JP3422372B2 - Micropump flow path member and method of manufacturing the same - Google Patents

Micropump flow path member and method of manufacturing the same

Info

Publication number
JP3422372B2
JP3422372B2 JP04560193A JP4560193A JP3422372B2 JP 3422372 B2 JP3422372 B2 JP 3422372B2 JP 04560193 A JP04560193 A JP 04560193A JP 4560193 A JP4560193 A JP 4560193A JP 3422372 B2 JP3422372 B2 JP 3422372B2
Authority
JP
Japan
Prior art keywords
silicon plate
plate
diaphragm
glass plate
back surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04560193A
Other languages
Japanese (ja)
Other versions
JPH06257570A (en
Inventor
瀬 好 廣 成
野 智 公 水
藤 充 宏 安
Original Assignee
株式会社アイシン・コスモス研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アイシン・コスモス研究所 filed Critical 株式会社アイシン・コスモス研究所
Priority to JP04560193A priority Critical patent/JP3422372B2/en
Publication of JPH06257570A publication Critical patent/JPH06257570A/en
Application granted granted Critical
Publication of JP3422372B2 publication Critical patent/JP3422372B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Micromachines (AREA)
  • Reciprocating Pumps (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、マイクロポンプに関
し、特に、作動流体孔ならびに作動流体孔を閉じ作動流
体の高,低圧変化に連動して膨出/縮退するダイアフラ
ムを含むシリコン板と、ダイアフラムの外側の被駆動流
体流路を規定するガラス板と、を有する流路部材に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a micropump, and more particularly to a silicon plate including a working fluid hole and a diaphragm which closes the working fluid hole and expands / retracts in response to changes in working fluid at high and low pressures, and a diaphragm. And a glass plate that defines a driven fluid flow path outside of the flow path member.

【0002】[0002]

【従来の技術】マイクロポンプは例えば、上述のシリコ
ン板の作動流体孔のもう一方の開口(シリコン板の、ダ
イアフラムがある面を表面とすると裏面側開口)を閉じ
るポンプベ−ス,作動流体孔に封入された低沸点作動流
体,作動流体孔内の該低沸点作動流体を加熱する手段
(微小抵抗体あるいは光ファイバと光熱変換体)、なら
びに上述の流路部材(シリコン板とガラス板の組体)を
備える。例えば、本発明者等は、作動流体孔に光熱変換
体としてカーボンファイバ等の微小繊維の塊を封入し、
これに光ファイバを通して光を投射して作動流体孔の流
体を加熱するマイクロポンプを提供した(特願平3-3601
0号:特開平4-276187号公報)。
2. Description of the Related Art A micropump has, for example, a pump base and a working fluid hole for closing the other opening of the working fluid hole of the silicon plate (opening on the back surface side when the surface of the silicon plate on which the diaphragm is located is the front surface). Enclosed low boiling point working fluid, means for heating the low boiling point working fluid in the working fluid hole (microresistor or optical fiber and photothermal converter), and the above-mentioned flow path member (assembly of silicon plate and glass plate) ) Is provided. For example, the inventors of the present invention encapsulate a lump of fine fibers such as carbon fibers as a photothermal converter in the working fluid hole,
We provided a micropump that projects light through an optical fiber to heat the fluid in the working fluid hole (Japanese Patent Application No. 3-3601).
No. 0: JP-A-4-276187).

【0003】[0003]

【発明が解決しようとする課題】上述の流路部材のシリ
コン板とガラス板の間には、ダイアフラムの膨出/縮退
を許す被駆動流体流路があり、これを形成するために従
来は、上述のシリコン板とガラス板の間に、薄いフィル
ム又は薄板(合成樹脂フィルム,薄ガラス板あるいは薄
シリコン板)を介挿していた。
Between the silicon plate and the glass plate of the above-mentioned flow path member, there is a driven fluid flow path which allows the diaphragm to bulge / retract, and in order to form this, there has been heretofore known the above-mentioned flow path. A thin film or thin plate (synthetic resin film, thin glass plate or thin silicon plate) is inserted between the silicon plate and the glass plate.

【0004】薄いフィルム又は薄板と上述のシリコン板
およびガラス板とは接着剤で接着しているが、超小型の
ポンプの場合、接合強度および被駆動流体流路高さの精
度が製作上出せないという問題がある。
Although a thin film or a thin plate is adhered to the above-mentioned silicon plate and glass plate with an adhesive, in the case of a microminiature pump, the joint strength and the height of the driven fluid flow path cannot be accurately produced in manufacturing. There is a problem.

【0005】本発明は、被駆動流体流路の高さ精度を高
くすることを目的とする。
An object of the present invention is to increase the height accuracy of the driven fluid passage.

【0006】[0006]

【課題を解決するための手段】本発明の流路部材は、長
手方向Xに分布し厚み方向Zに貫通した複数個の作動流
体孔(25)を有するシリコン板(20);該シリコン板の表面
に形成され、前記作動流体孔(25)の、シリコン板の表面
側の開口を閉じる、シリコン板の表面積より小さいダイ
アフラム(21,22);および、裏面が前記シリコン板の表
面に対向し、該裏面に、幅方向Yで前記ダイアフラム(2
1,22)の幅より広く、かつ長手方向Xで前記複数個の作
動流体孔の開口を閉じるダイアフラムの長手方向分布長
より長い開口(32)を有する被駆動流体流路用の溝(32,3
5)を有し、該溝の外方の裏面が前記シリコン板の表面に
接合されたガラス板(30);を備え、前記シリコン板(20)
の裏面とガラス板(30)の表面の間に高電圧を印加するこ
とにより、シリコン板(20)の、ダイアフラム(21,22)の外
側の表面に、ガラス板(30)の裏面を接着剤を介すること
なく接合し、ダイアフラム(21,22)は、ガラス板(30)の
被駆動流体流路用の溝(32,35)の内方に位置する、もの
である。
A flow path member of the present invention According to an aspect of a silicon plate having a plurality of working fluid hole penetrating in the thickness direction Z distributed in the longitudinal direction X (25) (20); of the silicon plate surface
A diaphragm (21, 22) formed in the working fluid hole (25) that closes the opening on the front surface side of the silicon plate, the diaphragm being smaller than the surface area of the silicon plate; and the back surface facing the front surface of the silicon plate, On the back side, the diaphragm (2
A groove (32, for the driven fluid flow path) having an opening (32) wider than the longitudinal distribution length of the diaphragm that closes the openings of the plurality of working fluid holes in the longitudinal direction X. 3
5), the outer back surface of the groove is provided with a glass plate (30) bonded to the front surface of the silicon plate; and the silicon plate (20)
By applying a high voltage between the back surface of the glass plate (30) and the back surface of the glass plate (30), the back surface of the glass plate (30) is attached to the outer surface of the diaphragm (21, 22) of the silicon plate (20) with an adhesive. The diaphragms (21, 22) are bonded to each other without being interposed, and are located inside the grooves (32, 35) for the driven fluid flow path of the glass plate (30).

【0007】なお、カッコ内の記号は、図面に示し後述
する実施例の対応要素又は対応箇所を示す。
Symbols in parentheses indicate corresponding elements or corresponding portions in the embodiments shown in the drawings and described later.

【0008】[0008]

【作用】ガラス板(30)の被駆動流体流路用の溝(32,35)
はエッチングにより高精度で形成でき、このガラス板(3
0)が直接にシリコン板(20)に接合され、しかもこの接合
は、接着剤を用いることなく、シリコン板の裏面とガラ
ス板の表面をそれぞれ電極板で支えて、両電極板間に高
電圧を印加することにより実現するので、ガラス板(30)
のシリコン板(20)への接合も高精度で行なうことができ
る。したがって、被駆動流体流路の高さ精度が高い流路
部材が得られる。
[Function] Grooves (32, 35) for the driven fluid flow path of the glass plate (30)
Can be formed with high precision by etching.
(0) is directly bonded to the silicon plate (20), and this bonding is performed without using an adhesive, by supporting the back surface of the silicon plate and the front surface of the glass plate with electrode plates, respectively, and by applying a high voltage between both electrode plates. Since it is realized by applying the glass plate (30)
It can be joined to the silicon plate (20) with high precision. Therefore, a flow path member in which the height of the driven fluid flow path is high can be obtained.

【0009】本発明の他の目的および特徴は、図面を参
照した以下の実施例の説明より明らかになろう。
Other objects and features of the present invention will become apparent from the following description of embodiments with reference to the drawings.

【0010】[0010]

【実施例】図1に、本発明の一実施例を組込んだマイク
ロポンプの外観を、その一部を紙断して示す。図2に
は、図1の2A−2A線拡大断面を示す。ポンプベ−ス
10には光ファイバ3が装着されている。この光ファイ
バ3は、紫外線を照射すると硬化する紫外線硬化樹脂液
の中にカ−ボンブラックを混合した黒色の紫外線硬化樹
脂液に、光ファイバの一端部を漬けて、光ファイバの他
端に、紫外線を供給して、端部に付着した樹脂液を硬化
させることにより、端部3eに黒色の紫外線硬化樹脂膜
を被覆したものである。この端部3eが、シリコン板2
0の作動流体孔25に露出している。作動流体孔25に
は低沸点流体が封入されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows the appearance of a micropump incorporating an embodiment of the present invention, a part of which is cut off. FIG. 2 shows an enlarged cross section taken along line 2A-2A of FIG. An optical fiber 3 is attached to the pump base 10. In this optical fiber 3, one end of the optical fiber is dipped in a black ultraviolet curable resin liquid in which carbon black is mixed in an ultraviolet curable resin liquid which is cured when irradiated with ultraviolet rays, and the other end of the optical fiber is By supplying ultraviolet rays to cure the resin liquid adhering to the end portions, the end portions 3e are coated with a black ultraviolet curable resin film. This end 3e is the silicon plate 2
It is exposed to the zero working fluid hole 25. A low boiling point fluid is enclosed in the working fluid hole 25.

【0011】シリコン板20には、6個の作動流体孔2
5が等ピッチで形成され、6個に及ぶダイアフラム(2
1+22)がこれらの孔25を閉じている。シリコン板
20の表面にはガラス板30が接合されており、この状
態(図2)で、ダイアフラム(21+22)は、ガラス
板30の被駆動流体流路(32+35)の内方に位置す
る。
The silicon plate 20 has six working fluid holes 2
5 are formed at an equal pitch, and up to 6 diaphragms (2
1 + 22) closes these holes 25. The glass plate 30 is bonded to the surface of the silicon plate 20, and in this state (FIG. 2), the diaphragm (21 + 22) is located inside the driven fluid flow path (32 + 35) of the glass plate 30.

【0012】光ファイバ3下端に光を供給すると、光フ
ァイバ3の端部3eの紫外線硬化樹脂膜に入射光が照射
される。これにより紫外線硬化樹脂膜が熱を発生し、作
動流体孔25内の作動流体が温められて膨張し、孔25
内の圧力が上昇する。これによりダイアフラム(21+
22)が被駆動流体流路(32+35)の内方に膨出す
る。光の供給を停止すると、シリコン板20の内部が自
然に冷えて作動流体孔25内の作動流体が収縮し、これ
に伴ってダイアフラム(21+22)が縮退する。つま
り元の位置に戻る。
When light is supplied to the lower end of the optical fiber 3, incident light is applied to the ultraviolet curable resin film at the end 3e of the optical fiber 3. As a result, the ultraviolet curable resin film generates heat, the working fluid in the working fluid hole 25 is warmed and expanded, and the hole 25
The pressure inside rises. This allows the diaphragm (21+
22) bulges inward of the driven fluid flow path (32 + 35). When the supply of light is stopped, the inside of the silicon plate 20 naturally cools and the working fluid in the working fluid hole 25 contracts, and the diaphragm (21 + 22) contracts accordingly. In other words, it returns to the original position.

【0013】図1に示すマイクロポンプは、6本の光フ
ァイバ3に、例えば左端のものから順次にパルス状に光
を供給しこれを周期的に繰返すことにより、ダイアフラ
ム(21+22)が蠕動運動して、左端の流体口36か
ら被駆動流体流路(32+35)に流入する流体(被駆
動流体)を、右端の流体口36に送り出す。
[0013] micropump shown in Figure 1, the six optical fibers 3, for example, by sequentially supplying light pulsed from the left end of those which repeated periodically, the diaphragm (21 + 22) Wait kinematic motion Then, the fluid (driven fluid) flowing into the driven fluid flow path (32 + 35) from the fluid port 36 at the left end is sent to the fluid port 36 at the right end.

【0014】次に図1に示すマイクロポンプの製造過程
を説明する。
Next, the manufacturing process of the micropump shown in FIG. 1 will be described.

【0015】図3〜図5には、シリコン板20(を構成
する1つのシリコン板;以下単にシリコン板20と称
す)の製造過程を示す。まず図3を参照する。表,裏面
にSiO2層21を有するシリコン板20の表面に、ス
パッタ技術によりNiCrSi層22を形成する(図3の
a&b)。このNiCrSi層22の一部は、その下のS
iO2層21と共に、後にダイアフラムとして残され
る。このNiCrSi層22の上にレジスト膜23を形成
し(図3のc)、これを露光しエッチングしてダイアフ
ラム領域のみにレジスト膜23を残す(図3のd)。次
にドライエッチング(逆スパッタ)により、レジスト膜
23の直下以外のNiCrSi層22を除去する(図3の
e)。
3 to 5 show a manufacturing process of the silicon plate 20 (one silicon plate constituting the silicon plate; hereinafter simply referred to as the silicon plate 20). First, referring to FIG. A NiCrSi layer 22 is formed on the front surface of the silicon plate 20 having the SiO 2 layers 21 on the front and back surfaces by a sputtering technique (a & b in FIG. 3). A part of this NiCrSi layer 22 is S
It is left behind as a diaphragm together with the iO 2 layer 21. A resist film 23 is formed on this NiCrSi layer 22 (c in FIG. 3), and this is exposed and etched to leave the resist film 23 only in the diaphragm region (d in FIG. 3). Next, the NiCrSi layer 22 other than directly under the resist film 23 is removed by dry etching (reverse sputtering) (e in FIG. 3).

【0016】次に、図4を参照すると、残したレジスト
膜23を除去して表面のNiCrSi層22を露出させて
(図4のf)、表,裏面に再度レジスト膜24を形成す
る(図4のg)。次に露光およびエッチングにより、裏
面の、NiCrSi層22対向部に、作動流体孔形成用の
開口を形成し(図4のh)、更にエッチング(フッ酸処
理)により、該開口のSiO2層21も除去する(図4
のi)。次に表,裏面のレジスト膜24を除去する(図
4のj)。
Next, referring to FIG. 4, the remaining resist film 23 is removed to expose the front surface NiCrSi layer 22 (f in FIG. 4), and the resist film 24 is formed again on the front and back surfaces (FIG. 4). 4 g). Next, by exposure and etching, an opening for forming a working fluid hole is formed in the rear surface of the NiCrSi layer 22 facing portion (h in FIG. 4), and the SiO2 layer 21 of the opening is also formed by etching (hydrofluoric acid treatment). Remove (Figure 4
I). Next, the resist film 24 on the front and back surfaces is removed (j in FIG. 4).

【0017】次に、図5を参照すると、裏面のSiO2
層21の開口をエッチングして、作動流体孔対応の穴を
開けるが、シリコン板20の後述の接合時に加工強度を
もたせるため、表面のSiO2層21に至る前でエッチ
ングを終了する(図5のk)。そして表,裏面のSiO
2層21を除去し(図5のL)、シリコン板20の不要
部を切除する(図5のm)。以上により、図5のnに示
す、ダイアフラム(21+22)付のシリコン板20が
出来上る。
Next, referring to FIG. 5, SiO 2 on the back surface is
The opening of the layer 21 is etched to form a hole corresponding to the working fluid hole, but the etching is finished before reaching the SiO 2 layer 21 on the surface in order to provide a processing strength at the time of joining the silicon plate 20 described later (FIG. 5). K). And SiO on the front and back
The two layers 21 are removed (L in FIG. 5), and unnecessary portions of the silicon plate 20 are cut off (m in FIG. 5). By the above, the silicon plate 20 with the diaphragm (21 + 22) shown in n of FIG. 5 is completed.

【0018】図6〜図8には、ガラス板30(を構成す
る1つのガラス板;以下単にガラス板30と称す)の製
造過程を示す。まず図6を参照する。ガラス30の裏面
にレジスト膜31を形成し(図6のa&b)、露光およ
びエッチングによりレジスト膜31にスリット状の開口
を開ける(図6のc)。次にフッ酸を含むエッチング液
により、開口内のガラスをエッチングして、広幅の残い
溝32を形成して(図6のd)、レジスト膜31を除去
する(図6のe)。
6 to 8 show a manufacturing process of the glass plate 30 (one glass plate constituting the glass plate; hereinafter simply referred to as glass plate 30). First, referring to FIG. A resist film 31 is formed on the back surface of the glass 30 (a & b in FIG. 6), and a slit-shaped opening is formed in the resist film 31 by exposure and etching (c in FIG. 6). Next, the glass in the opening is etched with an etching solution containing hydrofluoric acid to form a wide residual groove 32 (d in FIG. 6), and the resist film 31 is removed (e in FIG. 6).

【0019】次に、図7を参照すると、ガラス30の裏
面にスパッタによりSi層33を形成し(図7のf)、
Si層33上にレジスト膜34を形成する(図7の
g)。次に、溝32の上のレジスト膜34に、露光およ
びエッチングにより開口を開け(図7のh)、開口下の
Si層33に、エッチングによりガラス基板に達する開
口を開け(図7のi)、そしてレジスト膜34を除去す
る(図7のj)。
Next, referring to FIG. 7, a Si layer 33 is formed on the back surface of the glass 30 by sputtering (f in FIG. 7),
A resist film 34 is formed on the Si layer 33 (g in FIG. 7). Next, an opening is opened in the resist film 34 on the groove 32 by exposure and etching (h in FIG. 7), and an opening reaching the glass substrate is opened in the Si layer 33 below the opening (i in FIG. 7). , And the resist film 34 is removed (j in FIG. 7).

【0020】次に、図8を参照すると、フッ酸を含むエ
ッチング液により、Si層33の開口下のガラスをエッ
チングして、狭幅の深い溝35を形成して(図8の
k)、Si層33を除去する(図8のL)。そしてガラ
ス板30の不要部を切除し穴開けする(図8のm,
n)。以上により、図8のnに示す、駆動流体流路(3
2+35)付のガラス板30が出来上る。
Next, referring to FIG. 8, the glass under the opening of the Si layer 33 is etched with an etching solution containing hydrofluoric acid to form a narrow deep groove 35 (k in FIG. 8). The Si layer 33 is removed (L in FIG. 8). Then, unnecessary portions of the glass plate 30 are cut out and punched (m in FIG. 8,
n). From the above, the driving fluid flow path (3
2 + 35) attached glass plate 30 is completed.

【0021】次に、図9を参照すると、図9の(a)に
示すように底無し桝の形状をした治具40の内空間に、
図9の(b)に示すように、まずシリコン板20(図5
のnに示すもの)を挿入しそしてガラス板30(図8の
nに示すもの)を挿入する。そして図9の(c)に示す
ように、、ホットプレ−ト43の上面に載せた電極板4
1上に、治具40と共に、シリコン板20およびガラス
板30を載置し、ガラス板30上に電極板42を載せ
て、電極板41から42までを図示しない加圧具で加圧
し400°C前後に加熱した状態で、電極板41,42
間に1000Vの電圧を印加する。これにより陽極接合
により、シリコン板20の表面に、ガラス板30の裏面
が接合する。このような接合までの工程で、開口25と
SiO2層21との間の底(Si)は、シリコン板20
を正しく所望の形状に維持するのに貢献する。
Next, referring to FIG. 9, in the inner space of the jig 40 having the shape of a bottomless basin as shown in FIG.
As shown in FIG. 9B, first, the silicon plate 20 (see FIG.
(Shown as n in FIG. 8) and the glass plate 30 (shown as n in FIG. 8). Then, as shown in FIG. 9C, the electrode plate 4 placed on the upper surface of the hot plate 43.
1, the silicon plate 20 and the glass plate 30 are placed together with the jig 40, the electrode plate 42 is placed on the glass plate 30, and the electrode plates 41 to 42 are pressed by a pressurizing tool (not shown) to 400 °. In a state of being heated around C, the electrode plates 41, 42
A voltage of 1000 V is applied between them. As a result, the back surface of the glass plate 30 is bonded to the front surface of the silicon plate 20 by anodic bonding. In the process up to such bonding, the bottom (Si) between the opening 25 and the SiO 2 layer 21 is formed on the silicon plate 20.
To help maintain the correct shape.

【0022】以上の工程でシリコン板20に一体になっ
たガラス板30の表面を、図10の(a)に示すように
ステンレス板44に当ててワックス45で固定し、作動
流体孔用の開口25の底をエッチングしてダイアフラム
用のSiO2層21を開口25に露出させる。そしてワ
ックス45を除去する。これで図10の(b)に示す流
路部材(シリコン板20+ガラス板30)が出来上る。
The surface of the glass plate 30 integrated with the silicon plate 20 in the above process is applied to the stainless steel plate 44 as shown in FIG. The bottom of 25 is etched to expose the SiO 2 layer 21 for the diaphragm in the opening 25. Then, the wax 45 is removed. This completes the flow path member (silicon plate 20 + glass plate 30) shown in FIG. 10 (b).

【0023】図1に示すマイクロポンプは、ポンプベ−
ス10を図10の(b)に示すシリコン板20の下面に
接合し、ポンプベ−ス10の、光ファイバ挿入用の穴を
通して作動流体孔25に低沸点流体を入れ、そして光フ
ァィバ3の、紫外線硬化樹脂膜で被覆した端部3eを作
動流体孔25内に挿入し、光ファイバ3を接着剤でポン
プベ−ス10に固着しこれにより光ファイバ挿入穴を封
止することにより出来上る。
The micro pump shown in FIG. 1 is a pump base.
10 is bonded to the lower surface of the silicon plate 20 shown in FIG. 10B, the low boiling point fluid is introduced into the working fluid hole 25 through the hole for inserting the optical fiber of the pump base 10, and the optical fiber 3 is It is completed by inserting the end portion 3e covered with the ultraviolet curable resin film into the working fluid hole 25, fixing the optical fiber 3 to the pump base 10 with an adhesive, and sealing the optical fiber insertion hole.

【0024】[0024]

【発明の効果】以上の通り本発明の流路部材(図10の
b)では、ガラス板(30)の被駆動流体流路用の溝(32,3
5)はエッチングにより高精度で形成でき、このガラス板
(30)が直接にシリコン板(20)に接合され、しかもこの接
合は、接着剤を用いることなく、シリコン板の裏面とガ
ラス板の表面をそれぞれ電極板で支えて、両電極板間に
高電圧を印加することにより実現するので、ガラス板(3
0)のシリコン板(20)への接合も高精度で行なうことがで
きる。したがって、被駆動流体流路の高さ精度が高い流
路部材が得られる。
As described above, in the flow channel member (b of FIG. 10) of the present invention, the grooves (32, 3) for the driven fluid flow channel of the glass plate (30) are used.
5) can be formed with high precision by etching.
(30) is directly bonded to the silicon plate (20), and this bonding is performed without using an adhesive by supporting the back surface of the silicon plate and the front surface of the glass plate with electrode plates, respectively Since it is realized by applying a voltage, the glass plate (3
Bonding of (0) to the silicon plate (20) can also be performed with high accuracy. Therefore, a flow path member in which the height of the driven fluid flow path is high can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例を組込んだマイクロポンプ
の外観を、一部を破断して示す斜視図である。
FIG. 1 is a perspective view showing a partially broken external appearance of a micropump incorporating an embodiment of the present invention.

【図2】 図1の2A−2A線拡大横断面図である。FIG. 2 is an enlarged cross-sectional view taken along line 2A-2A of FIG.

【図3】 図2に示すシリコン板20とガラス板30の
組合せでなる流路部材の、該シリコン板20の製造過程
における横断面図である。
3 is a cross-sectional view of the flow path member formed by combining the silicon plate 20 and the glass plate 30 shown in FIG. 2 in the process of manufacturing the silicon plate 20. FIG.

【図4】 図2に示すシリコン板20とガラス板30の
組合せでなる流路部材の、該シリコン板20の製造過程
における横断面図である。
4 is a cross-sectional view of the flow path member formed by combining the silicon plate 20 and the glass plate 30 shown in FIG. 2 in the process of manufacturing the silicon plate 20. FIG.

【図5】 図2に示すシリコン板20とガラス板30の
組合せでなる流路部材の、該シリコン板20の製造過程
における横断面図である。
5 is a cross-sectional view of the flow path member formed by combining the silicon plate 20 and the glass plate 30 shown in FIG. 2 in the process of manufacturing the silicon plate 20. FIG.

【図6】 図2に示すシリコン板20とガラス板30の
組合せでなる流路部材の、該ガラス板30の製造過程に
おける横断面図である。
6 is a cross-sectional view of the flow path member formed by combining the silicon plate 20 and the glass plate 30 shown in FIG. 2 in the process of manufacturing the glass plate 30. FIG.

【図7】 図2に示すシリコン板20とガラス板30の
組合せでなる流路部材の、該ガラス板30の製造過程に
おける横断面図である。
7 is a cross-sectional view of the flow path member formed by combining the silicon plate 20 and the glass plate 30 shown in FIG. 2 in the manufacturing process of the glass plate 30. FIG.

【図8】 図2に示すシリコン板20とガラス板30の
組合せでなる流路部材の、該ガラス板30の製造過程に
おける横断面図である。
8 is a transverse cross-sectional view of the flow path member formed by combining the silicon plate 20 and the glass plate 30 shown in FIG. 2 in the process of manufacturing the glass plate 30. FIG.

【図9】 図2に示すシリコン板20とガラス板30の
組合せでなる流路部材の、両板20,30を一体に接合
する工程を示す図面であり、(a)は組立て用の治具
を、(b)は治具40に挿入する部品を、(c)は接合
工程での横断面を示す。
9 is a drawing showing a process of integrally joining both plates 20, 30 of a flow path member made of a combination of the silicon plate 20 and the glass plate 30 shown in FIG. 2, and FIG. 9 (a) is a jig for assembly. (B) shows a component to be inserted into the jig 40, and (c) shows a cross section in the joining step.

【図10】 (a)は図2に示すシリコン板20とガラ
ス板30の組合せでなる流路部材の、仕上げ処理のため
の支持態様を示す横断面図であり、(b)は出来上った
流路部材の横断面図である。
10 (a) is a cross-sectional view showing a supporting mode for finishing treatment of the flow path member made of the combination of the silicon plate 20 and the glass plate 30 shown in FIG. 2, and FIG. It is a cross-sectional view of the flow path member.

【符号の説明】[Explanation of symbols]

3:光ファイバ 3e:紫外線硬化樹脂膜で被
覆した端部 10:ポンプベ−ス 20:シリコン板 21:SiO2層 22:NiCrSi層 23,24:レジスト膜 25:作動流体孔 30:ガラス板 31,34:レジスト膜 33:Si層 32:広幅浅溝 35:狭幅深溝 36:流体口 40:治具 41,42:電極板 43:ホットプレ−ト 44:ステンレス板 45:ワックス
3: Optical fiber 3e: End 10 coated with ultraviolet curable resin film 10: Pump base 20: Silicon plate 21: SiO 2 layer 22: NiCrSi layer 23, 24: Resist film 25: Working fluid hole 30: Glass plate 31, 34: Resist film 33: Si layer 32: Wide shallow groove 35: Narrow deep groove 36: Fluid port 40: Jig 41, 42: Electrode plate 43: Hot plate 44: Stainless steel plate 45: Wax

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−26170(JP,A) 特開 平2−133968(JP,A) 特開 平5−340356(JP,A) (58)調査した分野(Int.Cl.7,DB名) F04B 43/00 - 47/14 F04B 53/00 - 53/22 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-5-26170 (JP, A) JP-A-2-133968 (JP, A) JP-A-5-340356 (JP, A) (58) Field (Int.Cl. 7 , DB name) F04B 43/00-47/14 F04B 53/00-53/22

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】長手方向Xに分布し厚み方向Zに貫通した
複数個の作動流体孔を有するシリコン板;該シリコン板の表面に形成され、 前記作動流体孔の、シ
リコン板の表面側の開口を閉じる、シリコン板の表面積
より小さいダイアフラム;および、 裏面が前記シリコン板の表面に対向し、該裏面に、幅方
向Yで前記ダイアフラムの幅より広く、かつ長手方向X
で前記複数個の作動流体孔の開口を閉じるダイアフラム
の長手方向分布長より長い開口を有する被駆動流体流路
用の溝を有し、該溝の外方の裏面が前記シリコン板の表
面に接するガラス板;を備え、 前記シリコン板の裏面とガラス板の表面の間に高電圧を
印加することにより、シリコン板の、ダイアフラムの外
側の表面に、ガラス板の裏面を接着剤を介することなく
接合し、ダイアフラムは、ガラス板の被駆動流体流路用
の溝の内方に位置する、マイクロポンプの流路部材。
1. A silicon plate having a plurality of working fluid holes distributed in the longitudinal direction X and penetrating in the thickness direction Z; Opening of the working fluid holes formed on the surface of the silicon plate on the surface side of the silicon plate. A diaphragm smaller than the surface area of the silicon plate; and a back surface facing the front surface of the silicon plate, the back surface being wider than the diaphragm in the width direction Y and in the longitudinal direction X.
A groove for a driven fluid channel having an opening longer than the longitudinal distribution length of the diaphragm for closing the openings of the plurality of working fluid holes, and the outer back surface of the groove is in contact with the front surface of the silicon plate. A glass plate; and by applying a high voltage between the back surface of the silicon plate and the front surface of the glass plate, the back surface of the glass plate is bonded to the outer surface of the diaphragm of the silicon plate without an adhesive. The diaphragm is a channel member of the micropump located inside the groove for the driven fluid channel of the glass plate.
【請求項2】シリコン板表面のSiO2上にスパッタに
りダイアフラム層を形成し、フォトファブリケ−ショ
ンにより、シリコン板表面にはシリコン板表面の面積よ
り小さい面積のダイアフラム層およびその直下のSiO
2を残しシリコン板裏面にはダイアフラム層およびその
直下のSiO2で閉じられ裏面には開いた、長手方向X
に分布した、複数個の作動流体孔を形成し; ガラス板の裏面にはフォトファブリケ−ションにより、
幅方向Yで前記ダイアフラムの幅より広く、かつ長手方
向Xで前記複数個の作動流体孔の開口を閉じるダイアフ
ラムの長手方向分布長より長い開口を有する被駆動流体
流路用の溝を形成し; 前記シリコン板のダイアフラム層を前記ガラス板の被駆
動流体流路用の溝の内方に置いて、該シリコン板の、ダ
イアフラム層の外側の表面に、接着剤を介することなく、
該ガラス板の裏面を当て、シリコン板の裏面とガラス板
の表面をそれぞれ電極板で支えて、両電極板間に高電圧
を印加して、シリコン板の表面にガラス板の裏面を接合
する;請求項1記載のマイクロポンプの流路部材の製造
方法。
2. A form <br/> by Lida diaphragm and layer sputtered on SiO2 of the silicon plate surface, photo Fabry Ke - by Deployment, the silicon plate surface area of the silicon plate surface
Diaphragm layer with a smaller area and SiO directly underneath
2 is left, and the back surface of the silicon plate is closed by the diaphragm layer and SiO2 immediately therebelow, and is opened on the back surface.
Forming a plurality of working fluid holes distributed on the bottom surface; by photofabrication on the back surface of the glass plate,
Forming a groove for the driven fluid flow passage having an opening wider than the diaphragm in the width direction Y and closing the openings of the plurality of working fluid holes in the longitudinal direction X and longer than the longitudinal distribution length of the diaphragm; The diaphragm layer of the silicon plate is placed inside the groove for the driven fluid flow path of the glass plate, the silicon plate, on the outer surface of the diaphragm layer, without an adhesive,
The back surface of the glass plate is applied, the back surface of the silicon plate and the front surface of the glass plate are supported by electrode plates, and a high voltage is applied between the two electrode plates to bond the back surface of the glass plate to the front surface of the silicon plate; A method of manufacturing a flow path member of a micropump according to claim 1.
JP04560193A 1993-03-08 1993-03-08 Micropump flow path member and method of manufacturing the same Expired - Fee Related JP3422372B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04560193A JP3422372B2 (en) 1993-03-08 1993-03-08 Micropump flow path member and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04560193A JP3422372B2 (en) 1993-03-08 1993-03-08 Micropump flow path member and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH06257570A JPH06257570A (en) 1994-09-13
JP3422372B2 true JP3422372B2 (en) 2003-06-30

Family

ID=12723878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04560193A Expired - Fee Related JP3422372B2 (en) 1993-03-08 1993-03-08 Micropump flow path member and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3422372B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5499909A (en) * 1993-11-17 1996-03-19 Aisin Seiki Kabushiki Kaisha Of Kariya Pneumatically driven micro-pump

Also Published As

Publication number Publication date
JPH06257570A (en) 1994-09-13

Similar Documents

Publication Publication Date Title
US6096155A (en) Method of dicing wafer level integrated multiple optical elements
US5689599A (en) Optical fiber connector with enhanced bonding
US6368441B1 (en) Method for manufacturing optical fiber array
US5533158A (en) Electrostatic bonding of optical fibers to substrates
JPH11123771A (en) Stamper for manufacture of plate microlens array and manufacture of plate microlens array
JP2932877B2 (en) Method of manufacturing inkjet head
JP2007136292A (en) Manufacturing method of microchannel structure, microchannel structure, and microreactor
TW200414251A (en) Method for registering a deposited material with channel plate channels, and switch produced using same
JP2007505747A (en) Microstructure device and manufacturing method thereof
JP3422372B2 (en) Micropump flow path member and method of manufacturing the same
EP3411742B1 (en) Head-worn display optics comprising a multicomponent lens system
JPH05229128A (en) Production of ink jet print head
US6918658B2 (en) Method of producing a liquid jetting head
JPH0736109U (en) Bonding structure of optical components
JP2007002924A (en) Micro valve
JP3384850B2 (en) Microactuator and method of enclosing working fluid
JPH0466784A (en) Micropump and manufacture thereof
JP7307601B2 (en) Microfluidic device
JP2852326B2 (en) Diaphragm
JPH10159740A (en) Micro pump
JPH0893721A (en) Microactuator
JP2024077293A (en) Substrate assembly, substrate, and manufacturing method thereof
JP2005081589A (en) Process for manufacturing ink jet recording head
JPH1192715A (en) Method for bonding fine worked member and device provided with fine worked part
JP3377772B2 (en) Ink jet head and method of manufacturing the same

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S631 Written request for registration of reclamation of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313631

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080425

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100425

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees