JP3422687B2 - Pipe hole position automatic search method and apparatus - Google Patents

Pipe hole position automatic search method and apparatus

Info

Publication number
JP3422687B2
JP3422687B2 JP17910298A JP17910298A JP3422687B2 JP 3422687 B2 JP3422687 B2 JP 3422687B2 JP 17910298 A JP17910298 A JP 17910298A JP 17910298 A JP17910298 A JP 17910298A JP 3422687 B2 JP3422687 B2 JP 3422687B2
Authority
JP
Japan
Prior art keywords
tube
hole
image
ccd camera
view
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17910298A
Other languages
Japanese (ja)
Other versions
JP2000009427A (en
Inventor
藤田  憲
正己 小岩
正宏 木村
剛久 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP17910298A priority Critical patent/JP3422687B2/en
Publication of JP2000009427A publication Critical patent/JP2000009427A/en
Application granted granted Critical
Publication of JP3422687B2 publication Critical patent/JP3422687B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は管穴自動探索方法、
その装置、及び該探索方法を用いた管穴加工方法に係
り、特に熱交換器等における管板の管穴シール溶接を行
なう際に使用される管穴自動探索方法、その装置、及び
該探索方法を用いた管穴溶接その他の加工方法に関す
る。
TECHNICAL FIELD The present invention relates to an automatic pipe hole searching method,
The apparatus and the tube hole processing method using the searching method, and more particularly, the tube hole automatic searching method used when performing tube hole seal welding of a tube sheet in a heat exchanger, the apparatus, and the searching method. The present invention relates to pipe hole welding and other processing methods using.

【0002】[0002]

【発明が解決しようとする課題】従来より管板に多数の
伝熱管を溶接して構成される例えばシェルアンドチュー
ブ方式の熱交換器は公知であり、かかる熱交換器等にお
ける管板の管穴シール溶接を行なう際に溶接装置の管穴
への芯出しを行なう為の管穴への溶接装置芯出し手段と
して従来は、図面から作成した移動プログラムを、NC
テープによりNC装置に入力して位置決めを行なってい
たが、かかる図面から移動プログラムを作成する方法で
は、穴の配列パターン(三角、四角等)やピッチが客
先、機種毎に異なる為に、その都度NCテープを作成
し、予めNC装置の動作確認を行なっていたためその段
取作業が極めて煩雑化する。
Conventionally, for example, a shell-and-tube type heat exchanger constituted by welding a large number of heat transfer tubes to a tube sheet is known, and a tube hole of a tube sheet in such a heat exchanger is known. Conventionally, as a welding device centering means for a pipe hole for centering the pipe hole of the welding device when performing seal welding, a moving program created from the drawing is NC.
The tape was input to the NC device for positioning, but in the method of creating a movement program from such drawings, the hole arrangement pattern (triangle, square, etc.) and pitch differ depending on the customer and model. Since the NC tape is created each time and the operation of the NC device is checked in advance, the setup work is extremely complicated.

【0003】又前記溶接装置の芯出し手段は、溶接装置
に付設されたテーパ付きセンターロッド等のセンター位
置決め機構や該センターロッドを上下、左右、前後方向
に移動させるフローティング機構等により溶接装置の管
穴への芯出しを行なって、前記センターロッドを固定し
て溶接装置を同心円上に周回させながらシール溶接をし
ていたがかかる芯出し方法では、作業者が常時監視し
て、NC装置で位置決め後、手動にて位置を微調整して
いた。
Further, the centering means of the welding device is a pipe of the welding device by a center positioning mechanism such as a tapered center rod attached to the welding device or a floating mechanism for moving the center rod up, down, left and right, front and back. The center rod was fixed to the hole, the center rod was fixed, and the welding device was circulated concentrically to perform seal welding. However, in this centering method, the operator constantly monitors and positions with the NC device. After that, the position was finely adjusted manually.

【0004】本発明は、かかる技術的課題に鑑み、熱交
換器等の多数の穴を有する管板に対して、3軸のNC装
置にて各管穴に自動位置決めし、管と管板のシール溶接
その他の加工を行なう場合において、管板の据え付け精
度、管板の歪み、管穴の加工位置精度等により生じるN
Cプログラム位置との位置ずれ(上下、左右、前後)を
非接触で管穴の3次元位置を計測してNC装置を自動補
正し、さらに、順次、次の対象穴を自動探索する管穴自
動探索方法、その装置を提供することを目的とする。
In view of the above technical problems, the present invention automatically positions each tube hole in a tube sheet having a large number of holes such as in a heat exchanger by a three-axis NC device, thereby When performing seal welding or other processing, N caused by tube plate installation accuracy, tube plate distortion, tube hole processing position accuracy, etc.
Automatically corrects the NC device by measuring the three-dimensional position of the tube hole without contact with the C program position (up / down, left / right, front / back), and then automatically searches for the next target hole automatically. search method, and an object thereof is to provide Hisage the equipment.

【0005】[0005]

【課題を解決するための手段】請求項1記載の発明は、
多数の管穴を有する管板に対して、管板距離方向(Z
軸)と管板面方向(Χ、Y軸方向)の三軸のNC装置を
移動制御しながら各管穴を順次探索する管穴位置自動探
索方法において、カメラ視野を狭視野と広視野に選択可
能なCCDカメラを搭載したNC装置と、CCDカメラ
で撮像した実際の管穴とマスタ画像(基準画像)とのパ
ターンマッチングを行なう画像処理部とを用い、予め最
適なCCDカメラと管板面の距離(基準距離)にセット
し、管穴部の画像をマスタ画像として画像処理装置に登
録しておき、前記CCDカメラの視野を広視野に切換え
て該CCDカメラで複数の管穴を捕らえ、パターンマッ
チング処理により次段(隣、近接)の管穴を見つけ現在
の対象管穴位置からの移動量を求め、移動量に基づいて
NC装置を所定ピッチ移動させた後、CCDカメラの視
野を狭視野に切換え、画像処理部のパターンマッチング
処理により前記マスタ画像と実際に撮像した対象管穴の
位置のずれ量を求め、該ずれ量に基づいて対象管穴に対
するNC装置のずれ補正を行なうことを特徴とする。
The invention according to claim 1 is
For a tube sheet with a large number of tube holes, the tube sheet distance direction (Z
(Axis) and tube plate surface direction (Χ, Y axis direction) In the tube hole position automatic search method that sequentially searches each tube hole while controlling the movement of the NC device, select the camera view as narrow view or wide view. and NC device a CCD camera mounted possible using an image processing unit that performs pattern matching between the actual tube holes and the master image captured (a reference image) with a CCD camera, a pre-optimum CCD camera and the tubesheet face Set the distance (reference distance), register the image of the tube hole as a master image in the image processing device, and switch the field of view of the CCD camera to a wide field of view.
The CCD camera captures multiple tube holes and
Find the next (next to, adjacent) tube hole by ching process
The amount of movement from the target tube hole position of
After moving the NC device by a specified pitch, the CCD camera looks
The field is switched to a narrow field of view, the amount of deviation between the master image and the position of the actually imaged target tube hole is determined by the pattern matching processing of the image processing unit, and the deviation of the NC device with respect to the target tube hole is corrected based on the deviation amount. It is characterized by performing.

【0006】かかる発明によれば、管板の据え付け精
度、管板の歪み、管穴の加工位置精度等により生じるN
Cプログラム位置との位置ずれ(上下、左右、前後)を
非接触で管穴の3次元位置を計測してNC装置を自動補
正することが可能となる。
According to such an invention, N caused by installation accuracy of the tube sheet, distortion of the tube sheet, processing position accuracy of the tube hole, etc.
It is possible to automatically correct the NC device by measuring the three-dimensional position of the pipe hole without contact with the positional deviation (up / down, left / right, front / back) from the C program position.

【0007】[0007]

【0008】かかる発明によれば、CCDカメラの視
野を狭視野と広視野に交互に切換えながら、対象管穴と
マスタ画像とのずれ補正と、次の対象穴の自動探索を交
互に自動的に行なうことが出来る。
According to also take invention, while switching alternately the field of view of CCD camera in a narrow field of view and the wide field of view, automatically and shift correction between the target pipe hole and the master image, the automatic search for the next hole to alternately Can be done

【0009】請求項記載の発明は、前記発明を効果的
に実施するための管穴位置自動探索装置に関するもの
で、多数の管穴を有する管板に対して、管板距離方向
(Z軸)と管板面方向(Χ、Y軸方向)の三軸のNC装
置を移動制御しながら各管穴を順次探索する管穴位置自
動探索装置において、カメラ視野を狭視野と広視野に選
択可能なCCDカメラと、該CCDカメラの受光方向に
対し所定角度傾けた方向にスリットレーザを出射するレ
ーザ光源とを配置したNC装置と、CCDカメラで撮像
した実際の管穴とマスタ画像(基準画像)とのパターン
マッチングを行なう画像処理部とを具え 前記CCDカ
メラに対してほぼ同軸照明となるように照明を配置し、
該照明をONした画像からOFFした画像を引くことに
より、背景や色の影響により管穴部の画像認識度が低下
するのを防止可能に構成したことを特徴とする。
A second aspect of the present invention relates to a tube hole position automatic searching device for effectively implementing the above invention, wherein a tube sheet distance direction is set for a tube sheet having a large number of tube holes.
(Z axis) and tube axis direction (X, Y axis direction) triaxial NC device
The position of the pipe hole that sequentially searches each pipe hole while controlling the position of the pipe
In the dynamic search device, an NC device in which a CCD camera capable of selecting a narrow field of view and a wide field of view of the camera and a laser light source for emitting a slit laser in a direction inclined by a predetermined angle with respect to a light receiving direction of the CCD camera are arranged, comprising an image processing unit that performs pattern matching between the actual tube holes and the master image captured (a reference image) with a CCD camera, the CCD mosquito
Arrange the lighting so that it is almost coaxial with the Mela,
To subtract the OFF image from the ON image
As a result, the image recognition of the tube hole is reduced due to the influence of the background and color.
It is characterized in that it can be prevented .

【0010】かる発明によれば、管板背景部や色の影
響を排除し、精度よいパターンマッチングが可能とな
る。
According to [0010] or mow invention, to eliminate the influence of the tube plate background and color, it is possible to accurate pattern matching.

【0011】[0011]

【0012】[0012]

【0013】[0013]

【発明の実施の形態】以下、本発明を図に示した実施例
を用いて詳細に説明する。但し、この実施例に記載され
る構成部品の寸法、形状、その相対配置などは特に特定
的な記載がない限り、この発明の範囲をそれのみに限定
する趣旨ではなく単なる説明例に過ぎない。図1は管穴
自動探索方法がプログラムされた制御パソコンPCが内
蔵されているNC装置2に溶接装置1を搭載した溶接シ
ステムにおける、管穴自動探索/溶接手順を示す基本作
用図で、より具体的には、制御パソコンPC、NC装置
2、溶接装置1夫々の連係関係において管板に設けた管
穴の画像認識とシール溶接を行なうまでの手順を概略的
に示す。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below with reference to the embodiments shown in the drawings. However, unless otherwise specified, the dimensions, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention thereto, but are merely illustrative examples. FIG. 1 is a basic operation diagram showing an automatic pipe hole searching / welding procedure in a welding system in which a welding device 1 is mounted on an NC device 2 having a control personal computer PC in which a pipe hole automatic searching method is programmed. Specifically, a procedure for performing image recognition and seal welding of a tube hole provided in a tube sheet in a coordinated relationship among the control personal computer PC, the NC device 2, and the welding device 1 is schematically shown.

【0014】先ず図面から入手したプログラム情報に基
づいて、最初のシール溶接すべき想定管穴位置若しくは
シール溶接時の前段の管穴情報に、次の対象穴ピッチ分
だけシフトした想定穴位置情報を制御パソコンPC側よ
りNC装置2側に通信して(T1)、該NC装置2に設
けた後記するCCDカメラ3により対象とする管穴6の
画像認識を行ない、該認識画像を制御パソコンPC側で
画像処理した後(T2)、前記想定穴位置との位置ずれ
を計算して(T3)、そのずれ量をNC装置2側に送信
して(T4)、該NC装置2側で前記ずれ量に対応した
移動補正を行ない(T5)、管穴6と溶接装置1の自動
位置決めを行なった後、制御パソコンPC側で溶接位置
の監視(T7)を行ないながら管穴6のシール溶接(T
6)を行なう。
First, based on the program information obtained from the drawings, the assumed hole position information shifted by the following target hole pitch is added to the first assumed pipe hole position for seal welding or the pipe hole information at the previous stage at the time of seal welding. Communication is made from the control personal computer PC side to the NC device 2 side (T1), the CCD camera 3 provided in the NC device 2 which will be described later performs image recognition of the target tube hole 6, and the recognized image is sent to the control personal computer PC side. After the image processing (T2), the positional deviation from the assumed hole position is calculated (T3), the deviation amount is transmitted to the NC device 2 side (T4), and the deviation amount is calculated on the NC device 2 side. After performing the movement correction corresponding to (T5) and automatically positioning the pipe hole 6 and the welding device 1, the control personal computer PC monitors the welding position (T7) and seal welds the pipe hole 6 (T5).
Perform 6).

【0015】その後シール溶接時の前段の管穴情報に、
次の対象穴ピッチ分だけシフトした想定穴位置情報を制
御パソコンPC側よりNC装置2側に通信して前記動作
を繰り返す。
Then, in the pipe hole information of the previous stage at the time of seal welding,
The assumed hole position information shifted by the next target hole pitch is communicated from the control personal computer PC side to the NC device 2 side, and the above operation is repeated.

【0016】図2は前記システムに用いる管穴自動探索
装置における機器構成図を示す。図2において、管板距
離方向(Z軸)と管板面方向(Χ、Y軸方向)の三軸方
向(Χ、Y、Zの三元座標軸)に移動可能なNC装置2
に、Z軸と平行に移動可能な溶接装置1を連結するとと
もに、該NC装置2にZ軸方向に進退可能なCCDカメ
ラ3、及びこれと同軸上に照明5(例えばリング型照
明)を、又CCDカメラ3の受光方向に対し所定角度傾
けた方向にスリットレーザ光を出射するレーザスリット
光源4を夫々配置する。
FIG. 2 is a block diagram of the automatic tube hole searching device used in the above system. In FIG. 2, an NC device 2 that is movable in three axial directions (Z, Y, Z ternary coordinate axes) of the tube sheet distance direction (Z axis) and the tube sheet surface direction (Χ, Y axis direction).
Is connected to the welding device 1 that is movable in parallel with the Z-axis, and the NC device 2 is provided with a CCD camera 3 that can move back and forth in the Z-axis direction, and an illumination 5 (for example, a ring-type illumination) coaxial with the CCD camera 3. Further, laser slit light sources 4 for emitting slit laser light are arranged in directions inclined by a predetermined angle with respect to the light receiving direction of the CCD camera 3.

【0017】照明5は、図4に示すように、CCDカメ
ラ3に対して同軸照明となる様にし、レーザスリット光
源4は、視野範囲の中央(例えば縦方向)にスリット光
が映るように所定角度CCDカメラ3の受光方向に対し
所定角度傾けて配置する(図3(A)参照)。尚、1は
前記した通り、シール溶接を行なうための溶接装置、2
は近接穴位置(想定穴位置)決めと位置ずれ補正(ずれ
分移動)を行なうNC装置、9は前記制御パソコンPC
に組み込まれた画像処理装置で、基準画像と実際の管穴
6とのパターンマッチングを行なう。20は前記制御パ
ソコンPCに組み込まれたモニタで、画像処理装置9の
パターンマッチング状況等を表示する。
As shown in FIG. 4, the illumination 5 is coaxially illuminated with respect to the CCD camera 3, and the laser slit light source 4 is predetermined so that the slit light is projected in the center (for example, the vertical direction) of the visual field range. The angle CCD camera 3 is arranged at a predetermined angle with respect to the light receiving direction (see FIG. 3A). As mentioned above, 1 is a welding device for performing seal welding, 2
Is an NC device for determining the position of the adjacent hole (position of the assumed hole) and correcting the position shift (movement by the shift amount), 9 is the control personal computer PC
The image processing apparatus incorporated in the above performs pattern matching between the reference image and the actual tube hole 6. Reference numeral 20 denotes a monitor incorporated in the control personal computer PC, which displays the pattern matching status of the image processing apparatus 9 and the like.

【0018】次に前記機器を用いて高さ計測を行なう際
の画像処理手順を図3の原理図に基づいて説明する。N
C装置2を作業者が手動で、CCDカメラ3に最初にシ
ール溶接を行なう管穴6(例えば図1及び図2に示す最
上段左端の管穴6a)が視野の中央に1個のみ映る(狭
視野)位置に位置決めする。この時、CCDカメラ3の
画像の分解能から、予め最適なCCDカメラ3と管板7
の距離(基準距離)にセットし、管穴6とスリット光の
限定した範囲の画像をマスタ画像8として画像処理装置
9に登録しておく。この時のCCDカメラ3はその視野
を狭視野に設定する。
Next, an image processing procedure when performing height measurement using the above equipment will be described based on the principle diagram of FIG. N
Only one tube hole 6 (for example, the tube hole 6a at the left end of the uppermost stage shown in FIGS. 1 and 2) for first performing seal welding to the CCD camera 3 by the operator is reflected in the center of the visual field by the operator manually ( Position in the (narrow field) position. At this time, based on the resolution of the image of the CCD camera 3, the optimal CCD camera 3 and tube plate 7 are previously set.
Is set to the distance (reference distance) and the image of the limited range of the tube hole 6 and the slit light is registered in the image processing device 9 as the master image 8. At this time, the CCD camera 3 sets its field of view to a narrow field of view.

【0019】自動運転起動でまず、高さ(前後)計測
(CCDカメラ3と管板7との距離計測)を行なう。先
ず図3上段に示すように、CCDカメラ3とレーザスリ
ット光源4とは管板7に対し、αだけ傾けて配置されて
いるために、管板7が基準距離に対し前後にずれる事に
より、CCDカメラ3によるレーザスリット光の受光位
置は図上左右に変位する。これをモニタ20上に表した
のが、図3下段のモニタ図である。即ち、同図において
管板7が前ずれしている場合は、モニタ20上のスリッ
ト光はマスタ画像に対し右方向にずれる。又管板7が後
ずれしている場合は、モニタ20上のスリット光はマス
タ画像に対し、左方向にずれる。
At the start of automatic operation, first, the height (front and rear) is measured (the distance between the CCD camera 3 and the tube sheet 7 is measured). First, as shown in the upper part of FIG. 3, since the CCD camera 3 and the laser slit light source 4 are arranged to be inclined by α with respect to the tube sheet 7, the tube sheet 7 is displaced forward and backward with respect to the reference distance. The position where the CCD camera 3 receives the laser slit light is displaced left and right in the figure. This is shown on the monitor 20 in the lower monitor diagram of FIG. That is, in the figure, when the tube sheet 7 is displaced forward, the slit light on the monitor 20 is shifted to the right with respect to the master image. Further, when the tube sheet 7 is displaced backward, the slit light on the monitor 20 is displaced leftward with respect to the master image.

【0020】従って、CCDカメラ3と管板7の距離の
変化に比例してCCDカメラ3の視野上のレーザスリッ
ト光の位置が左右に変化することを用いて、予めレーザ
スリット光の左右移動量とCCDカメラ3の前後移動量
の関係を求めておく。
Therefore, by using the fact that the position of the laser slit light in the field of view of the CCD camera 3 changes to the left and right in proportion to the change in the distance between the CCD camera 3 and the tube sheet 7, the amount of horizontal movement of the laser slit light is previously calculated. And the relationship between the front-back movement amount of the CCD camera 3 is obtained.

【0021】次に画像処理(パターンマッチング処理)
によりスリット光部のマスタ画像8と同じスリット光部
の画像を見つけ、マスタ画像8でのスリット光の位置と
現在の画像10でのスリット光の位置のずれ量をCCD
カメラ3の前後のずれ量(距離の変化)として求める。
この時、必要に応じてフィルタ処理を行ない、認識度を
高める。このずれ量を画像処理装置9からI/F(イン
ターフェース)を介してNC装置2の制御盤に送信し、
NC装置2の位置ずれ補正を行なう。
Next, image processing (pattern matching processing)
The image of the slit light portion which is the same as the master image 8 of the slit light portion is found by, and the amount of deviation between the position of the slit light in the master image 8 and the current position of the slit light in the image 10 is calculated by the CCD.
It is calculated as the amount of displacement (change in distance) before and after the camera 3.
At this time, filter processing is performed as necessary to increase the degree of recognition. This deviation amount is transmitted from the image processing device 9 to the control panel of the NC device 2 via the I / F (interface),
The displacement of the NC device 2 is corrected.

【0022】または、前記図1に示したように、NC装
置2でおおまかに位置決めし(近接穴位置、想定穴位
置)、別に微調整用の3軸移動機構を設けて位置ずれ補
正(ずれ分移動)を行なっても良い。
Alternatively, as shown in FIG. 1, positioning is roughly performed by the NC device 2 (proximity hole position, assumed hole position), and a three-axis moving mechanism for fine adjustment is separately provided to correct position deviation (deviation amount). You may move).

【0023】かかる点までをNC装置2の動作を中心に
図6のフロー図に基づいて説明する。先ずオペレータが
スタート点のプログラム座標(Χ、Y、Z)にNC装置
2を位置決めする。(S1) 次にZ軸(高さ方向)を下降させ、NC装置2を画像処
理高さ位置に位置決めを行なう。(S2) そしてNC装置2より高さ計測指示を出して前記図3に
示すように画像処理装置9側で高さ(Z)計測を行ない
(S3)、計測完了通知をNC装置2側に送信した後
(S4)、NC装置2側よりの結果コード送信要求(S
5)を受けて、画像処理装置9側より結果コードが送信
される。(S6)
Up to this point, the operation of the NC device 2 will be mainly described with reference to the flowchart of FIG. First, the operator positions the NC device 2 at the program coordinates (X, Y, Z) of the start point. (S1) Next, the Z-axis (height direction) is lowered to position the NC device 2 at the image processing height position. (S2) Then, a height measurement instruction is issued from the NC device 2, the height (Z) is measured on the image processing device 9 side as shown in FIG. 3 (S3), and a measurement completion notification is transmitted to the NC device 2 side. After that (S4), the result code transmission request (S
In response to 5), the result code is transmitted from the image processing device 9 side. (S6)

【0024】そしてNC装置2側で前記計測結果の正常
/異常を判別し(S7)、異常の場合は一時停止を行な
う。正常の場合は、位置データ送信要求(S8、S1
0)を受けて、Z上位データとZ下位データをNC装置
2側に送信して(S9、S11)、該Z計測データに基
づいてZ軸高さ補正を行ない(S12)、該補正が誤差
範囲(S13)にあれば次のステップに進む。
Then, the NC device 2 determines whether the measurement result is normal or abnormal (S7), and if abnormal, suspends the measurement. If it is normal, a position data transmission request (S8, S1)
0), the Z upper data and the Z lower data are transmitted to the NC device 2 side (S9, S11), and the Z-axis height correction is performed based on the Z measurement data (S12). If it is within the range (S13), proceed to the next step.

【0025】次に前記機器を用いて位置ずれ計測(左
右、上下)を行なう際の画像処理手順を図4の原理図に
基づいて説明する。CCDカメラ3の画像の分解能か
ら、予め最適なCCDカメラ3と管板7の距離(基準距
離)にセットし、管穴部の画像をマスタ画像8として画
像処理装置9に登録しておくことは前記した通りであ
る。次にCCDカメラ3の視野を狭視野とした状態で、
画像処理(パターンマッチング処理)により管穴部のマ
スタ画像8と同じ管穴部の画像を見つけ、マスタ画像8
での穴の位置と現在の画像10での管穴の位置のずれ量
を求める。この時、必要に応じてフィルタ処理を行な
い、認識度を高める。
Next, an image processing procedure when performing the positional deviation measurement (left and right, up and down) using the above device will be described based on the principle diagram of FIG. Based on the resolution of the image of the CCD camera 3, the optimum distance (reference distance) between the CCD camera 3 and the tube sheet 7 is set in advance, and the image of the tube hole is registered as the master image 8 in the image processing device 9. As described above. Next, with the field of view of the CCD camera 3 set to a narrow field of view,
An image of the same tube hole portion as the master image 8 of the tube hole portion is found by image processing (pattern matching processing), and the master image 8
The amount of deviation between the position of the hole in and the position of the tube hole in the current image 10 is calculated. At this time, filter processing is performed as necessary to increase the degree of recognition.

【0026】このずれ量を画像処理装置9からI/F
(インターフェース)を介してNC装置2の制御盤に送
信し、NC装置2のずれ補正を行なう。その後、CCD
カメラ3と溶接装置1の組立上の間隔をオフセット量だ
けNC装置2を移動させ、対象管穴位置に溶接装置1を
位置決めし、シール溶接を行なう。この時、管穴径も求
め、管の偏平、穴無し、ねじ穴(対象穴以外)等を判別
する。
The amount of this deviation is transferred from the image processing device 9 to the I / F.
It is transmitted to the control panel of the NC device 2 via the (interface) to correct the deviation of the NC device 2. Then CCD
The NC device 2 is moved by an offset amount in the assembling distance between the camera 3 and the welding device 1, the welding device 1 is positioned at the target pipe hole position, and seal welding is performed. At this time, the pipe hole diameter is also obtained, and the flatness of the pipe, no hole, a screw hole (other than the target hole), etc. are determined.

【0027】この場合、背景や色の影響により管穴部の
画像認識度が低下するのを防止するために、背景部や色
の消去を照明5やレーザスリット光源4のON/OFF
画像により対処することが出来る。より具体的には照明
5をONした画像からOFFした画像を引くことによ
り、背景である後方の絵を映り込まさなくする(後方は
光が当たらないため、照明5がON状態でもOFF状態
でもほぼ同じ画像となるため背景部が消えてしまう)。
レーザスリット光も、レーザのONした画像からOFF
した画像を引くことによりレーザ光のみが残ることにな
り、背景はもちろんのこと、前述の色の影響も除外する
ことが出来る。
In this case, in order to prevent the image recognition degree of the tube hole portion from being lowered due to the influence of the background and the color, the background 5 and the color are erased by turning on / off the illumination 5 and the laser slit light source 4.
It can be dealt with by the image. More specifically, by subtracting the OFF image from the image with the illumination 5 ON, the background image that is the background is not reflected (because no light hits the rear, the illumination 5 can be either ON or OFF). The background part disappears because the image is almost the same).
The laser slit light is also turned off from the image when the laser is turned on.
Only the laser light remains by subtracting the image, and the influence of the color can be excluded as well as the background.

【0028】かかる点までをNC装置2の動作を中心に
図7のフロー図に基づいて説明する。NC装置2より画
像処理装置9に位置ずれ計測(左右Χ、上下Y)を指示
した後(S20)、前記図4に示すように画像処理装置
9側で位置ずれ計測(Χ、Y)計測を行ない(S2
1)、計測完了通知をNC装置2側に送信した後(S2
2)、NC装置2側よりの結果コード送信要求(S2
3)を受けて、画像処理装置9側より結果コードが送信
される。(S24) そしてNC装置2側で前記計測結果の正常/異常を判別
し(S25)、異常の場合はステップ(S31)に飛
ぶ。
Up to this point, the operation of the NC device 2 will be mainly described with reference to the flow chart of FIG. After the NC device 2 instructs the image processing device 9 to perform the displacement measurement (horizontal Χ, vertical Y) (S20), the displacement measurement (α, Y) is measured on the image processing device 9 side as shown in FIG. Perform (S2
1) After transmitting the measurement completion notification to the NC device 2 side (S2
2), request code transmission request from the NC device 2 side (S2
In response to 3), the result code is transmitted from the image processing device 9 side. (S24) Then, the NC device 2 side determines whether the measurement result is normal or abnormal (S25), and if abnormal, jumps to step (S31).

【0029】正常の場合は、位置データ送信要求(S2
6Χ、S26Y)を受けて、(Χ、Y)夫々の上位デー
タと下位データをNC装置2側に送信して(S27Χ、
S27Y)、該Z計測データに基づいて(Χ、Y)軸位
置補正を行ない(S28)、該補正が誤差範囲にあれ
ば、CCDカメラ3と溶接装置1の組立上の間隔をオフ
セット量だけNC装置2を移動させ(S29)、対象管
穴位置に溶接装置1を位置決めし、シール溶接を行なう
(S30)。その後、次の次段(隣、近接)の管穴6の
探索ステップに進む。
If normal, a position data transmission request (S2
6A, S26Y), the respective upper data and lower data of (I, Y) are transmitted to the NC device 2 side (S27,
S27Y), (Χ, Y) axis position correction is performed based on the Z measurement data (S28), and if the correction is within the error range, the assembly distance between the CCD camera 3 and the welding device 1 is NC by the offset amount. The device 2 is moved (S29), the welding device 1 is positioned at the target pipe hole position, and seal welding is performed (S30). After that, the process proceeds to the step of searching for the tube hole 6 of the next stage (adjacent, adjacent).

【0030】探索ステップでは、先ず、次段(隣、近
接)の管穴6動作方法送信要求をNC装置2より画像処
理装置9に出し(S31)、これを受けて画像処理装置
9側より次管穴移動方法を送信し(S32)次段探索の
図8のステップに進む。
In the search step, first, a request for transmitting the operation method of the tube hole 6 in the next stage (adjacent, adjacent) is issued from the NC device 2 to the image processing device 9 (S31), and in response to this, the image processing device 9 side sends the request. The tube hole moving method is transmitted (S32), and the process proceeds to the step of FIG. 8 of the next stage search.

【0031】図8でZ軸を次段探索位置まで上昇(S3
5)させ、具体的には、CCDカメラ3を後退させ、よ
り具体的にはカメラの視野を狭視野から広視野に後退さ
せて複数の管穴6を捕らえる。尚、狭視野から広視野に
なる際、CCDカメラ3の距離が離れることでピントが
甘くなり認識しにくい場合は、オートフォーカスレン
ズ、レンズ自動交換等を設けて対応する。画像として
は、図5に示すように、狭視野における対象管穴6を中
心として周囲(上下、左右、斜め)の管穴6が映る状態
とする。パターンマッチング処理により前述の狭視野で
の管穴6認識と同様に、次の段(隣、近接)の管穴6を
見つけ現在位置からの移動量(ピッチ)をΧ軸、Y軸の
順に求め、夫々のデータをNC装置2に送信する。(S
36)
In FIG. 8, the Z axis is moved up to the next stage search position (S3
5), specifically, the CCD camera 3 is retracted, and more specifically, the field of view of the camera is retracted from a narrow field of view to a wide field of view to capture the plurality of tube holes 6. Incidentally, when the CCD camera 3 moves away from the narrow field of view to the wide field of view and the focus becomes uneasy and difficult to recognize, an autofocus lens, automatic lens exchange, etc. are provided. As an image, as shown in FIG. 5, the peripheral (upper, lower, left, and right) tube holes 6 around the target tube hole 6 in the narrow field of view are displayed. Similar to the recognition of the tube hole 6 in the narrow field of view by the pattern matching process, the tube hole 6 of the next stage (adjacent, adjacent) is found, and the movement amount (pitch) from the current position is obtained in the order of the Χ axis and the Y axis. , And transmits the respective data to the NC device 2. (S
36)

【0032】そして、NC装置2を移動させて次の対象
管穴6位置におおまかに位置決めする。(S37) 次にCCDカメラ3を狭視野に前進させた後、NC装置
2側より次段穴探索指示を行なう(S38)ことによ
り、次段の対象管穴6の位置ずれ(Χ、Y)を、図4に
示す方法((S20)〜(S28)の動作)で計測し、
位置補正動作を行なった(S39)後、Z軸を上昇させ
てシール溶接を行なう。(S40) そして前記シール溶接を行なった管穴が最終段の管穴か
否かを判別し、最終段の場合は終了し、最終段でない場
合は図8のに進む。
Then, the NC device 2 is moved and roughly positioned at the next position of the target tube hole 6. (S37) Next, after moving the CCD camera 3 forward in a narrow field of view, the NC device 2 side issues a next-stage hole search instruction (S38), whereby the positional deviation of the next-stage target tube hole 6 (Χ, Y). Is measured by the method shown in FIG. 4 (operations of (S20) to (S28)),
After performing the position correction operation (S39), the Z axis is raised to perform seal welding. (S40) Then, it is determined whether or not the pipe hole subjected to the seal welding is the final stage pipe hole. If the final stage is the final stage, the process ends. If not, the process proceeds to FIG.

【0033】尚、隣、近接の管穴6を自動探索する際、
管穴6の配列(横方向)ピッチが一定で予め決まってい
る場合は、順次前述の広視野での管穴6探索をする手法
の代わりにNC装置2を設計ピッチ量分移動させ、前述
の狭視野での位置ずれ計測で管穴6を認識し位置補正す
る手法を用いても良い。また、連続して管穴6が無い場
合は、それが何段目、何列目で有るかを画像処理装置9
に予め登録(範囲指定)しておき、対象部にきたら範囲
分の移動量を自動でとばすようにする。ある段、列以降
を溶接しない場合も同様にする。現在の段の端の管穴6
のシール溶接が終了し、それが本当に端であるかを判断
する為にさらに、狭視野で前述の穴認識による移動を繰
り返し、設定の穴ピッチ回数分、あるいは、移動量分管
6が無いと認識した時点で最後に認識した管穴6を端と
判断し、最後に認識した管穴6まで戻る。
When automatically searching for the adjacent or adjacent tube holes 6,
If the arrangement (horizontal direction) pitch of the tube holes 6 is constant and predetermined, the NC device 2 is moved by the designed pitch amount instead of the method of searching the tube holes 6 in the wide field of view described above. A method of recognizing the tube hole 6 and correcting the position by measuring the position shift in the narrow field may be used. When the tube holes 6 are not continuously provided, the image processing device 9 determines the number of rows and the number of rows of the tube holes 6.
Is registered (range designation) in advance, and when the target portion is reached, the movement amount for the range is automatically skipped. The same shall apply when not welding a certain step or row. Tube hole 6 at the end of the current step
In order to determine whether or not it is the end of the seal welding, the movement by the hole recognition described above is repeated with a narrow field of view, and it is recognized that the set number of hole pitches or the movement amount distribution pipe 6 does not exist. At that time, the last recognized tube hole 6 is determined to be the end, and the last recognized tube hole 6 is returned.

【0034】かかる管穴端の探索方法について図5に従
って説明する。図5は、特に円板状の管板7に管穴6を
円形パターン状に、散在配置した場合の右端の管穴探索
方法を示し、(A)は管穴6の中央より上側に右端管穴
6が位置する場合の探索方法を示す。管穴端の探索方法
は、図5(A)のに示すように、広視野においてまず
見える範囲の右端の穴位置6aを求め、その後1ピッチ
右に移動し、に示すように、広視野において右下の見
える範囲の右端の穴6b位置が前に求めた管穴6aと同
じピッチ位置(x方向位置=前に求めた位置−1ピッ
チ)にある場合、それが右端と判断する。違う場合は、
さらに1ピッチずらすことを繰り返し、右端管穴位置を
求める。
A method of searching for such a tube hole end will be described with reference to FIG. FIG. 5 shows a method of searching for the right-end tube holes when the tube holes 6 are arranged in a circular pattern in a disc-shaped tube sheet 7, and FIG. 5A shows the right-end tube above the center of the tube holes 6. A search method when the hole 6 is located is shown. As shown in FIG. 5 (A), the method for searching the end of the tube hole is as follows. First, the hole position 6a at the right end of the range that can be seen in the wide field of view is obtained, and then it is moved one pitch to the right, and as shown in When the position of the hole 6b at the right end of the lower right visible range is at the same pitch position as the previously determined tube hole 6a (position in the x direction = position obtained previously-1 pitch), it is determined to be the right end. If not,
Further, shifting by one pitch is repeated to obtain the right end tube hole position.

【0035】図5(B)は管穴6の中央より下側に右端
管穴6aが位置する場合の探索方法を示す。管板7の中
央から下側は、逆に穴数が減っていく為、左斜め下に穴
が来る。従って(B)のに示すように、広視野におい
てまず見える範囲の右端の穴位置6aを求め、その後1
ピッチ左に移動し、この場合、に示すように下の列に
穴が見つからない場合、更にnピッチずつ(nピッチ=
視野で見えている穴ピッチ、の場合はn=2ピッチ)
左に移動して穴6bが求まるまで、これを繰り返す。
FIG. 5B shows a search method when the right end tube hole 6a is located below the center of the tube hole 6. From the center of the tube sheet 7 to the lower side, the number of holes decreases conversely, so a hole comes diagonally to the lower left. Therefore, as shown in (B), the hole position 6a at the right end of the visible range in the wide field of view is first obtained, and then 1
Move to the left by the pitch, in this case, if no holes are found in the lower row as shown in, add n pitches (n pitch =
(In case of hole pitch visible in the field of view, n = 2 pitch in case of)
This is repeated until the hole 6b is obtained by moving to the left.

【0036】尚、管板7の中央より上側、下側の認識は
本例では出来ない為、本実施例では、右方向にピッチ移
動して無いことを確認して、次に左方向にピッチ移動す
ることになる。前記探索方法は管穴6が右端の場合の探
索方法であるが、管穴6が管板7の左端にある部分の探
索方法も図5の左右反転した手順で前記と同様に行な
う。
Since the upper side and the lower side of the center of the tube sheet 7 cannot be recognized in this example, it is confirmed in this example that the pitch is not moved to the right, and then the pitch is moved to the left. Will move. The search method is a search method in the case where the tube hole 6 is at the right end, but the search method for the portion where the tube hole 6 is at the left end of the tube sheet 7 is also performed in the same way as the above in the procedure of left-right reversal in FIG.

【0037】従って、管穴端の探索方法は、端の管穴6
から次の段に移動した場合、まず端の管穴6を探索する
為に前段での進行方向と同じ方向に、狭視野での前述の
穴認識による移動を繰り返し、設定の穴ピッチ回数分、
あるいは、移動量分管穴6が無いと認識した時点で最後
に認識した管穴6を端と判断し、最後に認識した管穴6
まで戻る。そして、求められた端穴から前段での進行方
向と逆方向に前述の穴認識、位置決め、シール溶接を繰
り返し、以降同様の手順にて最終管穴6まで行なう。
Therefore, the method for searching the end of the tube hole is as follows.
When moving from the next stage to the next stage, first, in order to search for the tube hole 6 at the end, in the same direction as the traveling direction in the previous stage, the above-mentioned movement by the hole recognition in the narrow field is repeated, and the set number of hole pitch times,
Alternatively, when it is recognized that there is no moving amount distribution hole 6, the last recognized hole 6 is determined to be the end, and the last recognized hole 6 is detected.
Return to. Then, the above hole recognition, positioning, and seal welding are repeated from the obtained end hole in the direction opposite to the traveling direction in the preceding stage, and thereafter, the same procedure is performed up to the final tube hole 6.

【0038】次の段の求められた端穴探索にて、予め設
定した許容ピッチ移動数内で管穴6が求められない場合
は、現在の段を最終段と判断する。但し、予め入力して
ある連続穴無し部は、とばしてピッチ移動を続ける。な
お、画像処理装置9に総段数を登録しておき段数管理で
最終段と判断してもよい。
If the pipe hole 6 is not found within the preset allowable number of pitch movements in the end hole search for the next step, the current step is determined to be the final step. However, the portion without continuous holes which has been input in advance skips and continues pitch movement. The total number of stages may be registered in the image processing apparatus 9 and the final stage may be determined by the stage number management.

【0039】又、シール溶接後手直しが生じた場合は、
画像処理装置9に各管穴6の認識補正後の位置を全ての
管穴6について登録、管理する様にしておき、手直しの
対象管穴位置に再度認識位置決めした際、誤差を考慮し
てある誤差範囲であれば登録済みの管穴6として判断す
る様にする。ある段の途中で中断し、再度その段の続き
から行なう場合は、スタート穴位置にて最初の奇数/偶
数段の指示で進行方向を判断するか、または、進行方向
を支持して自動運転を開始する様にする。
In addition, if repair is required after seal welding,
The position after recognition and correction of each tube hole 6 is registered and managed in the image processing device 9 for all the tube holes 6, and an error is taken into consideration when re-recognizing and positioning the target tube hole position for repair. If it is within the error range, it is judged as the registered tube hole 6. If you want to stop in the middle of a certain stage and continue from that stage again, judge the traveling direction by the first odd / even stage instruction at the start hole position, or support the traveling direction for automatic operation. Let it start.

【0040】[0040]

【発明の効果】以上記載のごとく本発明によれば、各管
板毎にNCテープでプログラムを作成する必要が無くな
るとともに、NCテープを無くすことで、工数低減、コ
スト低減を図ることが出来る。又画像処理により非接触
で高精度に位置決めすることで溶接装置の芯出しの為の
センターロッド等をなくすことが出来る。さらに、高精
度な三次元位置決めをすることで溶接装置のねらい位置
が適正となり、品質の向上を図ることが出来るととも
に、高精度な位置決めと溶接装置の狙い位置監視を行な
うことで無人運転化を図ることが出来る。さらに、別途
CCDカメラを設けることで溶接状況の監視、溶接装置
のフィラーワイヤやタングステン電極の位置認識や形状
の異常を検知することが出来る。
As described above, according to the present invention, it is not necessary to create a program with an NC tape for each tube sheet, and by eliminating the NC tape, man-hours and costs can be reduced. Further, by performing non-contact and highly accurate positioning by image processing, a center rod or the like for centering the welding device can be eliminated. Furthermore, the aiming position of the welding device becomes appropriate by performing highly accurate three-dimensional positioning, and quality can be improved, and unattended operation is possible by performing highly accurate positioning and monitoring the target position of the welding device. Can be planned. Further, by separately providing a CCD camera, it is possible to monitor the welding situation, detect the position of the filler wire and the tungsten electrode of the welding device, and detect any abnormal shape.

【図面の簡単な説明】[Brief description of drawings]

【図1】 管穴自動探索方法における全体概要図を示
す。
FIG. 1 shows an overall schematic diagram of a pipe hole automatic search method.

【図2】 管穴自動探索方法における機器構成図を示
す。
FIG. 2 shows a device configuration diagram in a pipe hole automatic search method.

【図3】 管穴自動探索方法における画像処理(高さ計
測)原理図を示す。
FIG. 3 shows a principle diagram of image processing (height measurement) in the tube hole automatic search method.

【図4】 管穴自動探索方法における画像処理(位置ず
れ計測)原理図を示す。
FIG. 4 shows a principle diagram of image processing (positional deviation measurement) in the tube hole automatic search method.

【図5】 円板状の管板に管穴を円形パターン状に、散
在配置した場合の右端の管穴探索方法を示し、(A)は
管穴の中央より上側に右端管穴が位置する場合の探索方
法を、(B)は管穴の中央より下側に右端管穴が位置す
る場合の探索方法を夫々示す。
FIG. 5 shows a method of searching for the right end tube holes when the tube holes are arranged in a circular pattern in a disc tube plate in a circular pattern, and (A) shows that the right end tube holes are located above the center of the tube holes. (B) shows the search method in the case where the right end tube hole is located below the center of the tube hole.

【図6】 図6乃至図8は管穴自動探索方法における処
理フローチャート図を示し、図6はZ軸(高さ方向)方
向の位置補正手順を示すフローチャート図である。
FIG. 6 to FIG. 8 are process flowchart diagrams in the tube hole automatic searching method, and FIG. 6 is a flowchart diagram showing a position correction procedure in the Z-axis (height direction) direction.

【図7】 (左右Χ軸、上下Y軸)方向の位置補正手順
を示すフローチャート図である。
FIG. 7 is a flowchart showing a procedure for position correction in the (horizontal axis, vertical Y axis) direction.

【図8】 次段の対象管穴との位置(Χ、Y)補正手順
を示すフローチャート図である。
FIG. 8 is a flowchart showing a procedure for correcting the position (Χ, Y) with respect to the next target tube hole.

【符号の説明】[Explanation of symbols]

1 溶接装置 2 NC装置 3 CCDカメラ 4 レーザスリット光源 5 照明 6 管穴 7 管板 8 マスタ画像 9 画像処理装置 10 現在の画像 1 welding equipment 2 NC device 3 CCD camera 4 Laser slit light source 5 lighting 6 tube holes 7 tube sheet 8 master images 9 Image processing device 10 current image

───────────────────────────────────────────────────── フロントページの続き (72)発明者 長谷川 剛久 神戸市兵庫区和田崎町一丁目1番1号 三菱重工業株式会社神戸造船所内 (56)参考文献 特開 平9−1338(JP,A) 特開 昭59−218279(JP,A) 特開 昭62−174609(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01B 11/00 B23K 9/028 B23K 9/127 508 B23K 37/053 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Takehisa Hasegawa 1-1-1, Wadasaki-cho, Hyogo-ku, Kobe Mitsubishi Heavy Industries, Ltd. Kobe Shipyard (56) Reference JP-A-9-1338 (JP, A) JP 59-218279 (JP, A) JP 62-174609 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G01B 11/00 B23K 9/028 B23K 9/127 508 B23K 37/053

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 多数の管穴を有する管板に対して、管板
距離方向(Z軸)と管板面方向(Χ、Y軸方向)の三軸
のNC装置を移動制御しながら各管穴を順次探索する管
穴位置自動探索方法において、 カメラ視野を狭視野と広視野に選択可能なCCDカメラ
を搭載したNC装置と、 CCDカメラで撮像した実際の管穴とマスタ画像(基準
画像)とのパターンマッチングを行なう画像処理部とを
用い、 予め最適なCCDカメラと管板面の距離(基準距離)に
セットし、管穴部の画像をマスタ画像として画像処理装
置に登録しておき、前記CCDカメラの視野を広視野に切換えて該CCDカ
メラで複数の管穴を捕らえ、パターンマッチング処理に
より次段(隣、近接)の管穴を見つけ現在の対象管穴位
置からの移動量を求め、移動量に基づいてNC装置を所
定ピッチ移動させた後、 CCDカメラの視野を狭視野に切換え、 画像処理部のパ
ターンマッチング処理により前記マスタ画像と実際に撮
像した対象管穴の位置のずれ量を求め、該ずれ量に基づ
いて対象管穴に対するNC装置のずれ補正を行なうこと
を特徴とする管穴位置自動探索方法。
1. A tube plate having a large number of tube holes, each tube being controlled while moving a triaxial NC device in a tube plate distance direction (Z axis) and a tube plate surface direction (Χ, Y axis direction). In the automatic tube hole position search method for sequentially searching for holes, an NC device equipped with a CCD camera capable of selecting a narrow field of view or a wide field of view of the camera, an actual tube hole captured by the CCD camera, and a master image (reference image) The image processing unit that performs pattern matching with
By using the optimal distance between the CCD camera and the tube plate surface (reference distance) in advance, register the image of the tube hole as a master image in the image processing device, and switch the field of view of the CCD camera to a wide field of view. The CCD power
Multiple pattern holes can be captured with Mera for pattern matching processing
Find the next (neighboring, adjacent) tube hole and the current target tube hole position
The amount of movement from the position is calculated, and the NC device is located based on the amount of movement.
After moving the fixed pitch, the field of view of the CCD camera is switched to a narrow field of view, the amount of deviation between the master image and the position of the actually imaged target tube hole is obtained by the pattern matching processing of the image processing unit, and based on the amount of deviation. A pipe hole position automatic searching method, characterized in that a deviation of an NC device with respect to a target pipe hole is corrected.
【請求項2】 多数の管穴を有する管板に対して、管板
距離方向(Z軸)と管板面方向(Χ、Y軸方向)の三軸
のNC装置を移動制御しながら各管穴を順次探索する管
穴位置自動探索装置において、 カメラ視野を狭視野と広視野に選択可能なCCDカメラ
と、該CCDカメラの受光方向に対し所定角度傾けた方
向にスリットレーザを出射するレーザ光源とを配置した
NC装置と、 CCDカメラで撮像した実際の管穴とマスタ画像(基準
画像)とのパターンマッチングを行なう画像処理部とを
具え 前記CCDカメラに対してほぼ同軸照明となるように照
明を配置し、該照明をONした画像からOFFした画像
を引くことにより、背景や色の影響により管穴部の画像
認識度が低下するのを防止可能に構成した ことを特徴と
する管穴位置自動探索装置。
2. A tube sheet having a large number of tube holes, each tube being controlled while moving a triaxial NC device in a tube sheet distance direction (Z axis) and a tube sheet surface direction (Χ, Y axis direction). In an automatic tube hole position searching apparatus for sequentially searching for holes, a CCD camera capable of selecting a narrow field of view or a wide field of view of a camera, and a laser light source for emitting a slit laser in a direction inclined at a predetermined angle with respect to a light receiving direction of the CCD camera And an image processing unit that performs pattern matching between the actual tube hole imaged by the CCD camera and the master image (reference image), so that the CCD camera is substantially coaxially illuminated. Teru
Image where light is placed and the light is turned off from the image turned on
Image of the tube hole due to the influence of the background and color
An automatic pipe hole position searching device, characterized in that it is configured to prevent a decrease in recognition .
JP17910298A 1998-06-25 1998-06-25 Pipe hole position automatic search method and apparatus Expired - Fee Related JP3422687B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17910298A JP3422687B2 (en) 1998-06-25 1998-06-25 Pipe hole position automatic search method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17910298A JP3422687B2 (en) 1998-06-25 1998-06-25 Pipe hole position automatic search method and apparatus

Publications (2)

Publication Number Publication Date
JP2000009427A JP2000009427A (en) 2000-01-14
JP3422687B2 true JP3422687B2 (en) 2003-06-30

Family

ID=16060074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17910298A Expired - Fee Related JP3422687B2 (en) 1998-06-25 1998-06-25 Pipe hole position automatic search method and apparatus

Country Status (1)

Country Link
JP (1) JP3422687B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3141330A4 (en) * 2014-05-09 2018-03-07 Amada Holdings Co., Ltd. Welding machine and control method therefor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3096286B1 (en) * 2019-05-20 2021-06-11 Vallourec Tubes France Method for generating a compatibility index between two ends of two tubes, tube provided with a compatibility indicator
CN114131156A (en) * 2021-12-22 2022-03-04 一重集团大连核电石化有限公司 Full-automatic system for tube bundle seal welding
CN115121927B (en) * 2022-06-28 2023-06-16 福州大学 Real-time centering and correcting method for pipe for electromagnetic pulse welding

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3141330A4 (en) * 2014-05-09 2018-03-07 Amada Holdings Co., Ltd. Welding machine and control method therefor
US10191470B2 (en) 2014-05-09 2019-01-29 Amada Hodlings Co., Ltd. Welding machine and control method therefor

Also Published As

Publication number Publication date
JP2000009427A (en) 2000-01-14

Similar Documents

Publication Publication Date Title
US7034249B2 (en) Method of controlling the welding of a three-dimensional structure
CA2774745C (en) Welding head and method for joining a workpiece
JPWO2007049751A1 (en) Automatic cutting device and manufacturing method of groove processed product
CN100457357C (en) Microvision servo-system of platinum aurum fiber drawing bushing nozzle arc welding robot and the method thereof
US8780359B2 (en) Optical base plate alignment
JP3422687B2 (en) Pipe hole position automatic search method and apparatus
JPS6328269B2 (en)
JP3579788B2 (en) Uranami welding control method and apparatus
JP6702343B2 (en) Shape measuring device, structure manufacturing system, and shape measuring method
JPH09175457A (en) Distortion inspection method and distortion inspection device
JP2817092B2 (en) Laser processing equipment
JP3203507B2 (en) Laser processing equipment
JP2596564B2 (en) Laser welding equipment
JP2006320950A (en) Portable spot welding system
KR200248899Y1 (en) automatic welding apparatus
JP2822314B2 (en) Laser processing equipment
JPH05138354A (en) Automatic welding profiling device
JPH11295045A (en) Inspecting apparatus
JP2005078441A (en) Comparative verifier
CN117644294B (en) Laser processing method and control device based on visual preview guidance
CN117241012B (en) Calibrating device, calibrating method and machine vision detection system of linear array camera
JP3464902B2 (en) Groove copying machine
JP3203508B2 (en) Laser processing equipment
JP7349542B1 (en) Welding robot system, welding method and program
CN117620413A (en) Light spot center repositioning mechanism, system and device for laser welding equipment

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030318

LAPS Cancellation because of no payment of annual fees