JP3421832B2 - Absorption and removal method of carbon dioxide in air - Google Patents

Absorption and removal method of carbon dioxide in air

Info

Publication number
JP3421832B2
JP3421832B2 JP07258797A JP7258797A JP3421832B2 JP 3421832 B2 JP3421832 B2 JP 3421832B2 JP 07258797 A JP07258797 A JP 07258797A JP 7258797 A JP7258797 A JP 7258797A JP 3421832 B2 JP3421832 B2 JP 3421832B2
Authority
JP
Japan
Prior art keywords
carbon dioxide
air
water
lime water
lime
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07258797A
Other languages
Japanese (ja)
Other versions
JPH10230131A (en
Inventor
鉄治郎 松橋
Original Assignee
鉄治郎 松橋
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 鉄治郎 松橋 filed Critical 鉄治郎 松橋
Priority to JP07258797A priority Critical patent/JP3421832B2/en
Publication of JPH10230131A publication Critical patent/JPH10230131A/en
Application granted granted Critical
Publication of JP3421832B2 publication Critical patent/JP3421832B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、空気洗浄を含む空調・
換気、大気汚染防止・環境保全、用廃水処理などの産業
技術に関するものである。 【0002】 【従来の技術】従来一般の空調・換気の技術、装置は、
熱力学的な温湿度調整や循環空気の除塵、除菌に限定さ
れており、空気中の二酸化炭素の低減、除去の技術は不
可能視されていた。ちなみに、大きな会議室等において
眠気を催すことは日常よく体験されることであり、ま
た、その生理的現象の一因は空気中の酸素量に対する二
酸化炭素量の相対的増加によることも常識化している。
工場煙害や、いわゆる大気汚染の技術対策としては、悪
臭成分や硫黄酸化物の除去、あるいは発生源の制限とい
う消極的な措置に留まっており、二酸化炭素の人為的な
除去ということはほとんど省みられなかった。また、石
灰使用の用廃水処理に伴うアルカリ水の中和に大気中の
二酸化炭素を有効に利用する実用的技術はなかった。 【0003】 【発明が解決しようとする課題】通常の空気の組成は次
のようである(岩波理化学辞典、第三版、1971)。
酸素23.01%,窒素75.51%,アルゴン1.2
86%,二酸化炭素0.04%,その他。(各重量
%)。これらの混合成分のなかで二酸化炭素の含有濃度
は人的な環境により変動しやすいから、健全な人間活動
のために適正な濃度を維持することが必要である。そし
て、地球規模での二酸化炭素の低減化の重要性が一般に
指摘されている。 【0004】一方、二酸化炭素は水に溶けると炭酸とな
るが、硫酸や塩酸などの鉱酸に比べて、酸としての炭酸
の作用は温和である。そして中和生成物の炭酸塩は二次
的な分解を起こしたとしても硫黄化合物や塩素化合物の
ような危害はない。さらに、空気中の二酸化炭素の相対
的濃度は低いとしても資源量としては無限大に等しい。
従って未利用資源としての利用開発の意義も大きい。 【0005】 【課題を解決するための手段】本発明は、通常処理水と
して放流されている褐色工場廃水の脱色方法として別途
に発明された「石灰乳による廃水処理法」(特開平8−
294693)の後処理において、大気中二酸化炭素が
中和工程に有用なことを見出だした新たな実験事実に由
来する。すなわち、pH12.5程度の飽和石灰水の中
和は大気中二酸化炭素の捕集によっても達成されるが、
時間と水表面積の2条件が大きな支配要因であることが
初めに突き止められた。また、その中和が石灰水に捕集
された二酸化炭素によることの確証に加えて、石灰水へ
の二酸化炭素の溶け込み量は、pH約9.5以上のアル
カリ性領域において定常的なことが究明された。 【0006】大気中二酸化炭素の溶け込みによる「所要
中和日数;y〔d〕」と飽和石灰水の「相対的表面積;
x〔cm/l〕」との間に次の実験式が誘導された。 log y=a log x+b 〔式1〕 式1において、aおよびbは地理的条件等によって決定
される定数であり、aは常に負数の係数である。具体的
に、甲地点(海抜約360m)に関するa,b値は−
0.993および3.31、乙地点(海抜約590m)
に関するa,b値は−0.955および2.77であ
る。 【0007】また、式1に関する対数グラフにおいて
甲、乙にかかわる二つのx,y座標が同一点に重なる場
合の数値は、およそ130cm/l,16日であり、
これは実測の範囲内のデータであった。この相対的表面
積は、有効水深7.7m,直径12.9mの円形水槽の
場合に相当する。このことから、飽和石灰水の所要中和
日数を短縮すること、すなわち大気中二酸化炭素の捕集
能率を増大するためには、何らかの手段方法で相対的表
面積を格段に増大してやればよいことになる。 【0008】一方、定常的[OH]減小期における、
飽和石灰水による大気中二酸化炭素の捕集・反応速度
は、1日1m当り 約5.6g(CO)になること
も見出だされた。これはまた、通常pH約9.5以上の
アルカリ性領域で同効果がある。 【0009】以上のことから、空気と接触する石灰水の
相対的表面積をできるだけ大きくすること、その手段と
して石灰水を例えば平均厚み1mm以下の薄膜状にして
空気中に噴出させ、かつ循環させることにより、空気中
の二酸化炭素を効率よく捕集、吸収することができる。
また、短時間に中和を達成することが出来る。その際の
石灰水膜の表面積は、技術的に可能な限り広くすること
が有用である。なお必ずしも中和を目的としない場合の
二酸化炭素吸収手段としては、石灰水を薄層状にして連
続流下する方法も効果的であり、その循環方式も有用で
ある。 【0010】 【作用】空気中の二酸化炭素は、式2のように石灰水と
反応する。 Ca(OH)+CO→ CaCO+HO 〔式2〕 反応生成物である炭酸カルシウム(CaCO)は難溶
性の沈殿となるから、式2の反応は右の方向に進行す
る。また空気中に共存する酸素の水に対する溶解度は二
酸化炭素に比べてはるかに小さいことも、この式2の反
応促進に有利に作用する。 【0011】石灰水面が静的状態の場合、飽和ないしは
飽和に近い濃厚な石灰水への大気中二酸化炭素の溶け込
みは、本発明者の研究結果によると、1日、相対的表面
積1cm/l当り、おおよそ1×10−5[OH
N(規定濃度)相当である。これをさらに換算すると、
石灰水表面における空気中二酸化炭素の捕集・吸収速度
は前記のとおり、約”5.6g(CO)/m・da
y”となる。 【0012】石灰水を薄膜ないしは薄層状に噴出させる
動的状態の場合は、正確な数値を把握しがたいが、おお
むね式1の関係が成立し、従って空気中二酸化炭素の捕
集・吸収の時間的効率が格段に向上することは、以下の
実施例に示すとおりである。すなわち、石灰水の容積に
対する、薄膜状液面の累計面積の大きさが、その支配因
子となる。 【0013】 【実施例1】内径276mm、容量約20リットルのバ
ケツに飽和石灰水14リットル(1)を収容し、極小水
中ポンプを用いて高さ50cmの位置で水平方向に薄膜
状に噴出させ、その前方約15cmに懸垂した平滑な金
属板に水流末端を緩衝突、流下させる方式により、循環
噴流させた。この場合、石灰水循環量は約5l/mi
n、噴出口から下の液面までの落差は約15cm、水平
方向の膜面の形状は少し湾曲したが、膜面の広さは大略
幅10cm,長さ10cm.厚み1mmであり、水温
(2月)は0〜3℃であった。pH測定に基ずく中和所
要時間によって、二酸化炭素の吸収の速さを間接的に評
価した。その結果、24時間以内に中和の完了が認めら
れた。 【0014】試みに、この石灰水を静的に放置した場合
の所要中和日数の計算値は、甲地における式1 により
48日となる。つまり上記の方式による二酸化炭素の吸
収は静的な場合に比べて、およそ、50倍の効率であっ
たと言える。 【0015】 【実施例2】内径567mm、容量約200リットルの
ドラム缶に飽和石灰水160リットル(1)を収容し、
小型水中ポンプを用いて高さ約3mの位置から長四角の
薄層状に石灰水を放出し、水の落下途中から傾斜角約8
0度の板樋を経てドラム缶に流し込み、還流させる方式
により、石灰水を連続流下させた。この場合、石灰水流
量は約50l/min、放出口から下の液面までの落差
は約2m、空中に小滝状に落下する水膜部分の広さは、
大略、幅30cm、長さ40cm、厚み5mmであり、
水温(10〜11月)は7〜22℃であった。前記同
様、pH測定に基ずく中和所要時間によって、二酸化炭
素の吸収の速さを間接的に評価した。反復試行の結果、
中和所要日数は5〜9日、平均7日であった。 【0016】試みに、この石灰水を静的に放置した場合
の所要中和日数の計算値は、乙地における式1 により
73日となる。この方式の場合でも、およそ10倍の効
率が得られたことになる。 【0017】 【発明の効果】本発明は、以上説明したように構成され
ているので、以下に記載されるような効果を奏する。 【0018】空気中の二酸化炭素を石灰水の動的な膜面
により効果的に吸収することができる。その際、石灰水
の濃度は飽和状態であることに限定されず、およそpH
9.5以上であればよい。使用する石灰は、消石灰(水
酸化カルシウム)であっても、生石灰(酸かカルシウ
ム)であっても、同一の効果が得られる。 【0019】静的な飽和石灰水表面における空気中二酸
化炭素の捕集・吸収速度は約5.6g(CO)/m
・dayと測定された。これに対して本発明において
は、薄膜状に循環噴出する石灰水により、静的な石灰水
表面からの二酸化炭素吸収に比べて少なくとも50倍以
上の効率で、空気中二酸化炭素を捕集・吸収できる。こ
の効率は、水膜面の面積を拡げ膜厚を薄くすることによ
り、さらに向上させることが可能である 【0020】本発明の方法により、アルカリ性の石灰水
を短時間で中和することができる。したがって、これを
容易に用廃水処理に適用することができる。 【0021】二酸化炭素の捕集・吸収の評価、その水質
管理や機能測定は、pH測定により簡便に行なうことが
できる。 【0022】本発明の物理化学的、機械装置的な手段、
操作は原理的には簡明な方法であり、そのハードウェア
ーの規模の大小は任意に設定できる。また、石灰ないし
は石灰水はアルカリ性物質であることを除いては、人体
等への危害は考え難く、日常ハンドリングに支障のない
化学物質である。したがって、各種産業分野への応用が
容易である。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner including air cleaning.
It is related to industrial technologies such as ventilation, air pollution prevention and environmental protection, and wastewater treatment. 2. Description of the Related Art Conventional air conditioning and ventilation technologies and devices
It is limited to thermodynamic temperature and humidity adjustment, dust removal and germicidal removal of circulating air, and it has been considered impossible to reduce or remove carbon dioxide in the air. By the way, drowsiness is often experienced in large conference rooms, etc., and it is common knowledge that the physiological phenomenon is caused by the relative increase in the amount of carbon dioxide relative to the amount of oxygen in the air. I have.
As technical measures against industrial smoke pollution and so-called air pollution, passive measures such as removal of odorous components and sulfur oxides or limitation of emission sources have been limited, and artificial removal of carbon dioxide has been largely omitted. I couldn't. In addition, there is no practical technique for effectively utilizing atmospheric carbon dioxide for neutralizing alkaline water in wastewater treatment using lime. [0003] The composition of normal air is as follows (Iwanami Dictionary of Physical and Chemical Sciences, 3rd edition, 1971).
23.01% oxygen, 75.51% nitrogen, 1.2 argon
86%, carbon dioxide 0.04%, and others. (Each% by weight). Among these mixed components, the concentration of carbon dioxide tends to fluctuate depending on the human environment, so that it is necessary to maintain an appropriate concentration for healthy human activities. The importance of reducing carbon dioxide on a global scale is generally pointed out. [0004] On the other hand, carbon dioxide becomes carbonic acid when dissolved in water, and the action of carbonic acid as an acid is milder than that of mineral acids such as sulfuric acid and hydrochloric acid. And even if the carbonate of the neutralized product causes secondary decomposition, there is no harm like sulfur compounds and chlorine compounds. Furthermore, even though the relative concentration of carbon dioxide in the air is low, the amount of resources is infinite.
Therefore, the significance of utilization development as unused resources is significant. SUMMARY OF THE INVENTION The present invention is directed to a "method for treating wastewater with lime milk" which was separately invented as a method for decolorizing brown factory wastewater which is normally discharged as treated water (Japanese Unexamined Patent Publication No. Hei 8-
294 693) in a post-treatment, based on a new experimental finding that atmospheric carbon dioxide was found to be useful in the neutralization step. That is, the neutralization of the saturated lime water of about pH 12.5 is also achieved by trapping carbon dioxide in the atmosphere,
It was first identified that the two conditions, time and water surface area, were the major controlling factors. In addition to confirming that the neutralization is due to the carbon dioxide trapped in the lime water, it has been found that the amount of carbon dioxide dissolved in the lime water is steady in an alkaline region having a pH of about 9.5 or more. Was done. "Necessary neutralization days; y [d]" due to the incorporation of atmospheric carbon dioxide and "relative surface area of saturated lime water;
x [cm 2 / l] ”, the following empirical formula was derived. log y = a log x + b [Formula 1] In Formula 1, a and b are constants determined by geographical conditions and the like, and a is always a negative coefficient. Specifically, the a and b values for the point A (about 360m above sea level) are-
0.993 and 3.31, Otsu (about 590m above sea level)
The a, b values for are -0.955 and 2.77. Further, in the logarithmic graph relating to the equation 1, when the two x, y coordinates relating to the insteps A and B overlap the same point, the numerical value is about 130 cm 2 / l, 16 days.
This was data within the range of the actual measurement. This relative surface area corresponds to a circular water tank having an effective water depth of 7.7 m and a diameter of 12.9 m. From this, in order to shorten the required neutralization days of saturated lime water, that is, to increase the trapping efficiency of atmospheric carbon dioxide, the relative surface area should be significantly increased by some means. . On the other hand, in the stationary [OH ] decrease period,
It has also been found that the rate of capture and reaction of atmospheric carbon dioxide by saturated lime water is about 5.6 g (CO 2 ) per 1 m 2 per day. It also has the same effect in the alkaline region, usually at a pH of about 9.5 or higher. In view of the above, it is necessary to increase the relative surface area of lime water in contact with air as much as possible. As a means for this, lime water is spouted into the air in the form of a thin film having an average thickness of 1 mm or less and circulated. Thereby, carbon dioxide in the air can be efficiently collected and absorbed.
Further, neutralization can be achieved in a short time. It is useful to make the surface area of the lime water film as large as technically possible. As a means of absorbing carbon dioxide when the purpose of neutralization is not always intended, a method in which lime water is continuously flowed in a thin layer form is effective, and its circulation system is also effective. The carbon dioxide in the air reacts with the lime water as shown in equation (2). Ca (OH) 2 + CO 2 → CaCO 3 + H 2 O [Equation 2] Since calcium carbonate (CaCO 3 ), which is a reaction product, forms a sparingly soluble precipitate, the reaction of Equation 2 proceeds to the right. In addition, the fact that the solubility of oxygen coexisting in the air in water is much smaller than that of carbon dioxide, which also has an advantageous effect on accelerating the reaction of Formula 2. [0011] When the lime water surface is in a static state, the dissolution of atmospheric carbon dioxide into saturated or nearly saturated lime water, according to the results of the present inventors, shows that the relative surface area is 1 cm 2 / l per day. Approximately 1 × 10 −5 [OH ]
It is equivalent to N (specified density). Converting this further,
As described above, the rate of trapping and absorbing carbon dioxide in air on the surface of lime water is about “5.6 g (CO 2 ) / m 2 · da.
In the case of a dynamic state in which lime water is ejected in a thin film or thin layer, it is difficult to grasp an accurate numerical value. The time efficiency of collection / absorption is remarkably improved as shown in the following examples: the magnitude of the total area of the thin film liquid level with respect to the volume of lime water depends on its controlling factor and Example 1 A bucket having an inner diameter of 276 mm and a capacity of about 20 liters was filled with 14 liters (1) of saturated lime water, and formed into a thin film in a horizontal direction at a height of 50 cm using a micro water pump. The end of the water stream was pierced and circulated on a smooth metal plate suspended about 15 cm in front of the jet, and a circulating jet was made, in which case the amount of lime water circulation was about 5 l / mi.
n, the head from the spout to the lower liquid surface was about 15 cm, and the horizontal film surface was slightly curved, but the width of the film surface was approximately 10 cm in width and 10 cm in length. The thickness was 1 mm, and the water temperature (February) was 0 to 3 ° C. The speed of carbon dioxide absorption was indirectly evaluated by the time required for neutralization based on the pH measurement. As a result, the completion of neutralization was recognized within 24 hours. In the trial, when the lime water is left standing statically, the calculated value of the required neutralization days is 48 days according to the formula 1 in the upper part. In other words, it can be said that the absorption of carbon dioxide by the above method was about 50 times as efficient as in the case of static. Embodiment 2 A drum having an inner diameter of 567 mm and a capacity of about 200 liters is filled with 160 liters (1) of saturated lime water,
Using a small submersible pump, lime water is discharged in a thin rectangular shape from a position about 3 m in height, and an inclination angle of about 8
The lime water was continuously flowed down by a method of flowing into a drum via a 0 ° sheet trough and refluxing. In this case, the lime water flow rate is about 50 l / min, the head from the discharge port to the lower liquid level is about 2 m, and the area of the water film that falls like a small waterfall in the air is:
Roughly 30 cm wide, 40 cm long and 5 mm thick,
The water temperature (October-November) was 7-22C. Similarly to the above, the speed of carbon dioxide absorption was indirectly evaluated based on the time required for neutralization based on the pH measurement. As a result of the repeated trials,
The number of days required for neutralization was 5 to 9 days, with an average of 7 days. In the trial, when the lime water is left standing statically, the calculated value of the required neutralization days is 73 days according to the formula 1 in Otsuji. Even in the case of this method, about ten times the efficiency is obtained. Since the present invention is configured as described above, it has the following effects. The carbon dioxide in the air can be effectively absorbed by the dynamic surface of the lime water. At that time, the concentration of the lime water is not limited to the saturated state,
What is necessary is just 9.5 or more. The same effect can be obtained regardless of whether the lime used is slaked lime (calcium hydroxide) or quick lime (acid or calcium). The rate of capturing and absorbing carbon dioxide in the air on the surface of static saturated lime water is about 5.6 g (CO 2 ) / m 2.
Measured as day. On the other hand, in the present invention, lime water circulated and ejected in the form of a thin film captures and absorbs carbon dioxide in the air at least 50 times more efficiently than carbon dioxide absorption from a static lime water surface. it can. This efficiency can be further improved by increasing the area of the water film surface and reducing the film thickness. According to the method of the present invention, alkaline lime water can be neutralized in a short time. . Therefore, this can be easily applied to wastewater treatment. The evaluation of the collection and absorption of carbon dioxide, the management of its water quality, and the measurement of its function can be easily performed by pH measurement. Physicochemical and mechanical means of the present invention,
The operation is a simple method in principle, and the size of the hardware can be set arbitrarily. Except for the fact that lime or lime water is an alkaline substance, it is unlikely to cause any harm to the human body and is a chemical substance that does not hinder daily handling. Therefore, application to various industrial fields is easy.

Claims (1)

(57)【特許請求の範囲】 【請求項1】飽和石灰水、ないしは3×10−4N(規
定)以上の濃度の水酸化カルシウム水溶液(以下総括し
ては、石灰水という)を空気に接触させつつ、水平方向
に1mm程度以下の薄膜状にして噴出させ循環散水する
ことにより、空気中の二酸化炭素を能率的に吸収する方
法。
(57) [Claims 1] Saturated lime water or an aqueous solution of calcium hydroxide having a concentration of 3 × 10 −4 N (normal) or higher (hereinafter collectively referred to as lime water) is converted into air. Horizontal while touching
A method of efficiently absorbing carbon dioxide in the air by jetting out a thin film of about 1 mm or less and circulating and sprinkling water.
JP07258797A 1997-02-17 1997-02-17 Absorption and removal method of carbon dioxide in air Expired - Fee Related JP3421832B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07258797A JP3421832B2 (en) 1997-02-17 1997-02-17 Absorption and removal method of carbon dioxide in air

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07258797A JP3421832B2 (en) 1997-02-17 1997-02-17 Absorption and removal method of carbon dioxide in air

Publications (2)

Publication Number Publication Date
JPH10230131A JPH10230131A (en) 1998-09-02
JP3421832B2 true JP3421832B2 (en) 2003-06-30

Family

ID=13493675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07258797A Expired - Fee Related JP3421832B2 (en) 1997-02-17 1997-02-17 Absorption and removal method of carbon dioxide in air

Country Status (1)

Country Link
JP (1) JP3421832B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2880677B1 (en) * 2005-01-07 2012-10-12 Air Liquide METHOD FOR PRETREATING FRONT AIR INTRODUCTION IN CRYOGENIC AIR SEPARATION UNIT AND CORRESPONDING APPARATUS
KR100866642B1 (en) 2007-03-19 2008-11-04 주식회사 엔버스 Method and cartridge for measuring carbon dioxide in atmosphere
JP5314388B2 (en) * 2007-11-14 2013-10-16 国立大学法人北海道大学 High alkaline water treatment equipment
KR20160087861A (en) * 2013-11-21 2016-07-22 루쓰 머펫 Absorption of atmospheric carbon dioxide
JP7407317B1 (en) * 2023-02-27 2023-12-28 株式会社錢高組 environmental control system

Also Published As

Publication number Publication date
JPH10230131A (en) 1998-09-02

Similar Documents

Publication Publication Date Title
EP0162536A1 (en) Apparatus for wet type flue gas desulfurization
JP5385101B2 (en) Deodorization device
JP3421832B2 (en) Absorption and removal method of carbon dioxide in air
US8663551B1 (en) Animal containment facility ventilation system
JP3332678B2 (en) Wet flue gas desulfurization equipment
JP3335725B2 (en) Exhaust gas treatment method and apparatus
JPS62121687A (en) Apparatus for treating waste water from wet wast gas desulfurizing method for forming gypsum as byproduct
CN207856650U (en) A kind of spray scattering tower
JP2989363B2 (en) Exhaust gas treatment method
GB2164031A (en) Treatment of exhaust gas
KR100671916B1 (en) Method of eliminating malodours from gases
JPH0521609B2 (en)
JPH06210126A (en) Method and device for treating waste gas
JP2006231105A (en) Method for removing oxidizing gas
JPH02293017A (en) Treatment of exhaust gas containing so2 and hf
WO2021172083A1 (en) Method for suppressing clogging of filter cloth, and flue gas desulfurization system
JPS6397216A (en) Wet treatment of exhaust gas
JP3052508U (en) Small animal disposal equipment
JP2599149Y2 (en) Flue gas desulfurization equipment
JPH11290648A (en) Method and apparatus for suppressing oxidizable substance for flue gas desulfurization
JPS59105823A (en) Desulfurization of waste gas
JP2004158730A (en) Gas treatment method
JP2895136B2 (en) Exhaust gas treatment method
JPH0663353A (en) Wet flue gas desulfurizer and its method
JP2005334770A (en) Method and device for flue-gas desulfurization

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees