JP3422957B2 - Tough fine-grain cemented carbide - Google Patents

Tough fine-grain cemented carbide

Info

Publication number
JP3422957B2
JP3422957B2 JP29599899A JP29599899A JP3422957B2 JP 3422957 B2 JP3422957 B2 JP 3422957B2 JP 29599899 A JP29599899 A JP 29599899A JP 29599899 A JP29599899 A JP 29599899A JP 3422957 B2 JP3422957 B2 JP 3422957B2
Authority
JP
Japan
Prior art keywords
cemented carbide
fine
tough
content
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP29599899A
Other languages
Japanese (ja)
Other versions
JP2001115229A (en
Inventor
裕介 井寄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17827820&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3422957(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hitachi Tool Engineering Ltd filed Critical Hitachi Tool Engineering Ltd
Priority to JP29599899A priority Critical patent/JP3422957B2/en
Publication of JP2001115229A publication Critical patent/JP2001115229A/en
Application granted granted Critical
Publication of JP3422957B2 publication Critical patent/JP3422957B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は切削分野や耐摩耗部
品等に用いられる強度と靭性に優れた微粒超硬合金素材
に関する 【0002】 【従来の技術】従来より平均粒径が1μm未満の、いわ
ゆる微粒超硬合金は平均粒径がそれ以上の合金に比べて
強度及び靭性が高いために普く使用されてきた。しかし
ながら、その使用状況を詳しく調査してみると突発的に
破壊にいたる場合が多々あり、その原因は硬さが飛躍的
に上りその反動として破壊靭性値K1Cの低下を招来す
るものとされてきた。ただし突発的な破壊は破壊靭性値
の本質的な低下だけが原因でなく、従来からも指摘され
ているように顕微鏡断面組識観察で見られる2μm以上
に粒成長したWC(以下、巨炭と称す)が破壊の起点
となり突発的な破壊を誘発する場合も多々みとめられ
る。既に論じられているようにたとえ粒径が1μm未満
のWC粉末を原料として焼結法で超硬合金を製造して
も、焼結過程中で一部著しく粒成長が起こり巨炭が出現
することは避けられないようである。 【0003】巨炭の数は当然のことながら少ないほうが
望ましいので従来より種々の粒成長抑制剤を用いる検討
が加えられてきた。その効果が大きい元素はV、Ta、
Crなどでそれらを金属あるいは炭化物、窒化物などの
化合物のかたちで適量を1種または2種以上添加するこ
とが行われてきた。こうすることで炭化物の平均粒径の
目安となる保磁力の値が大きくなり、焼結超硬合金の全
体としての粒径の粗大化の抑止が図られてきた。しかし
ながらV、Ta、Cr等の添加は平均粒径の微細化には
大きな効果があるもののところどころに点在する巨炭の
数を一定値以下に下げることは困難で、このことが大き
な問題であった。尚、保磁力を用いて超硬合金の品質を
規定した例として特開平11−241138号公報があ
る。 【0004】 【発明が解決しようとする課題】すなわち微粒超硬合金
の平均粒径のみならず巨炭の数も同時に一定値以下に下
げることが本発明が解決しようとする課題であり、その
実現により超硬合金の強靭性の向上と突発的な破壊現象
の回避が可能となり工業上有意義なものとなる。 【0005】 【課題を解決するための手段】発明者らは巨炭の
数、保磁力、飽和磁化、Co含有量、合金カーボン量、
粒成長抑制剤の種類と量についてあらためて詳細な検討
を加えた結果、次の結論に達した。すなわち、主として
WCとCoからなる強靭性微粒超硬合金において、該強
靭性微粒超硬合金は、Cr、Ta及びV金属及び/又は
それらの化合物から選ばれた2種以上を含み、該Crと
TaとVの合計含有量のCo含有量に対する重量比が
0.04〜0.3であり、該強靭性微粒超硬合金の飽和
磁化は、Co含有量に対する比で、Co1重量%あたり
1.44〜1.74μTm /kg、保磁力は、336
00〜52000A/m、光学顕微鏡断面観察における
最大径が2μm以上のWC粒子が1mm 当り0個以上
5個以下存在することを特徴とする強靭性微粒超硬合金
である。本発明は、たとえ過多と思える量の粒成長抑制
剤を添加したとしても、飽和磁化がある範囲にない限り
巨炭の量は一定値よりも減少しないこと。飽和磁化は合
金のCo量とC量に関係すること。また、平均粒径の目
安となる保磁力も飽和磁化に関与し、飽和磁化がある値
以上となると保磁力は急速に低下すること、などを見出
した。さらに、巨炭の数については最大径が2μmを超
えるものの数が顕微鏡断面組識観察で1mm当り6個
以上存在すると突発的な破壊が生じる頻度が高くなるこ
とを見出した。巨炭が生じる原因は、原料のWC粉末の
凝集、Cの偏析、粒成長抑制剤の不均一分散などいくつ
かの原因が考えられるが、いずれにしても焼結過程での
WCのCo中への固溶と析出の繰り返しが粒成長を誘発
もしくは助長する。従って、概してCo含有量が多いほ
ど巨炭が生じる頻度は高いと想像される。 【0006】しかしながら発明者らが鋭意検討した結
果、飽和磁化(μTm/kg)をCo含有量(重量
%)で除した値が1.44〜1.74の範囲にあれば合
金のCo量に関係なく巨炭の数を極めて低い値に収める
ことが可能となるのである。さらに保磁力の値も336
00〜52000A/mの範囲に収めることが可能とな
る。換言すると合金の飽和磁化をCo含有量(重量%)
で除した値が1.74を超えると保磁力が急激に低下す
る。このことはWCの平均粒径が大きくなり強靭性が低
下することを意味する。飽和磁化をCo含有量(重量
%)で除した値が1.44未満では脱炭相が出現する場
合が生じ合金の性能が不安定となる。粒成長抑制剤はC
r、Ta、V金属やそれら元素の化合物の添加が良い
が、それらの量は金属分として合計重量%をCo含有量
(重量%)で除した値が0.04〜0.3の範囲にある
ことが望ましい。それより多いと靭性の低下を招き、少
ないと粒成長抑制の効果が希薄となる。以下、本発明を
実施例にて具体的に説明する。 【0007】 【実施例】種々の平均粒径のWC粉末およびCo粉末及
びCr、Ta、Vの化合物さらに合金のC量を調整する
ために粉末Cを適宜適当量を表1のように配合し、アト
ライターを用いて粉末量に対し1.2重量%の比率でパ
ラフィンワックスをいれたアルコール中で4時間混合後
スプレードライヤーを用いて乾燥、造粒を行なった後プ
レス成型した。 【0008】 【表1】【0009】該プレス体を適宜適切な焼結条件で焼結を
行ない種々の物性値を測定した。また顕微鏡断面観察を
行ない、最大径が2μm以上のWC粒子の数を数えた。
また抗折力を30試料測定し、抗折力が3000MPa
以下の数を求めた。表2に結果を示す。 【0010】 【表2】 【0011】表2より、微粒超硬合金の平均粒径と巨炭
の数をコントロールした本発明例1では、高い抗折力が
安定して得られ、抗折力3000MPa以下のものはな
かった。また、同じ粒度の比較(試料番号4〜8)で
は、飽和磁化が高くなるに従い、抗折力が3000MP
a以下の本数が増えているが、この原因は巨炭の数によ
り、巨炭が多いほど抗折力3000MPa以下の本数が
増えている。このことは、本発明の課題として説明した
突発的な破壊現象をより少なめることが出来ることを意
味し、安定した強度が得られる。 【0012】表2の結果から明らかなように、飽和磁化
(μTm/kg)をCo含有量(重量%)で除した値
が1.44を下回るもの(比較例)は抗折力が低い場
合が多く性能が不安定である。これは合金組織中に脱炭
相が出現する場合があったためと思われる。逆に飽和磁
化(μTm/kg)をCo含有量(重量%)で除した
値が1.74を超えた場合(比較例)には巨炭数が増
え、やはり抗折力が不安定となる。但し、結果飽和磁化
(μTm/kg)をCo含有量(重量%)で除した値
が1.74を超えない場合も他の要因により巨炭数が増
え、抗折力が不安定となる場合がある。比較例の試料
号9は粒成長抑制剤が不足して巨炭数が増えた例であ
る。試料番号10及び1は粒成長抑制剤が多すぎて靭
性の低下を招いた例であるが、特に保磁力の大きい比較
例1において靭性の低下が著しい。これらに対し本発
明例では抗折力が比較的安定していることが明らかであ
る。 【0013】 【発明の効果】本発明によれば微粒超硬合金の平均粒径
のみならず巨炭の数も同時に一定値以下に下げることが
でき、超硬合金の強靭性の向上と突発的な破壊現象の回
避が可能となり工業上有意義なものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fine-grain cemented carbide material having excellent strength and toughness used in the field of cutting and wear-resistant parts . [0002] Conventionally, so-called fine-grain cemented carbides having an average grain size of less than 1 µm have been widely used because of their higher strength and toughness than alloys having an average grain size larger than that. However, there if often is lead to catastrophic destruction and try to investigate the usage details, the cause is been assumed to lead to lowering of fracture toughness value K 1C as a reactionary up dramatically Hardness Was. However, the sudden fracture is not only caused by a substantial decrease in fracture toughness, but as has been pointed out in the past, the WC (hereinafter referred to as “coal coal”) having a grain growth of 2 μm or more, referred to.) it is found many cases to induce the catastrophic destruction become a starting point of destruction. As already discussed, even if a cemented carbide is manufactured by a sintering method using a WC powder having a particle size of less than 1 μm as a raw material, part of the sintering process causes significant grain growth and the appearance of a giant coal. Seems inevitable. [0003] Naturally, it is desirable to reduce the number of giant coals. Therefore, studies using various grain growth inhibitors have been conventionally conducted. V, Ta,
It has been practiced to add an appropriate amount of one or more of them in the form of a metal or a compound such as a carbide or a nitride with Cr or the like. By doing so, the value of the coercive force, which is a measure of the average particle size of the carbide, is increased, and the coarsening of the particle size of the sintered cemented carbide as a whole has been suppressed. However, although the addition of V, Ta, Cr, etc. has a great effect on the refinement of the average particle size, it is difficult to reduce the number of giant coals scattered in some places to a certain value or less, which is a major problem. Was. Incidentally, there is JP-A 11-241138 discloses an example having the specified quality of the cemented carbide by using a coercive force. [0004] That is, it is an object of the present invention to simultaneously reduce not only the average particle size of the fine-grained cemented carbide but also the number of giant coals to a certain value or less. This makes it possible to improve the toughness of the cemented carbide and to avoid sudden fracture phenomena, which is industrially significant. [0005] The present inventors have SUMMARY OF THE INVENTION, the number of巨炭, coercive force, saturation magnetization, Co content, the alloy carbon content,
The following conclusions were reached as a result of further detailed examination of the type and amount of the grain growth inhibitor. That is, mainly
In a tough, fine-grained cemented carbide comprising WC and Co,
The tough fine-grain cemented carbide is made of Cr, Ta and V metals and / or
Containing two or more selected from these compounds,
The weight ratio of the total content of Ta and V to the Co content is
0.04 to 0.3, the saturation of the tough fine-grained cemented carbide
The magnetization is expressed as a ratio to the Co content per 1% by weight of Co.
1.44 to 1.74 μTm 3 / kg, coercive force is 336
00 to 52000 A / m, in section observation with an optical microscope
0 or more WC particles with a maximum diameter of 2 μm or more per 1 mm 2
A tough, fine-grained cemented carbide characterized by the presence of 5 or less
It is. In the present invention, even if an excessive amount of the grain growth inhibitor is added, the amount of the giant coal does not decrease below a certain value unless the saturation magnetization is within a certain range. Saturation magnetization relates to the amount of Co and C in the alloy. It has also been found that the coercive force, which is a measure of the average particle size, also contributes to the saturation magnetization, and that the coercive force decreases rapidly when the saturation magnetization exceeds a certain value. Furthermore, as for the number of giant coals, it has been found that the frequency of sudden destruction increases when the number of those having a maximum diameter exceeding 2 μm is 6 or more per 1 mm 2 by microscopic cross-sectional tissue observation. There are several possible causes of the formation of coal, such as agglomeration of the raw material WC powder, segregation of carbon, and non-uniform dispersion of the grain growth inhibitor. The repetition of solid solution and precipitation induces or promotes grain growth. Therefore, it is generally assumed that the larger the Co content, the higher the frequency of the generation of the giant coal. However, as a result of intensive studies by the inventors, if the value obtained by dividing the saturation magnetization (μTm 3 / kg) by the Co content (% by weight) is in the range of 1.44 to 1.74, the amount of Co in the alloy is determined. Regardless, the number of giant coals can be kept to a very low value. Further, the value of the coercive force is 336.
It is possible to fall within the range of 00 to 52000 A / m. In other words, the saturation magnetization of the alloy is determined by the Co content (% by weight).
If the value obtained by dividing by 1. exceeds 1.74, the coercive force drops sharply. This means that the average grain size of WC increases and the toughness decreases. When the value obtained by dividing the saturation magnetization by the Co content (% by weight) is less than 1.44, a decarburized phase may appear and the performance of the alloy becomes unstable. The grain growth inhibitor is C
The addition of r, Ta, V metal or a compound of these elements is good, but the amount thereof is in the range of 0.04 to 0.3 in which the total weight% as the metal content is divided by the Co content (weight%). Desirably. If it is more than this, the toughness is reduced, and if it is less, the effect of suppressing the grain growth becomes weak. Hereinafter, the present invention will be described specifically with reference to Examples. [0007] In order to adjust the C content of WC powder, Co powder, compounds of Cr, Ta, V, and alloys having various average particle diameters, appropriate amounts of powder C are mixed as shown in Table 1. The mixture was mixed in an alcohol containing paraffin wax at a ratio of 1.2% by weight to the amount of powder using an attritor for 4 hours, dried and granulated using a spray dryer, and then press-molded. [Table 1] The pressed body was appropriately sintered under appropriate sintering conditions, and various physical properties were measured. Further, a cross-sectional observation with a microscope was performed, and the number of WC particles having a maximum diameter of 2 μm or more was counted.
Also, 30 samples of bending force were measured and the bending force was 3000MPa.
The following numbers were determined. Table 2 shows the results. [Table 2] From Table 2, it can be seen that, in Example 1 of the present invention in which the average grain size of the fine-grained cemented carbide and the number of giant coals were controlled, a high transverse rupture strength was stably obtained, and none had a transverse rupture strength of 3000 MPa or less. . In addition, in comparison of the same particle size (sample numbers 4 to 8 ), as the saturation magnetization becomes higher, the transverse rupture force becomes 3000MP.
The number of coals having a bending strength of 3000 MPa or less is increasing, because the number of coals is large. This means that the sudden destruction phenomenon described as the subject of the present invention can be reduced, and stable strength can be obtained. As is clear from the results in Table 2, those having a value obtained by dividing the saturation magnetization (μTm 3 / kg) by the Co content (% by weight) of less than 1.44 (Comparative Example 4 ) have a deflective strength. In many cases, the performance is unstable. This is probably because a decarburized phase appeared in the alloy structure. Conversely, when the value obtained by dividing the saturation magnetization (μTm 3 / kg) by the Co content (% by weight) exceeds 1.74 (Comparative Example 8 ), the number of giant coals increases and the transverse rupture strength is also unstable. Becomes However, even when the value obtained by dividing the saturation magnetization (μTm 3 / kg) by the Co content (% by weight) does not exceed 1.74, the number of coals increases due to other factors, and the transverse rupture strength becomes unstable. There are cases. Sample number of comparative example
No. 9 is an example in which the number of giant coals increased due to a shortage of the grain growth inhibitor. Although Sample No. 10 and 1 1 is an example of leading to decrease in toughness too many grain growth inhibitors, it is remarkable particularly lowering of toughness in greater Comparative Example 1 1 coercivity. On the other hand, it is clear that the transverse rupture force of the example of the present invention is relatively stable. According to the present invention, not only the average grain size of the fine-grain cemented carbide but also the number of giant coals can be reduced to a certain value or less at the same time. It is possible to avoid any destructive phenomenon, which is industrially significant.

Claims (1)

(57)【特許請求の範囲】 【請求項1】主としてWCとCoからなる強靭性微粒
硬合金において、該強靭性微粒超硬合金は、Cr、Ta
及びV金属及び/又はそれらの化合物から選ばれた2種
以上を含み、該CrとTaとVの合計含有量のCo含有
量に対する重量比が0.04〜0.3であり、該強靭性
微粒超硬合金の飽和磁化は、Co含有量に対する比で、
Co1重量%あたり1.44〜1.74μTm/k
g、保磁力は、33600〜52000A/m、光学顕
微鏡断面観察における最大径が2μm以上のWC粒子が
1mm当り0個以上5個以下存在することを特徴とす
る強靭性微粒超硬合金。
(57) [Claims 1] A tough, fine-grained cemented carbide mainly composed of WC and Co, wherein the tough, fine-grained cemented carbide is Cr, Ta
And two kinds selected from V metals and / or their compounds
Including the above, the Co content of the total content of the Cr, Ta and V
The weight ratio to the amount is 0.04 to 0.3, and the saturation magnetization of the tough fine-grained cemented carbide is a ratio to the Co content,
1.44 to 1.74 μTm 3 / k per 1% by weight of Co
g, a coercive force is 33600 to 52000 A / m, and 0 to 5 WC particles having a maximum diameter of 2 μm or more per 1 mm 2 in cross-sectional observation with an optical microscope are present in a tough, fine-grained cemented carbide.
JP29599899A 1999-10-18 1999-10-18 Tough fine-grain cemented carbide Ceased JP3422957B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29599899A JP3422957B2 (en) 1999-10-18 1999-10-18 Tough fine-grain cemented carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29599899A JP3422957B2 (en) 1999-10-18 1999-10-18 Tough fine-grain cemented carbide

Publications (2)

Publication Number Publication Date
JP2001115229A JP2001115229A (en) 2001-04-24
JP3422957B2 true JP3422957B2 (en) 2003-07-07

Family

ID=17827820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29599899A Ceased JP3422957B2 (en) 1999-10-18 1999-10-18 Tough fine-grain cemented carbide

Country Status (1)

Country Link
JP (1) JP3422957B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013252583A (en) * 2012-06-06 2013-12-19 Sumitomo Electric Hardmetal Corp Base material for cutting tool, and surface coated cutting tool containing the same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3762777B1 (en) 2004-10-19 2006-04-05 住友電気工業株式会社 Cemented carbide
JP2006218589A (en) * 2005-02-14 2006-08-24 Hitachi Tool Engineering Ltd Amorphous carbon film coated member
KR100996838B1 (en) * 2005-03-28 2010-11-26 쿄세라 코포레이션 Super hard alloy and cutting tool
CN101768679B (en) * 2010-01-29 2012-07-04 株洲硬质合金集团有限公司 Method for manufacturing hard alloy with nonuniform structure
JP6774645B2 (en) * 2015-11-11 2020-10-28 株式会社Moldino Cemented carbide and cutting tools and milling inserts using it

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0635638B2 (en) * 1988-10-03 1994-05-11 東芝タンガロイ株式会社 Cemented carbide for precision dies and coated cemented carbide for precision dies
JPH0598385A (en) * 1991-10-08 1993-04-20 Sumitomo Electric Ind Ltd High capacity cemented carbide alloy
JPH11117037A (en) * 1997-10-13 1999-04-27 Sumitomo Electric Ind Ltd Method and device for evaluating and classifying material of cemented carbide
JPH11241138A (en) * 1998-02-25 1999-09-07 Toshiba Tungaloy Co Ltd Die part made of cemented carbide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013252583A (en) * 2012-06-06 2013-12-19 Sumitomo Electric Hardmetal Corp Base material for cutting tool, and surface coated cutting tool containing the same

Also Published As

Publication number Publication date
JP2001115229A (en) 2001-04-24

Similar Documents

Publication Publication Date Title
JP4662599B2 (en) Manufacturing method of submicron cemented carbide with increased toughness
JP5117931B2 (en) Fine-grained cemented carbide
JP2013508546A (en) Cemented carbide and method for producing the same
KR20090053934A (en) Metal powder
JP2007046166A (en) Use of mixture composed of iron based powder, graphite and solid lubricant particle
JP2009540129A (en) Sintered carbide with precision structure
EP1085957A2 (en) Method of preparing pressable powders of a transition metal carbide, iron group metal or mixtures thereof
EP0385316A2 (en) Corrosion resistant cemented carbide substrate
CN111378886B (en) Ultra-fine grain hard alloy and preparation method thereof
JP3422957B2 (en) Tough fine-grain cemented carbide
JPS6112847A (en) Sintered hard alloy containing fine tungsten carbide particles
JP2007269534A (en) Wc powder and its production method
SE529705C2 (en) Ways to make a powder mixture for cemented carbide
US6245288B1 (en) Method of preparing pressable powders of a transition metal carbide, iron group metal of mixtures thereof
JP2001335876A (en) Tough fine-particulate cemented carbide
JPH09111391A (en) Cemented carbide for die
JP3318887B2 (en) Fine-grained cemented carbide and method for producing the same
JPH0598384A (en) Tungsten carbide base sintered hard alloy having high strength and high hardness
JP2003193172A (en) Tungsten carbide cemented carbide and production method therefor
JP2001200329A (en) Tough hyperfine-grained cemented carbide
Brieseck et al. Optimised sintering and grain-growth inhibition of ultrafine and near-nano hardmetals
JPH10324942A (en) Ultra-fine cemented carbide, and its manufacture
JPS63176444A (en) Hyperfine-grained high cemented carbide alloy
JPH108181A (en) High strength cemented carbide
JPH09184042A (en) Superfine-grained cemented carbide

Legal Events

Date Code Title Description
RVOP Cancellation by post-grant opposition