JP3418703B2 - Moisture content measuring device with sample surface treatment function - Google Patents

Moisture content measuring device with sample surface treatment function

Info

Publication number
JP3418703B2
JP3418703B2 JP19375393A JP19375393A JP3418703B2 JP 3418703 B2 JP3418703 B2 JP 3418703B2 JP 19375393 A JP19375393 A JP 19375393A JP 19375393 A JP19375393 A JP 19375393A JP 3418703 B2 JP3418703 B2 JP 3418703B2
Authority
JP
Japan
Prior art keywords
sample
water
adsorbed
surface treatment
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19375393A
Other languages
Japanese (ja)
Other versions
JPH0749322A (en
Inventor
忠弘 大見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Foundation for Advancement of International Science
Original Assignee
Foundation for Advancement of International Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Foundation for Advancement of International Science filed Critical Foundation for Advancement of International Science
Priority to JP19375393A priority Critical patent/JP3418703B2/en
Priority to PCT/JP1994/001290 priority patent/WO1995004925A1/en
Publication of JPH0749322A publication Critical patent/JPH0749322A/en
Application granted granted Critical
Publication of JP3418703B2 publication Critical patent/JP3418703B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/06Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a liquid

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、試料表面処理機能を有
する水分量測定装置に係わる。例えば、高清浄電解研摩
配管内表面に形成したシリコン膜やシリコン酸化膜等の
薄膜表面に吸着する水分の定量や金属表面に吸着した水
分の定量等、種々の材料表面に吸着する水分の定量に好
適に用いられ、また例えば、半導体の製造工程における
各種ウエハー表面に吸着する水分量ならびに半導体製造
装置の内表面吸着水分量を明かにすることができる水分
量の測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water content measuring device having a sample surface treatment function. For example, to quantify moisture adsorbed on various material surfaces, such as quantification of moisture adsorbed on thin film surfaces such as silicon films and silicon oxide films formed on the surface of highly clean electrolytic polishing pipes, and quantification of moisture adsorbed on metal surfaces. The present invention relates to a water content measuring device which is preferably used and is capable of revealing the water content adsorbed on the surface of various wafers in the semiconductor manufacturing process and the inner surface adsorbed water content of a semiconductor manufacturing apparatus.

【0002】[0002]

【従来の技術】従来、配管等に吸着した水分量を測定す
る場合、配管をべーキングしながら配管中にキャリアガ
スとして高純度ガス(例えば水分量50ppt以下のA
rガス)を流し、脱離する水分を大気圧質量分析計(A
PIMS)あるいはカールフィッシャー法等で分析する
という方法・装置が用いられている。
2. Description of the Related Art Conventionally, when measuring the amount of water adsorbed in a pipe or the like, while baking the pipe, a high-purity gas (for example, water having a water content of 50 ppt or less) is used as a carrier gas in the pipe.
r gas), and the desorbed water is desorbed by an atmospheric pressure mass spectrometer (A
PIMS) or the Karl Fischer method is used.

【0003】しかしAPIMSを用いた方法は、試料の
内表面に吸着している水分子が完全に脱離して、キャリ
アガス中の水分濃度が元の値に戻るまでに数時間の時間
を要するので、高速測定が不可能であり、また高水分濃
度を測定するには限界がある。また、カールフィッシャ
ー法は、キャリアガスに取り込まれた水分子が全て溶媒
に吸収されたかどうかが不明であり、また低水分濃度を
測定するには限界があるため、信頼性の高い方法とは言
えないのが現状である。しかも、表面処理装置で表面処
理した試料を以上の測定装置に設置して測定するため、
試料表面が大気に触れてしまい、処理直後の表面状態に
おける測定が正確にできないという問題がある。
However, in the method using APIMS, it takes several hours until the water molecules adsorbed on the inner surface of the sample are completely desorbed and the water concentration in the carrier gas returns to the original value. However, high-speed measurement is impossible, and there is a limit to measuring high water concentration. Further, the Karl Fischer method is not a reliable method because it is unknown whether all the water molecules taken in the carrier gas have been absorbed by the solvent, and there is a limit in measuring low water concentrations. The current situation is that there are none. Moreover, since the sample surface-treated by the surface treatment device is installed and measured in the above measuring device,
There is a problem that the surface of the sample is exposed to the atmosphere, and the surface state immediately after the treatment cannot be measured accurately.

【0004】[0004]

【発明が解決しようとする課題】本発明は、表面処理直
後の吸着水分量あるいは表面処理直後の状態で吸着する
水分を測定できる水分量の測定装置を提供することを目
的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an apparatus for measuring the amount of adsorbed water immediately after surface treatment or the amount of adsorbed water immediately after surface treatment.

【0005】[0005]

【課題を解決するための手段】本発明の要旨は、試料表
面に吸着した水分量を測定する装置であって、水分に対
し溶解性を有する薬液を収納するための収納容器と、試
料室または試料自体と、前記薬液の電気伝導度を測定す
るための電気伝導度計とを有し、さらに前記収納容器内
の前記薬液の流量を制御しながら前記試料室または試料
自体に前記収納容器から前記薬液を供給するための手段
と、前記試料室または試料自体から前記薬液を前記電気
伝導度計に送るための手段と、前記試料室に設置された
試料または試料自体の表面に完全密閉方式で種々の表面
状態を作製する手段と、を設けたことを特徴とする試料
表面処理機能を有する水分量の測定装置に存在する。
The gist of the present invention is an apparatus for measuring the amount of water adsorbed on the surface of a sample, which comprises a storage container for storing a chemical solution having solubility in water, a sample chamber or It has a sample itself and an electric conductivity meter for measuring the electric conductivity of the chemical liquid, and further controls the flow rate of the chemical liquid in the storage container from the storage container to the sample chamber or the sample itself. Means for supplying a chemical solution, means for sending the chemical solution from the sample chamber or the sample itself to the electric conductivity meter, and various types in a completely sealed manner on the surface of the sample or the sample itself installed in the sample chamber And a means for preparing the surface state of the sample, and a device for measuring the amount of water having a sample surface treatment function.

【0006】[0006]

【作用】水分量の測定装置内に表面処理機能を設けたこ
とにより表面処理から水分量の測定まで試料を大気から
完全に遮断した状態に保つことができるため、各種表面
処理により吸着した水分量あるいは表面処理直後の状態
で吸着する水分量を測定することが可能となる。
[Function] Since the surface treatment function is provided in the water content measuring device, the sample can be kept completely shielded from the atmosphere from the surface treatment to the water content measurement. Alternatively, it becomes possible to measure the amount of adsorbed water immediately after the surface treatment.

【0007】本発明の表面状態を作製する手段として
は、例えばCVDによる種々の膜の堆積手段、酸化、窒
化、フッ化反応等による表面の変質手段、各種非水溶液
による変質手段、各種無電解メッキ・乾燥による変質手
段等が例示される。本発明において、無水フッ化水素の
ように水との相互作用の大きい薬液を固体試料と接触さ
せると、固体表面に吸着した水分子は即座に薬液に吸収
される。薬液に吸収された水分子は薬液中でイオンに解
離し、その結果、水分量に応じて電気伝導度は変化す
る。従って、薬液の電気伝導度を測定することにより、
試料表面に吸着した水分量を測定することが可能とな
る。そして、無水フッ化水素のような水との相互作用の
大きい薬液を用いることにより、どのような状態の表面
に吸着した水であっても、水は薬液中に容易に溶解する
ため、短時間で吸着水分量の測定を行うことが可能とな
る。
As means for producing the surface condition of the present invention, for example, various film deposition means by CVD, surface alteration means by oxidation, nitridation, fluorination reaction, etc., alteration means by various non-aqueous solutions, various electroless plating. -Deterioration means by drying is exemplified. In the present invention, when a chemical solution having a large interaction with water, such as anhydrous hydrogen fluoride, is brought into contact with a solid sample, water molecules adsorbed on the solid surface are immediately absorbed by the chemical solution. The water molecules absorbed in the chemical solution dissociate into ions in the chemical solution, and as a result, the electric conductivity changes according to the amount of water. Therefore, by measuring the electrical conductivity of the drug solution,
It is possible to measure the amount of water adsorbed on the sample surface. Then, by using a chemical solution having a large interaction with water, such as anhydrous hydrogen fluoride, even if the water is adsorbed on the surface in any state, the water is easily dissolved in the chemical solution, so that it can be used for a short time. It becomes possible to measure the adsorbed water content.

【0008】[0008]

【実施態様例】本発明の一構成例を図1に示し、図を用
いて本発明の実施態様例を説明する。図において、1は
薬液収納容器、2は薬液流量制御手段、3はリークタイ
トの電気伝導度計、4、5は加熱手段、6、7は加熱温
度制御手段、8は薬液再凝縮手段、9は電気伝導度計セ
ンサーセル内部を超クリーンに保つための参照管であ
る。10は種々の内表面を作製して水分を吸着(付着)
させる試料管である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention is shown in FIG. 1, and an embodiment of the present invention will be described with reference to the drawing. In the figure, 1 is a chemical solution container, 2 is a chemical solution flow rate control means, 3 is a leaktight electric conductivity meter, 4 and 5 are heating means, 6 and 7 are heating temperature control means, 8 is a chemical solution recondensing means, 9 Is a reference tube for keeping the inside of the conductivity meter sensor cell super clean. 10 creates various inner surfaces to adsorb (adhere) moisture
This is a sample tube to be used.

【0009】試料管10の内表面状態を作製する方法と
しては、例えば次のようにすれば良い。バルブ11、1
2、13、14を開け、種々の表面処理を施すためのガ
ス(例えば、酸化皮膜を作製する場合は酸素ガス)や溶
液を導入し、加熱ヒーター5と温度コントローラー7で
目的とする処理温度にして表面処理を行う。次に、水分
を含むガスを導入し、水分を吸着させた後バルブ11、
12、13、14を閉じる。
As a method for producing the inner surface condition of the sample tube 10, for example, the following method may be used. Valves 11, 1
Open 2, 13 and 14 and introduce gas (eg oxygen gas in case of forming oxide film) or solution for applying various surface treatments, and bring the heater 5 and the temperature controller 7 to the target treatment temperature. Surface treatment. Next, after introducing a gas containing water to adsorb the water, the valve 11
Close 12, 13, and 14.

【0010】水分量の測定は、薬液収納容器1を加熱ヒ
ーター4と温度コントローラー6で目的温度に加熱し、
バルブ15を開け薬液の蒸気圧分のガスを凝縮器8で液
化させる。薬液が十分満たされた後、バルブ16を開け
薬液を配管に供給する。配管中を流れる薬液の流量は流
量制御手段2により所定の流量に制御される。先ずバル
ブ17、18を開け、薬液を参照管9を経由して電気伝
導度計3に送り、そこで薬液の電気伝導度を測定する。
電気伝導度が一定になったところでバルブ17、18を
閉じ、バルブ19、12、13、20を開けて薬液を試
料管10に導入して試料管の吸着水分を溶解した後、電
気伝導度計3に送られる。
To measure the water content, the chemical solution container 1 is heated to a target temperature by the heater 4 and the temperature controller 6,
The valve 15 is opened and the gas corresponding to the vapor pressure of the chemical liquid is liquefied by the condenser 8. After the chemical solution is sufficiently filled, the valve 16 is opened to supply the chemical solution to the pipe. The flow rate of the chemical liquid flowing through the pipe is controlled to a predetermined flow rate by the flow rate control means 2. First, the valves 17 and 18 are opened, and the chemical solution is sent to the electric conductivity meter 3 through the reference tube 9, and the electric conductivity of the chemical solution is measured there.
When the electric conductivity becomes constant, the valves 17 and 18 are closed, and the valves 19, 12, 13 and 20 are opened to introduce the chemical solution into the sample tube 10 to dissolve the adsorbed water in the sample tube, and then the electric conductivity meter. Sent to 3.

【0011】試料管10に薬液を導入してからの経過時
間と薬液の電気伝導度の関係は図2に示したグラフとな
る。即ち、試料管内表面に吸着した水分を溶解した薬液
が伝導度計3に到達すると、電気伝導度計の計測値は上
昇し、その後減少し元の薬液の電気伝導度となる。薬液
として無水フッ化水素を用いた場合には、無水フッ化水
素に溶解した水分は無水フッ化水素中で完全解離するた
め、電気伝導度計で測定される電気伝導度と水分量の関
係は図3で示されるように直線関係となる。図3はフッ
化水素の温度が0℃の時の値である。図2のピーク部を
積分し、図3の電気伝導度と水分量の関係から、試料管
に吸着した単位面積当たりの吸着水分子数を得る事が出
来る。
The relationship between the time elapsed after the introduction of the chemical solution into the sample tube 10 and the electric conductivity of the chemical solution is shown in the graph of FIG. That is, when the drug solution in which water adsorbed on the inner surface of the sample tube is dissolved reaches the conductivity meter 3, the measured value of the conductivity meter increases and then decreases to the original conductivity of the drug solution. When anhydrous hydrogen fluoride is used as the chemical solution, the water dissolved in the anhydrous hydrogen fluoride is completely dissociated in the anhydrous hydrogen fluoride, so the relationship between the electric conductivity measured by an electric conductivity meter and the water content is As shown in FIG. 3, there is a linear relationship. FIG. 3 shows the values when the temperature of hydrogen fluoride is 0 ° C. It is possible to obtain the number of adsorbed water molecules per unit area adsorbed on the sample tube from the relationship between the electric conductivity and the water content shown in FIG. 3 by integrating the peak portion in FIG.

【0012】本発明において用いられる水に対し溶解性
を有する薬液とは、水との相互作用が大きく、水といか
なる割合でも混合するものであり、例えば無水フッ化水
素等が好適に用いられる。薬液の流量を制御する手段2
としては、高精度に流量制御が可能なステンレス製の流
体用マスフローコントローラーが好ましい。また、電気
伝導度計3は10 -7〜10-2S/cmの範囲の電気伝導
度が測定できるものが好ましく、特に配管に取り付け可
能なインライン型電気伝導度計が好ましい。
Solubility in water used in the present invention
A chemical liquid that has water has a large interaction with water and
It mixes even in the following proportions, for example anhydrous fluorinated water
Elementary materials and the like are preferably used. Means 2 for controlling the flow rate of the chemical liquid
Is a stainless steel flow that can be controlled with high accuracy.
A body mass flow controller is preferred. Also electricity
Conductivity meter 3 is 10 -7-10-2Electrical conduction in the S / cm range
It is preferable to be able to measure the degree, especially it can be attached to piping
A capable in-line conductivity meter is preferred.

【0013】無水フッ化水素を試料に供給する手段は、
無水フッ化水素収納容器と試料とを接続する配管系から
なり、また試料から無水フッ化水素を電気伝導度計に送
るための手段は試料と電気伝導度計を接続する配管系か
らなる。これらの配管系は、無水フッ化水素は金属を腐
食しないため種々の金属、合金を用いることができる。
あるいはテフロン等のプラスチック等も用いることは可
能であるが、不純物ガスの吸着が少なく、また耐熱性の
高い、内面を電解研摩後不動態化処理したステンレスを
用いるのがより好ましい。
The means for supplying anhydrous hydrogen fluoride to the sample is
It consists of a piping system connecting the anhydrous hydrogen fluoride container and the sample, and the means for sending anhydrous hydrogen fluoride from the sample to the electric conductivity meter consists of a piping system connecting the sample and the electric conductivity meter. In these piping systems, various metals and alloys can be used because anhydrous hydrogen fluoride does not corrode metals.
Alternatively, plastics such as Teflon can be used, but it is more preferable to use stainless steel whose inner surface is passivated after electrolytic polishing and which has low adsorption of impurity gas and high heat resistance.

【0014】試料管および薬液収納容器を加熱する手段
4、5としてはどの様な形状にも付けられるシースヒー
ターが好ましく、温度制御手段6、7としては精度よく
制御できるPIDコントローラーが好ましい。無水フッ
化水素を薬液として用いる場合、無水フッ化水素の沸点
は19.5℃であるため、通常フッ化水素の液が流れる
配管系、流量制御手段及び電気伝導度計センサーセル
は、19.5℃以下に保ち、例えば0℃に保っておくこ
とが望ましい。また電気伝導度計3から排出されるフッ
化水素は、例えば−10〜−30℃程度に冷却された密
閉容器に回収される。
A sheath heater of any shape is preferable as the means 4 and 5 for heating the sample tube and the chemical solution container, and a PID controller capable of controlling with precision is preferable as the temperature control means 6 and 7. When anhydrous hydrogen fluoride is used as the chemical liquid, the boiling point of anhydrous hydrogen fluoride is 19.5 ° C., so that the piping system, the flow rate control means, and the electric conductivity meter sensor cell in which the liquid of hydrogen fluoride normally flows are the same. It is desirable to keep the temperature below 5 ° C, for example, 0 ° C. The hydrogen fluoride discharged from the electric conductivity meter 3 is recovered in a closed container cooled to, for example, about -10 to -30 ° C.

【0015】以上では、配管に吸着した水分の測定方法
について述ベたが、図1の試料管の代わりに試料室を設
け、その中にサンプルを設置することにより、配管に限
らず様々な形状、例えば粉末等に吸着した水分量を測定
することができる。
The method of measuring the water adsorbed in the pipe has been described above. However, by providing a sample chamber in place of the sample pipe in FIG. 1 and installing a sample therein, not only the pipe but also various shapes can be obtained. For example, the amount of water adsorbed on powder or the like can be measured.

【0016】[0016]

【実施例】以下に実施例をあげて本発明を詳細に説明す
る。 (実施例1) 図1に示す装置の試料管として、内面を電解研磨した1
/4インチ径、長さ4mのステンレス管を用い、バルブ
19、20を閉じ、バルブ11、12、13、14を開
けて、試料管10内部に酸素ガス(水分量数ppb)を
導入し、加熱ヒータ5及び温度コントローラーにより試
料管を400℃に1時間保ち、酸化不動態膜を形成し
た。
EXAMPLES The present invention will be described in detail below with reference to examples. Example 1 As a sample tube of the device shown in FIG. 1, the inner surface was electrolytically polished 1
Using a stainless steel tube having a diameter of / 4 inch and a length of 4 m, the valves 19 and 20 are closed, the valves 11, 12, 13 and 14 are opened, and oxygen gas (amount of water content ppb) is introduced into the sample tube 10. The sample tube was kept at 400 ° C. for 1 hour by the heater 5 and the temperature controller to form an oxidation passivation film.

【0017】得られた酸化不動態膜をX線光電子分光法
(XPS)で解析した結果を図4(a)に示す。また、
専用の酸化不動態膜形成装置で作製した酸化不動態膜の
XPS解析結果を図4(b)に示す。図から明らかなよ
うに、両者の深さ方向の組成変化は一致し、同じ組成の
不動態膜が形成されたことが分かる。続いて、上述した
方法で酸化不動態膜を形成した後、バルブ11、14を
閉じ、バルブ19、20を開けて、無水フッ酸(電気伝
導度18μS/cm)を試料管内部に流して、電気伝導
度計でフッ酸中の水分濃度を測定し、配管内部に吸着し
た水分量を求めた。一方、専用の酸化不動態膜形成装置
で形成した酸化不動態膜についても、形成後即座に水分
量測定装置に取り付け、同様にして水分量を測定した。
The result of analysis of the obtained oxidation passivation film by X-ray photoelectron spectroscopy (XPS) is shown in FIG. Also,
FIG. 4B shows the XPS analysis result of the oxidation passivation film produced by the dedicated oxidation passivation film forming apparatus. As is clear from the figure, the compositional changes in the depth direction of both are the same, and it is understood that the passivation film having the same composition was formed. Then, after forming the oxidation passivation film by the method described above, the valves 11 and 14 are closed, the valves 19 and 20 are opened, and anhydrous hydrofluoric acid (electrical conductivity 18 μS / cm) is flown into the sample tube, The water content in hydrofluoric acid was measured with an electric conductivity meter to determine the amount of water adsorbed inside the pipe. On the other hand, the oxidation passivation film formed by the dedicated oxidation passivation film forming device was also attached to the water content measuring device immediately after formation and the water content was measured in the same manner.

【0018】図1の水分量測定装置を用いて得られた水
分吸着量は、検出限界以下であったのに対し、従来の測
定では36×1013分子/cm2と高い結果となった。
これから分かるように、本発明により、表面処理直後の
水分量を正確に測定できることが分かる。 (実施例2) 実施例1と同様な手順で、試料管にシランガスを導入
し、500℃で1時間熱分解させ、シリコン膜を堆積さ
せた。深さ方向のXPS解析結果を図5(a)に示す。
また、専用のCVD装置で堆積したシリコン膜のXPS
解析結果を図5(b)に示す。
The amount of adsorbed water obtained by using the water content measuring device of FIG. 1 was below the detection limit, whereas the conventional measurement showed a high value of 36 × 10 13 molecules / cm 2 .
As can be seen from this, according to the present invention, it is possible to accurately measure the water content immediately after the surface treatment. (Example 2) In the same procedure as in Example 1, a silane gas was introduced into the sample tube and pyrolyzed at 500 ° C for 1 hour to deposit a silicon film. The XPS analysis result in the depth direction is shown in FIG.
In addition, XPS of silicon film deposited by a dedicated CVD device
The analysis result is shown in FIG.

【0019】図から明らかなように、両者とも同じ組成
の堆積膜が得られたことが分かる。実施例1と同様にし
て、シリコン堆積膜に吸着した水分量を測定した。本発
明の装置を用いた結果は検出限界以下であり、また堆積
後水分測定装置に取り付け測定した結果は20×1013
分子/cm2となった。即ち、本発明は、シリコン堆積
後の水分吸着量を正確に測定できることを示している。
As is apparent from the figure, it was found that the deposited films having the same composition were obtained in both cases. In the same manner as in Example 1, the amount of water adsorbed on the silicon deposited film was measured. The result of using the device of the present invention was below the detection limit, and the result of measurement after installation in the moisture measuring device after deposition was 20 × 10 13.
It became a molecule / cm 2 . That is, the present invention shows that the moisture adsorption amount after silicon deposition can be accurately measured.

【0020】(実施例3)実施例1と同様に、図1の装
置を用いて、酸化不動態膜を形成した後1ppmの水分
含有量のArガスを25℃で導入し、接触時間を変化さ
せて、配管内部に吸着した水分量を測定した(実施例
3)。結果を表1に示す。比較のため、専用の酸化不動
態膜形成装置で酸化不動態膜を形成後、水分量測定装置
に取り付け、ベーキング(500℃、3時間)した後、
測定した結果も併せて表1に示す(比較例)。
(Embodiment 3) As in Embodiment 1, using the apparatus shown in FIG. 1, Ar gas having a water content of 1 ppm was introduced at 25 ° C. after forming an oxidation passivation film, and the contact time was changed. Then, the amount of water adsorbed inside the pipe was measured (Example 3). The results are shown in Table 1. For comparison, after forming an oxidation passivation film with a dedicated oxidation passivation film forming device, attaching it to a water content measuring device and baking (500 ° C., 3 hours),
The measured results are also shown in Table 1 (comparative example).

【0021】 表1が示すように、Arガスと接触1秒後で、比較例で
は実施例3に比べて3倍の水分量が測定された。これ
は、大気に触れたとき吸着した水分子がベーキングによ
って完全に除去されないためと考えられ、特に微量水分
量の測定には従来の方法・装置では正確に測定するのが
難しいことを示している。
[0021] As shown in Table 1, one second after contact with Ar gas, the water content in the comparative example was three times as large as that in Example 3. It is considered that this is because water molecules adsorbed when exposed to the atmosphere are not completely removed by baking, and it is difficult to measure accurately trace amounts of water, especially with conventional methods and devices. .

【0022】[0022]

【発明の効果】本発明により、各種試料を表面処理直後
の状態において、各種試料に吸着する水分の測定を高精
度でしかも短時間でできる測定装置を提供することが可
能となる。
According to the present invention, it is possible to provide a measuring apparatus capable of measuring moisture adsorbed on various samples with high accuracy and in a short time in a state immediately after surface treatment of various samples.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の水分量の測定装置の一構成例を示す概
念図である。
FIG. 1 is a conceptual diagram showing a configuration example of a water content measuring apparatus of the present invention.

【図2】試料管10に薬液を導入した後、経過時間と薬
液の電気伝導度の関係を示したグラフである。
FIG. 2 is a graph showing the relationship between the elapsed time and the electrical conductivity of the chemical liquid after the chemical liquid was introduced into the sample tube 10.

【図3】フッ化水素中の水分量と電気伝導度(0℃)と
の関係を示すグラフである。
FIG. 3 is a graph showing the relationship between the water content in hydrogen fluoride and the electrical conductivity (0 ° C.).

【図4】酸化不動態膜の深さ方向の組成プロフィルを示
すグラフである。
FIG. 4 is a graph showing a composition profile in the depth direction of an oxidation passivation film.

【図5】Si堆積膜の深さ方向の組成プロフィルを示す
グラフである。
FIG. 5 is a graph showing a composition profile in the depth direction of a Si deposited film.

【符号の説明】[Explanation of symbols]

1 薬液収納容器、 2 薬液流量制御手段、 3 リークタイトの電気伝導度計、 4、5 加熱手段(加熱ヒーター)、 6、7 加熱温度制御手段(温度コントローラー)、 8 薬液再凝縮手段、 9 電気伝導度計センサーセル内部を超クリーンに保つ
ための参照管、 10 種々の内表面を作製して水分を吸着させる試料
管、 11、12、13、14、15、16、17、18、1
9、20 バルブ。
1 chemical liquid storage container, 2 chemical liquid flow rate control means, 3 leak tight electric conductivity meter, 4, 5 heating means (heating heater), 6, 7 heating temperature control means (temperature controller), 8 chemical liquid recondensing means, 9 electric Reference tube for keeping the inside of the conductivity meter sensor cell ultra-clean, 10 Sample tubes for making various inner surfaces to adsorb moisture, 11, 12, 13, 14, 15, 16, 17, 18, 1
9, 20 valves.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 試料表面に吸着した水分量を測定する装
置であって、水分に対し溶解性を有する薬液を収納する
ための収納容器と、試料室または試料自体と、前記薬液
の電気伝導度を測定するための電気伝導度計とを有し、
さらに前記収納容器内の前記薬液の流量を制御しながら
前記試料室または試料自体に前記収納容器から前記薬液
を供給するための手段と、前記試料室または試料自体か
ら前記薬液を前記電気伝導度計に送るための手段と、前
記試料室に設置された試料または試料自体の表面に完全
密閉方式で種々の表面状態を作製する手段と、を設けた
ことを特徴とする試料表面処理機能を有する水分量測定
装置。
1. An apparatus for measuring the amount of water adsorbed on the surface of a sample, comprising: a storage container for storing a chemical solution soluble in water, a sample chamber or the sample itself, and the electrical conductivity of the chemical solution. And an electric conductivity meter for measuring
Further, means for supplying the chemical liquid from the storage container to the sample chamber or the sample itself while controlling the flow rate of the chemical liquid in the storage container, and the electrical conductivity meter for supplying the chemical liquid from the sample chamber or the sample itself. And a means for producing various surface states on the surface of the sample or the sample itself installed in the sample chamber in a completely sealed manner, the moisture having a sample surface treatment function. Quantity measuring device.
【請求項2】 前記表面状態を作製する手段は、少なく
とも前記試料の加熱手段と前記試料の表面にガスを導入
する手段とからなることを特徴とする請求項1に記載の
試料表面処理機能を有する水分量測定装置。
2. The sample surface treatment function according to claim 1, wherein the means for producing the surface state comprises at least a heating means for the sample and a means for introducing a gas to the surface of the sample. A water content measuring device having.
JP19375393A 1993-08-04 1993-08-04 Moisture content measuring device with sample surface treatment function Expired - Fee Related JP3418703B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP19375393A JP3418703B2 (en) 1993-08-04 1993-08-04 Moisture content measuring device with sample surface treatment function
PCT/JP1994/001290 WO1995004925A1 (en) 1993-08-04 1994-08-04 Moisture meter having sample surface treatment function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19375393A JP3418703B2 (en) 1993-08-04 1993-08-04 Moisture content measuring device with sample surface treatment function

Publications (2)

Publication Number Publication Date
JPH0749322A JPH0749322A (en) 1995-02-21
JP3418703B2 true JP3418703B2 (en) 2003-06-23

Family

ID=16313244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19375393A Expired - Fee Related JP3418703B2 (en) 1993-08-04 1993-08-04 Moisture content measuring device with sample surface treatment function

Country Status (2)

Country Link
JP (1) JP3418703B2 (en)
WO (1) WO1995004925A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106855529A (en) * 2015-12-09 2017-06-16 中国科学院大连化学物理研究所 A kind of controllable miniature test box of humidity and its application

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58210535A (en) * 1982-06-01 1983-12-07 Fujitsu Ltd Moving device for sample base plate
JP3037790B2 (en) * 1991-07-16 2000-05-08 忠弘 大見 Method and apparatus for measuring water content

Also Published As

Publication number Publication date
JPH0749322A (en) 1995-02-21
WO1995004925A1 (en) 1995-02-16

Similar Documents

Publication Publication Date Title
US5009963A (en) Metal material with film passivated by fluorination and apparatus composed of the metal material
Hanson et al. The reaction probabilities of ClONO2 and N2O5 on polar stratospheric cloud materials
Yamada et al. Adsorption-desorption kinetics of carbon monoxide on palladium polycrystalline surfaces
Ding et al. Evaluation of electrochemical hydride generation for the determination of total antimony in natural waters by electrothermal atomic absorption spectrometry with in situ concentration
Redington Diffusion of barium in barium oxide
CN106501125B (en) Gas adsorption and desorption testing device and testing method
Nornes et al. X-ray photoelectron spectroscopy study of the chemisorption of water on uranium and thorium and oxygen on uranium
Maschhoff et al. Thin Oxide Layers on Clean Iron Surfaces: Formation under Vacuum and Characterization by Photoelectron spectroscopy and electrochemical reactions of probe molecules at the oxide/electrolyte interface
Ohmi et al. Trace moisture analysis in specialty gases
WO2004003522A1 (en) Remote analysis using aerosol sample transport
JP3418703B2 (en) Moisture content measuring device with sample surface treatment function
JP3037790B2 (en) Method and apparatus for measuring water content
Eggleton et al. The thermal accommodation coefficient of gases and their adsorption on iron
Dymott et al. Evaluation of totally pyrolytic graphite cuvettes for electrothermal atomic-absorption spectrometry
Meyer et al. Energy exchange between cold gas molecules and a hot graphite surface
Ohmi et al. New technique for the measurement of adsorbed moisture concentration on a solid surface
Smith Chlorine Adsorption at a Titanium Surface Segregation from the Bulk Crystal Interaction with Chlorine Gas
JP3414976B2 (en) Impurity analysis sample container and sample storage member used therein
Wampler Hydrogen permeation into iron
JP3608183B2 (en) Method and apparatus for analyzing siloxane in silicon compound gas
Gelain et al. Low-pressure, high-temperature siliconizing of tungsten-I
Vasilyev Low temperature pulsed gas-phase deposition of thin layers of metallic ruthenium for micro-and nanoelectronics: Part 2. Kinetics of the growth of ruthenium layers
JPH03215656A (en) Metallic material with passivating fluoride film and its production and equipment using same
Svec et al. Metal‐Water Reactions: V. Kinetics of the Reaction between Magnesium and Water Vapor
Ottosson et al. Response to the comments by P. Szakálos, T. Åkermark and C. Leygraf on the paper “Copper in ultrapure water, a scientific issue under debate”

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090418

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100418

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S631 Written request for registration of reclamation of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313631

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees