 of the carrier superimposing sections 2c and 2d of the second cycle of the commercial frequency 1. The carrier I 0 is alternately superposed on the channels CH2 and CH4 as the synchronizing signal, and the carrier I 1 obtained by reversing the polarity of the carrier I 0 as shown in FIG. 4 is used as the synchronization signal. Multiply detection (synchronous detection) is performed with the synchronization signal of the carrier wave superimposing section 2c, and the reference signal of the carrier wave superimposing section 2b and the synchronization signal of the carrier wave superimposing section 2d are multiply detected. The multiplication detection waveform 3 becomes as shown in FIG. 5, and the 0 cross point is detected as the channel switching point, and the point of the time T between the 0 cross points is 1/2 as the center point of the channel. , Memorize each. Also, as shown in FIG.
± 2 / of the maximum amplitude I 0 of each channel of the multiplication detection waveform 3
3 is set and stored as the determination levels ± L1 to ± L4 for each channel.

【0010】このように各チャンネルの中心点を検出及
び記憶すると共に、乗算検波した波形に基づいて各チャ
ンネル毎の判定レベルを設定することによって、配電線
路に接続される負荷機器のインピーダンスの非線形性
(配電線路の静特性)に起因してチャンネルCH1〜C
H4毎に生じる位相及びレベルの変動の影響を解消する
ことができる。
Thus, the center point of each channel is detected and stored, and the determination level for each channel is set on the basis of the waveform subjected to the multiplicative detection, whereby the non-linearity of the impedance of the load equipment connected to the distribution line is set. Channels CH1 to C due to (static characteristics of distribution line)
It is possible to eliminate the influence of phase and level fluctuations that occur for each H4.

【0011】なお、位相πを中心とする搬送波重畳区間
2a,2cと位相0を中心とする搬送波重畳区間2b,
2dとでは、線路特性が異なるので、図3に示されるよ
うに、基準信号及び同期信号の送受信によるチャンネル
の中心点の検出、記憶及び判定レベルの設定、記憶は別
々に行うことが望ましい。
The carrier wave superimposing sections 2a and 2c centering on the phase π and the carrier wave superimposing section 2b and centering on the phase 0 are provided.
Since the line characteristic is different from that of 2d, it is desirable to separately detect and store the center point of the channel by transmitting and receiving the reference signal and the synchronizing signal, and set and store the determination level, as shown in FIG.

【0012】前記基準信号及び同期信号の送信の後に、
図1により既に説明したように、各搬送波重畳区間2の
先頭チャンネルCH1には、無変調の搬送波(搬送波I
0 と同じもの)からなるパイロット信号Pを重畳し、先
頭チャンネルCH1以外のチャンネルCH2〜CH4に
は、16値のデータにより直交振幅変調された搬送波D
1〜D9,……を重畳する。このとき、例えば、無変調
のパイロット信号Pを受信すると、図7に示されるよう
に、受信側で位相ずれθが発生する。また、搬送波D1
〜D9,……を受信する場合にも同様の位相ずれが発生
する。したがって、受信側では、この位相ずれを補正す
る必要がある。
After the transmission of the reference signal and the synchronization signal,
As already described with reference to FIG. 1, in the first channel CH1 of each carrier wave superimposing section 2, an unmodulated carrier wave (carrier wave I
0 equivalent) superimposes the pilot signal P consisting of, in the header channel CH1 other channels CH2~CH4, quadrature amplitude modulated carrier D by the data of 16 values
1-D9, ... are superimposed. At this time, for example, when an unmodulated pilot signal P is received, a phase shift θ occurs on the receiving side as shown in FIG. 7. Also, carrier wave D1
The same phase shift occurs when receiving ~ D9, .... Therefore, it is necessary for the receiving side to correct this phase shift.

【0013】本発明の実施の一形態では、受信側におい
て、無変調のパイロット信号Pの検波同相成分及び検波
直交成分に基づいて、先頭チャンネルCH1以外のチャ
ンネルCH2〜CH4に重畳された搬送波D1〜D9,
……の検波出力の位相補正を各搬送波重畳区間2毎に行
うようにしている。即ち、パイロット信号P及びデータ
により直交振幅変調された搬送波D1〜D3の検波同相
成分をそれぞれPI ,a1 ,a2 ,a3 とし、同じくパ
イロット信号P及びデータにより直交振幅変調された搬
送波D1〜D3の検波直交成分をそれぞれPQ ,b1
2 ,b3 とすると、それらは例えば図8に示されるよ
うになる。この場合、位相補正は、下式を演算すること
により行われる。
In one embodiment of the present invention, on the receiving side, based on the detected in-phase component and the detected quadrature component of the unmodulated pilot signal P, the carrier waves D1 to CH4 other than the first channel CH1 are superimposed on the channels CH2 to CH4. D9,
The phase correction of the detection output of ... is performed for each carrier wave superimposing section 2. That is, the detected in-phase components of the carrier waves D1 to D3 quadrature amplitude-modulated by the pilot signal P and data are P I , a 1 , a 2 , and a 3 , respectively, and the carrier wave D1 also quadrature amplitude-modulated by the pilot signal P and data. The detected quadrature components of D3 to P3 are respectively P Q , b 1 ,
Assuming b 2 and b 3 , they are as shown in FIG. 8, for example. In this case, the phase correction is performed by calculating the following equation.

【0014】Ix =axI +bxQX =bXI −aXQ 但し、x=1,2,3,
…… 上記式の演算により、先頭チャンネルCH1以外の各チ
ャンネルにおける搬送波D1〜D9,……の位相補正さ
れた同相分振幅Ix 及び直交分振幅Qx が求められる。
I x = a x P I + b x P Q Q X = b X P I −a X P Q where x = 1, 2, 3,
By the calculation of the above equation, the phase-corrected in-phase component amplitude I x and quadrature component amplitude Q x of the carriers D1 to D9, ... In each channel other than the first channel CH1 are obtained.

【0015】このように各搬送波重畳区間2毎に位相補
正を行うことによって、時間の経過に伴う負荷変動の影
響による搬送波位相の同期ずれを解消することができ
る。
By performing the phase correction for each carrier wave superimposing section 2 in this way, it is possible to eliminate the carrier wave phase synchronization shift due to the influence of the load fluctuation with the passage of time.

【0016】各チャンネルの中心点での搬送波D1〜D
9,……の、位相補正された同相分振幅Ix 及び直交分
振幅Qx は、記憶されたチャンネル毎の判定レベル±L
2〜±L4より大か小かが判定され、それにより図9に
示されるように4ビット16値のデータ(d1 ,d2
3 ,d4 )が復調される。
Carrier waves D1 to D at the center point of each channel
The phase-corrected in-phase component amplitude I x and quadrature component amplitude Q x of 9, ...
It is determined whether it is larger or smaller than 2 to ± L4, and as a result, as shown in FIG. 9, 4-bit 16-value data (d 1 , d 2 ,
d 3 , d 4 ) are demodulated.

【0017】本発明の方法を実行する送信側装置の一例
を図10に示す。
FIG. 10 shows an example of a transmitting side apparatus that executes the method of the present invention.

【0018】同期制御回路4は、データを伝送する前
に、送受信間の同期をとるために、商用周波同期回路5
の出力により商用周波と同期をとりながら、4値振幅変
調回路6のみを動作させる。即ち、4値振幅変調回路6
は、商用周波1の第1のサイクルの位相π及び0を中心
とする搬送波重畳区間2a,2bのすべてのチャンネル
CH1〜CH4にて、無変調の搬送波I0 を基準信号と
して発生し、加算器7を介して配電線注入回路8により
配電線に重畳させる。次に、商用周波1の第2のサイク
ルの搬送波重畳区間2c,2dのチャンネルCH1,C
H3にて無変調の搬送波I0 を、チャンネルCH2,C
H4にて搬送波I0 を極性反転した搬送波I1 を、同期
信号としてそれぞれ交互に発生し、同様に配電線注入回
路8により配電線に重畳させる。
The synchronization control circuit 4 has a commercial frequency synchronization circuit 5 in order to synchronize transmission and reception before transmitting data.
Only the four-level amplitude modulation circuit 6 is operated while being synchronized with the commercial frequency by the output of. That is, the four-valued amplitude modulation circuit 6
Generates an unmodulated carrier I 0 as a reference signal in all the channels CH1 to CH4 of the carrier wave superimposing sections 2a and 2b centered on the phase π and 0 of the first cycle of the commercial frequency 1 and adds it to the adder. It is superposed on the distribution line by the distribution line injection circuit 8 via 7. Next, the channels CH1 and C of the carrier wave superimposing sections 2c and 2d of the second cycle of the commercial frequency 1
Carrier wave I 0, which is not modulated by H3, is transmitted to channels CH2 and C.
The carrier I 1 where the carrier I 0 to the polarity reversal at H4, generated respectively alternately as a synchronization signal, is superimposed on the distribution line by similarly distribution line injection circuit 8.

【0019】その後、4値振幅変調回路6は、無変調の
パイロット信号P、及び、符号生成回路9から送られる
同相分用のデータd1 ,d2 にて振幅変調した搬送波発
生回路10の搬送波を出力する。一方、4値振幅変調回
路11は、符号生成回路9から送られる直交分用のデー
タd3 ,d4 にて振幅変調した、搬送波発生回路10の
搬送波がπ/2移相回路12によりπ/2移相された搬
送波を出力する。加算器7はこれらの搬送波を加算して
直交振幅変調された搬送波とし、配電線注入回路8は、
各搬送波重畳区間2の先頭チャンネルCH1に、無変調
の搬送波からなるパイロット信号Pを重畳し、先頭チャ
ンネルCH1以外のチャンネルCH2〜CH4に、デー
タにより直交振幅変調された搬送波D1〜D9,……を
重畳する。
After that, the four-valued amplitude modulation circuit 6 carries out the amplitude modulation of the unmodulated pilot signal P and the in-phase component data d 1 and d 2 sent from the code generation circuit 9 on the carrier wave of the carrier wave generation circuit 10. Is output. On the other hand, the four-valued amplitude modulation circuit 11 amplitude-modulates the quadrature division data d 3 and d 4 sent from the code generation circuit 9, and the carrier of the carrier generation circuit 10 is π / 2 by the π / 2 phase shift circuit 12. The phase-shifted carrier wave is output. The adder 7 adds these carriers into a quadrature amplitude modulated carrier, and the distribution line injection circuit 8
A pilot signal P consisting of an unmodulated carrier wave is superimposed on the head channel CH1 of each carrier wave superimposing section 2, and carrier waves D1 to D9, ..., Which are quadrature amplitude modulated by data, are superimposed on the channels CH2 to CH4 other than the head channel CH1. Superimpose.

【0020】本発明の方法を実行する受信側装置の一例
を図11に示す。
FIG. 11 shows an example of the receiving side apparatus for executing the method of the present invention.

【0021】バンドパスフィルタ13は配電線の商用周
波1から搬送波を分離する。同期制御回路14は、商用
周波1と同期しながら、前述したように、搬送波重畳区
間2aの基準信号と搬送波重畳区間2cの同期信号とを
乗算検波(同期検波)し、搬送波重畳区間2bの基準信
号と搬送波重畳区間2dの同期信号とを乗算検波する。
そして、その乗算検波波形3(図5)の0クロス点を検
出してチャンネル切り換わり点として、また、0クロス
点間の時間Tの1/2の点をチャンネルの中心点とし
て、それぞれメモリ15に記憶させると共に、チャンネ
ル毎の判定レベル±L1〜±L4をそれぞれ設定し、メ
モリ15に記憶させる。
The bandpass filter 13 separates the carrier wave from the commercial frequency 1 of the distribution line. As described above, the synchronization control circuit 14 performs the multiplicative detection (synchronous detection) of the reference signal of the carrier wave superimposing section 2a and the synchronizing signal of the carrier wave superimposing section 2c while synchronizing with the commercial frequency 1, and the reference signal of the carrier wave superimposing section 2b. The signal and the synchronization signal in the carrier wave superimposing section 2d are multiplied and detected.
Then, the 0 cross point of the multiplication detection waveform 3 (FIG. 5) is detected as the channel switching point, and the point of half the time T between the 0 cross points is set as the center point of the channel. And the determination levels ± L1 to ± L4 for each channel are set and stored in the memory 15.

【0022】同相信号発生回路16は配電線の商用周波
1に同期して搬送波の同相信号を発生し、直交信号発生
回路17は配電線の商用周波1に同期して同相信号とは
π/2だけ位相が異なる搬送波の直交信号を発生する。
乗算器18は無変調のパイロット信号P及び16値のデ
ータにより直交振幅変調された搬送波D1〜D9,……
に同相信号を乗算して乗算検波を行い、乗算器19は無
変調のパイロット信号P及び16値のデータにより直交
振幅変調された搬送波D1〜D9,……に直交信号を乗
算して乗算検波を行う。位相補正回路20,21は、ロ
ーパスフィルタ22,23から出力される乗算検波出力
の位相補正を行う。即ち、パイロット信号Pの検波同相
成分PI 及び検波直交成分PQ を求め、これらに基づい
て搬送波D1〜D9,……の検波出力の位相補正を各搬
送波重畳区間2毎に行う。
The in-phase signal generation circuit 16 generates the in-phase signal of the carrier wave in synchronization with the commercial frequency 1 of the distribution line, and the quadrature signal generation circuit 17 synchronizes with the commercial frequency 1 of the distribution line and is the in-phase signal. A quadrature signal of carrier waves having a phase difference of π / 2 is generated.
The multiplier 18 quadrature-amplitude-modulates the carrier waves D1 to D9 with the unmodulated pilot signal P and 16-valued data.
Is multiplied by an in-phase signal to perform multiplication detection, and the multiplier 19 multiplies the carriers D1 to D9, ..., Which are quadrature amplitude modulated by the unmodulated pilot signal P and 16-valued data, by the quadrature signal and performs multiplication detection. I do. The phase correction circuits 20 and 21 perform phase correction of the multiplication detection outputs output from the low pass filters 22 and 23. That is, the detected in-phase component P I and the detected quadrature component P Q of the pilot signal P are obtained, and the phase correction of the detected output of the carrier waves D1 to D9, ... Is performed for each carrier wave superimposing section 2 based on these.

【0023】判定回路24,25は、各チャンネルの中
心点での搬送波D1〜D9,……の、位相補正された同
相分振幅Ix 及び直交分振幅Qx を、メモリ15に記憶
されたチャンネル毎の判定レベル±L2〜±L4より大
か小かを判定し、それに応じて16値のデータ(d1
2 ,d3 ,d4 )を出力する。
The decision circuits 24 and 25 store the phase-corrected in-phase component amplitude I x and quadrature component amplitude Q x of the carriers D1 to D9, ... At the center point of each channel in the memory 15 channel. It is determined whether each level is larger or smaller than the determination level ± L2 to ± L4, and 16-value data (d 1 ,
d 2 , d 3 , d 4 ) are output.

【0024】[0024]

【発明の効果】以上説明したように、請求項1記載の本
発明によれば、商用周波の位相0と位相πの少なくとも
いずれか一方を中心とする搬送波重畳区間を3つ以上の
チャンネルに分割し、送信側では、データにより直交振
幅変調された搬送波の重畳に先立って、商用周波の第1
のサイクルの前記搬送波重畳区間のすべてのチャンネル
に無変調の搬送波を基準信号として重畳し、商用周波の
第2のサイクルの前記搬送波重畳区間のチャンネルに無
変調の搬送波と該搬送波を極性反転した搬送波とを同期
信号として交互に重畳し、受信側では、前記基準信号と
前記同期信号を乗算検波した波形より、前記各チャンネ
ルの中心点を検出及び記憶すると共に、前記乗算検波し
た波形に基づいて前記各チャンネル毎の判定レベルを設
定し、データにより直交振幅変調された搬送波の復調に
際して、前記各チャンネルの中心点での搬送波の振幅を
前記判定レベルにより判定するようにしたから、配電線
に接続される負荷機器のインピーダンスの非線形性に起
因してチャンネル間で生じる位相及びレベルの変動の影
響を解消することができる。
As described above, according to the present invention of claim 1, the carrier wave superimposing section centered on at least one of the phase 0 and the phase π of the commercial frequency is divided into three or more channels. However, on the transmitting side, prior to the superimposition of the carrier quadrature amplitude modulated by the data, the first of the commercial frequency is transmitted.
Carrier is superimposed on all channels of the carrier wave superimposing section of the cycle as a reference signal, and the carrier of the unmodulated carrier wave and the polarity of the carrier wave is inverted on the channel of the carrier wave superimposing section of the second cycle of the commercial frequency. Are alternately superposed as synchronization signals, and on the receiving side, from the waveform obtained by multiplying and detecting the reference signal and the synchronizing signal, the center point of each channel is detected and stored, and based on the waveforms obtained by multiplying and detecting, A decision level is set for each channel, and when demodulating a carrier quadrature-amplitude-modulated by data, the amplitude of the carrier at the center point of each channel is decided by the decision level. Eliminating the effects of phase and level fluctuations between channels due to the impedance non-linearity of the load equipment It can be.

【0025】また、請求項2記載の本発明によれば、送
信側では、商用周波の第3のサイクル以降の前記各搬送
波重畳区間の先頭チャンネルに無変調の搬送波をパイロ
ット信号として重畳し、該先頭チャンネル以外のチャン
ネルにデータにより直交振幅変調された搬送波を重畳
し、受信側では、前記パイロット信号の検波同相成分及
び検波直交成分に基づいて、前記先頭チャンネル以外の
チャンネルに重畳された搬送波の検波出力の位相補正を
前記各搬送波重畳区間毎に行うようにしたから、時間の
経過に伴う負荷変動の影響による搬送波位相の同期ずれ
を解消することができる。
Further, according to the present invention as set forth in claim 2, on the transmitting side, an unmodulated carrier is superposed as a pilot signal on the head channel of each carrier superposing section after the third cycle of the commercial frequency, A carrier, which is quadrature-amplitude modulated by data, is superimposed on a channel other than the first channel, and on the receiving side, based on the detected in-phase component and detected quadrature component of the pilot signal, the carrier wave detected on the channel other than the first channel is detected. Since the phase correction of the output is performed for each of the carrier wave superimposing sections, it is possible to eliminate the carrier phase synchronism shift due to the influence of the load fluctuation with the passage of time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の一形態における商用周波上のチ
ャンネル配置の一例を示す図である。
FIG. 1 is a diagram showing an example of channel arrangement on a commercial frequency according to an embodiment of the present invention.

【図2】直交振幅変調を使用した場合の16値の位相配
置を示す図である。
FIG. 2 is a diagram showing a 16-value phase arrangement when quadrature amplitude modulation is used.

【図3】本発明の実施の一形態における基準信号と同期
信号を示す図である。
FIG. 3 is a diagram showing a reference signal and a synchronization signal in the embodiment of the present invention.

【図4】図3における搬送波I0 と搬送波I1 の位相関
係を示す図である。
FIG. 4 is a diagram showing a phase relationship between carrier I 0 and carrier I 1 in FIG.

【図5】受信側での商用周波上のチャンネルの切り換わ
り点及び中心点を示す図である。
FIG. 5 is a diagram showing switching points and center points of channels on the commercial frequency on the receiving side.

【図6】受信側での商用周波上の各チャンネルの判定レ
ベルを示す図である。
FIG. 6 is a diagram showing the determination level of each channel on the commercial frequency on the receiving side.

【図7】受信側でのパイロット信号の位相ずれを示す図
である。
FIG. 7 is a diagram showing a phase shift of pilot signals on the receiving side.

【図8】位相補正前の検波同相成分及び検波直交成分を
示す図である。
FIG. 8 is a diagram showing a detected in-phase component and a detected quadrature component before phase correction.

【図9】16値と判定レベルとの関係を示す図である。FIG. 9 is a diagram showing a relationship between 16 values and determination levels.

【図10】本発明の方法を実行する送信側装置の一例を
示すブロック図である。
FIG. 10 is a block diagram showing an example of a transmitting side apparatus that executes the method of the present invention.

【図11】本発明の方法を実行する受信側装置の一例を
示すブロック図である。
FIG. 11 is a block diagram showing an example of a receiving side apparatus that executes the method of the present invention.

【符号の説明】[Explanation of symbols]

1 商用周波 2,2a,2b,2c,2d 搬送波重畳区間 3 乗算検波波形 CH1〜CH4 チャンネル P パイロット信号 D1〜D9 データにより直交振幅変調された搬送波 d1 ,d2 ,d3 ,d4 16値4ビットのデータ I0 無変調(基準位相)の搬送波 I1 無変調の搬送波I0 とは逆極性の搬送波 L1〜L4 判定レベル θ 位相ずれ PI パイロット信号Pの検波同相成分 PQ パイロット信号Pの検波直交成分 a1 〜a3 データにより直交振幅変調された搬送波の
検波同相成分 b1 〜b3 データにより直交振幅変調された搬送波の
検波直交成分
1 commercial frequency 2,2a, 2b, 2c, 2d carrier superimposed section 3 multiplies detection waveform CH1~CH4 channel P pilot signal D1~D9 carrier d 1 which is quadrature amplitude modulated by the data, d 2, d 3, d 4 16 value 4-bit data I 0 Carrier wave with no modulation (reference phase) I 1 Carrier wave with opposite polarity to carrier 1 0 without modulation L1 to L4 Judgment level θ Phase shift P I Detection in-phase component of pilot signal P P Q pilot signal P detection quadrature component of the quadrature amplitude modulated carrier by detecting the in-phase component b 1 ~b 3 data quadrature amplitude modulated carrier by detecting the quadrature component a 1 ~a 3 data

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 配電線路の商用周波上に、データにより
直交振幅変調された搬送波を重畳させることによりデー
タ伝送を行う直交振幅変調による配電線搬送方法であっ
て、商用周波の位相0と位相πの少なくともいずれか一
方を中心とする搬送波重畳区間を3つ以上のチャンネル
に分割し、送信側では、データにより直交振幅変調され
た搬送波の重畳に先立って、商用周波の第1のサイクル
の前記搬送波重畳区間のすべてのチャンネルに無変調の
搬送波を基準信号として重畳し、商用周波の第2のサイ
クルの前記搬送波重畳区間のチャンネルに無変調の搬送
波と該搬送波を極性反転した搬送波とを同期信号として
交互に重畳し、受信側では、前記基準信号と前記同期信
号を乗算検波した波形より、前記各チャンネルの中心点
を検出及び記憶すると共に、前記乗算検波した波形に基
づいて前記各チャンネル毎の判定レベルを設定し、デー
タにより直交振幅変調された搬送波の復調に際して、前
記各チャンネルの中心点での搬送波の振幅を前記判定レ
ベルにより判定するようにしたことを特徴とする直交振
幅変調による配電線搬送方法。
1. A distribution line carrier method by quadrature amplitude modulation for transmitting data by superimposing a carrier quadrature amplitude modulated by data on a commercial frequency of a distribution line, wherein a phase 0 and a phase π of a commercial frequency are used. Of the carrier wave in the first cycle of the commercial frequency, prior to superimposing the carrier wave quadrature amplitude modulated by the data, on the transmitting side. An unmodulated carrier is superposed as a reference signal on all channels in the superimposing section, and an unmodulated carrier and a carrier obtained by reversing the polarity of the carrier are used as synchronization signals on the channels in the carrier superimposing section in the second cycle of the commercial frequency. Alternately superposed, and the receiving side detects and stores the center point of each channel from the waveform obtained by multiplying and detecting the reference signal and the synchronization signal. In both cases, the determination level for each channel is set based on the waveform detected by the multiplication, and when demodulating the carrier quadrature amplitude modulated by the data, the amplitude of the carrier at the center point of each channel is determined by the determination level. A method of transporting a distribution line by quadrature amplitude modulation, which is characterized in that
【請求項2】 送信側では、商用周波の第3のサイクル
以降の前記各搬送波重畳区間の先頭チャンネルに無変調
の搬送波をパイロット信号として重畳し、該先頭チャン
ネル以外のチャンネルにデータにより直交振幅変調され
た搬送波を重畳し、受信側では、前記パイロット信号の
検波同相成分及び検波直交成分に基づいて、前記先頭チ
ャンネル以外のチャンネルに重畳された搬送波の検波出
力の位相補正を前記各搬送波重畳区間毎に行うようにし
たことを特徴とする請求項1記載の直交振幅変調による
配電線搬送方法。
2. The transmitting side superimposes a non-modulated carrier wave as a pilot signal on the head channel of each carrier wave superimposing section after the third cycle of the commercial frequency, and quadrature amplitude modulates the data on channels other than the head channel by data. The received carrier is superposed, and on the receiving side, based on the detected in-phase component and the detected quadrature component of the pilot signal, the phase correction of the detected output of the carrier superposed on the channel other than the first channel is performed for each of the carrier superimposed sections. The method for conveying a distribution line by quadrature amplitude modulation according to claim 1, wherein
JP34365797A 1997-12-01 1997-12-01 Distribution line transport method by quadrature amplitude modulation Expired - Fee Related JP3423601B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34365797A JP3423601B2 (en) 1997-12-01 1997-12-01 Distribution line transport method by quadrature amplitude modulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34365797A JP3423601B2 (en) 1997-12-01 1997-12-01 Distribution line transport method by quadrature amplitude modulation

Publications (2)

Publication Number Publication Date
JPH11163769A JPH11163769A (en) 1999-06-18
JP3423601B2 true JP3423601B2 (en) 2003-07-07

Family

ID=18363235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34365797A Expired - Fee Related JP3423601B2 (en) 1997-12-01 1997-12-01 Distribution line transport method by quadrature amplitude modulation

Country Status (1)

Country Link
JP (1) JP3423601B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006069420A1 (en) * 2004-12-31 2006-07-06 Phase 6 Pty Ltd Data communication system and method

Also Published As

Publication number Publication date
JPH11163769A (en) 1999-06-18

Similar Documents

Publication Publication Date Title
US5602835A (en) OFDM synchronization demodulation circuit
US3689841A (en) Communication system for eliminating time delay effects when used in a multipath transmission medium
KR0136718B1 (en) Synchronisation of ofdm signals
US5506836A (en) Orthogonal frequency division multiplex demodulation
US6816453B1 (en) Communication system using orthogonal frequency division multiplexed signal
EP0772330A2 (en) Receiver and method for receiving OFDM signals
GB2313270A (en) Digital Broadcasting Receiver
US4521878A (en) Data transmitting-receiving system
WO1998016042A1 (en) Cosine segment communications system
JPS5922467A (en) Carrier reproducing circuit
JPS60117946A (en) Carrier wave reproduction circuit
EP0484914B1 (en) Demodulator and method for demodulating digital signals modulated by a minimum shift keying
JP3423601B2 (en) Distribution line transport method by quadrature amplitude modulation
EP2159981B1 (en) OFDM signal receiving apparatus and receiving method
US4186348A (en) Receiver for data transmitted by means of the interleaved binary phase shift keyed modulation technique
US6700940B1 (en) Carrier reproduction circuit
US6639951B1 (en) Digital demodulator
JP3148090B2 (en) OFDM signal synchronous demodulator
EP0208284A2 (en) Demodulator capable of avoiding abnormal demodulation
JP3178138B2 (en) Frame synchronization circuit and frame synchronization method
JP3541653B2 (en) Received signal correction system and orthogonal frequency division multiplexed signal transmission device
JP3566851B2 (en) Orthogonal frequency division multiplex signal generation apparatus and method, demodulation apparatus, communication apparatus, storage medium storing orthogonal frequency division multiplex signal generation program, and storage medium storing demodulation program
JP3865893B2 (en) Demodulator circuit
JP2827875B2 (en) Microwave band signal generator
JPH08139775A (en) Digital demodulating device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080425

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100425

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140425

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees