JP3415251B2 - Illumination optical system for projection exposure equipment - Google Patents

Illumination optical system for projection exposure equipment

Info

Publication number
JP3415251B2
JP3415251B2 JP05160994A JP5160994A JP3415251B2 JP 3415251 B2 JP3415251 B2 JP 3415251B2 JP 05160994 A JP05160994 A JP 05160994A JP 5160994 A JP5160994 A JP 5160994A JP 3415251 B2 JP3415251 B2 JP 3415251B2
Authority
JP
Japan
Prior art keywords
diffractive optical
light
optical system
grating
diffractive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05160994A
Other languages
Japanese (ja)
Other versions
JPH07263313A (en
Inventor
靖弘 上原
一司 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optic Co Ltd filed Critical Olympus Optic Co Ltd
Priority to JP05160994A priority Critical patent/JP3415251B2/en
Priority to US08/408,819 priority patent/US5695274A/en
Publication of JPH07263313A publication Critical patent/JPH07263313A/en
Priority to US08/899,898 priority patent/US6095667A/en
Application granted granted Critical
Publication of JP3415251B2 publication Critical patent/JP3415251B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、投影露光装置に用いる
照明光学系に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an illumination optical system used in a projection exposure apparatus.

【0002】[0002]

【従来の技術】最近の半導体の集積度の向上に伴い、投
影露光装置に要求される解像力も年々高まりつつある。
解像力を向上させるため、光源の短波長化、位相シフト
法の採用、変形照明法の採用等の種々の方法が研究開発
されており、その中でも変形照明法は従来装置に対し大
幅な変更を加える必要がないという利点を有している。
変形照明法の代表的な例としては、照明光学系の開口絞
りを光束が通過する際に光束の通過位置が光軸から離間
した4箇所に制限される4極照明もしくは4点照明と称
される方法と、照明光学系の開口絞りを通過する光束の
通過位置が光軸と同心の輪帯状に制限される輪帯照明と
称される方法とがある。4極照明は、特に、縦横の線か
ら成るパターンについて、解像力の向上および焦点深度
増大の効果が顕著であることが知られている。一方、輪
帯照明は、解像力の向上および焦点深度増大の効果は4
極照明ほど顕著ではないが、レチクルパターンの方向に
対する依存性がないという特徴を有している。
2. Description of the Related Art With the recent increase in the degree of integration of semiconductors, the resolution required for projection exposure apparatuses is increasing year by year.
In order to improve the resolution, various methods such as shortening the wavelength of the light source, adopting the phase shift method, adopting the modified illumination method, etc. are being researched and developed. Among them, the modified illumination method makes significant changes to the conventional device. It has the advantage of not being necessary.
As a typical example of the modified illumination method, when the light flux passes through the aperture stop of the illumination optical system, it is referred to as quadrupole illumination or four-point illumination in which the passage position of the light flux is limited to four positions separated from the optical axis. And a method called annular illumination in which the passing position of the light flux passing through the aperture stop of the illumination optical system is restricted to an annular shape concentric with the optical axis. It is known that the quadrupole illumination is particularly effective in improving the resolution and increasing the depth of focus for a pattern composed of vertical and horizontal lines. On the other hand, the annular illumination has the effect of improving the resolution and increasing the depth of focus by 4.
Although not as remarkable as the polar illumination, it has a feature that it does not depend on the direction of the reticle pattern.

【0003】4極照明の従来例としては、例えば図42
および図43に示すものがある。図42の従来例は、楕
円鏡102、水銀ランプ103およびレンズ104を有
する光源部からの照明光束をフライアイレンズ108に
入射し、フライアイレンズの直後に設けられた4つの円
形開口を有する開口絞り109aにより前記照明光束を
4つに分離するようにしている。また、図43の従来例
は、特開平4−225357号公報に開示されたもので
あり、楕円鏡102、水銀ランプ103およびレンズ1
04を有する光源部からの照明光束を4本に分岐した光
ファイバ121により4つに分離するようにしている。
As a conventional example of quadrupole illumination, for example, FIG.
And FIG. 43. In the conventional example shown in FIG. 42, an illumination light flux from a light source unit having an elliptic mirror 102, a mercury lamp 103, and a lens 104 is incident on a fly-eye lens 108, and an opening having four circular openings is provided immediately after the fly-eye lens. The illumination beam is divided into four by the diaphragm 109a. The conventional example shown in FIG. 43 is disclosed in Japanese Patent Laid-Open No. 4-225357, and the elliptical mirror 102, the mercury lamp 103 and the lens 1 are used.
The illumination light flux from the light source unit having 04 is divided into four by the optical fiber 121 branched into four.

【0004】一方、輪帯照明の従来例としては、例えば
図44および図45に示すものがある。図44の従来例
は、楕円鏡102、水銀ランプ103およびレンズ10
4を有する光源部からの照明光束をフライアイレンズ1
08に入射し、フライアイレンズの直後に設けられた輪
帯状の開口を有する開口絞り109bにより前記照明光
束を輪帯状に制限するようにしている。また、図45の
従来例は、楕円鏡102、水銀ランプ103およびレン
ズ104を有する光源部からの照明光束をレンズ104
の直後に設けたアキシコンレンズ122によって輪帯状
に変換するようにしている。なお、上記各従来例におい
ては、4つに分離された照明光束または輪帯状に変換さ
れた照明光束は、コンデンサレンズ110、レチクル1
11、結像光学系112を経てウエハ113に到達す
る。
On the other hand, conventional examples of annular illumination include those shown in FIGS. 44 and 45, for example. In the conventional example of FIG. 44, the elliptical mirror 102, the mercury lamp 103 and the lens 10 are used.
Fly-eye lens 1 for illuminating luminous flux from a light source unit having 4
The aperture stop 109b having a ring-shaped aperture provided immediately after the fly-eye lens is used to limit the illumination light flux to a ring-shaped state. Further, in the conventional example of FIG. 45, the illumination light flux from the light source unit having the elliptical mirror 102, the mercury lamp 103 and the lens 104 is reflected by the lens 104.
An axicon lens 122 provided immediately after is converted into an annular shape. In each of the conventional examples described above, the illumination light flux divided into four or the illumination light flux converted into the annular shape is converted into the condenser lens 110 and the reticle 1.
11 and reaches the wafer 113 via the imaging optical system 112.

【0005】[0005]

【発明が解決しようとする課題】上記図42の従来例で
は、開口絞り109aに設けた開口に到達することがで
きた照明光束のみしか透過し得ないので、光源部からの
光束の利用効率が大幅に低下するとともに著しい照度ム
ラが生じてしまう。また、上記図43の従来例では、光
源部からの光束の利用効率を高めることはできるが、多
数の光ファイバを必要とするため、構成が複雑化し、製
作が困難になり、機械的な信頼性が低下してしまう。ま
た、上記図44の従来例では、開口絞り109bに設け
た開口に到達することができた照明光束のみしか透過し
得ないので、光源部からの光束の利用効率が大幅に低下
してしまう。また、上記図45の従来例では、光源部か
らの光束の利用効率を高めることはできるが、製作が困
難なアキシコンレンズを必要とするため、コストアップ
が避けられない。
In the conventional example of FIG. 42 described above, since only the illumination light flux that can reach the aperture provided in the aperture stop 109a can be transmitted, the utilization efficiency of the light flux from the light source unit is improved. The illuminance is significantly reduced and the illuminance is significantly uneven. Further, in the conventional example of FIG. 43 described above, although the utilization efficiency of the light flux from the light source unit can be improved, a large number of optical fibers are required, which complicates the configuration, makes the manufacturing difficult, and increases the mechanical reliability. Sex is reduced. Further, in the conventional example of FIG. 44, since only the illumination light flux that can reach the aperture provided in the aperture stop 109b can be transmitted, the utilization efficiency of the light flux from the light source unit is significantly reduced. Further, in the conventional example of FIG. 45 described above, although the utilization efficiency of the light flux from the light source unit can be improved, an axicon lens which is difficult to manufacture is required, and therefore an increase in cost cannot be avoided.

【0006】本発明は、上記問題に着目してなされたも
のであり、光源からの光の利用効率が高くなるとともに
構成が簡略化されて容易に実現し得る投影露光装置用照
明光学系を提供することを目的とする。
The present invention has been made in view of the above problems, and provides an illumination optical system for a projection exposure apparatus which has a high utilization efficiency of light from a light source and a simplified structure which can be easily realized. The purpose is to do.

【0007】[0007]

【課題を解決するための手段】この目的のため、本発明
の請求項1の構成は、光源からの光束を分離する光束分
離光学系と、該光束分離光学系により分離された光束を
レチクル上へ導くコンデンサ光学系とを有する投影露光
装置用照明光学系において、前記光束分離光学系が、前
記光源からの光束を4つに分離する回折格子パターンを
有する第1の回折光学手段と、前記第1の回折光学手段
により生じた4つの光束に対応する位置に配置され、回
折格子パターンを有する第2の回折光学手段とを具える
ことを特徴とする。
To this end, the structure of claim 1 of the present invention comprises a light beam splitting optical system for splitting a light beam from a light source, and a light beam split by the light beam splitting optical system on a reticle. In the illumination optical system for a projection exposure apparatus, the first light diffusing optical unit has a diffraction grating pattern for separating the light beam from the light source into four, and The second diffractive optical means is provided at a position corresponding to four light beams generated by the first diffractive optical means, and has a diffractive grating pattern.

【0008】また、本発明の請求項2の構成は、上記に
おいて、前記第1の回折光学手段の回折格子パターンは
直線格子パターンであって、該直線格子パターンは境界
をほぼ十字型になすように配されるとともにほぼ等間隔
の格子ピッチを有する4つの直線格子パターンであり、
互いに隣合う直線格子パターンの格子方向がほぼ直交す
ることを特徴とする。
According to a second aspect of the present invention, in the above, the diffraction grating pattern of the first diffractive optical means is a linear grating pattern, and the boundary of the linear grating pattern is substantially cross-shaped. Are four linear grid patterns that are arranged in a line and have a substantially equal grid pitch,
It is characterized in that the lattice directions of the linear lattice patterns adjacent to each other are substantially orthogonal to each other.

【0009】また、本発明の請求項3の構成は、上記に
おいて、前記第1の回折光学手段は、m 、m 、m
を任意の自然数としたとき、+m 次回折光および
−m 次回折光の回折効率がほぼ等しくなる溝断面形
状の直線格子パターンを有する第1の回折光学面と、前
記第1の回折光学面から光軸方向に離間して配されて前
記第1の回折光学面による前記+m 次回折光を入射
される領域であって、+m 次回折光および−m
回折光の回折効率がほぼ等しくなる溝断面形状でかつ前
記第1の回折光学面の格子方向とほぼ直交する格子方向
の直線格子パターンを有する第1の回折領域と、前記第
1の回折光学面による前記−m 次回折光を入射され
る領域であって、+m 次回折光および−m 次回折
光の回折効率がほぼ等しくなる溝断面形状でかつ前記第
1の回折光学面の格子方向とほぼ直交する格子方向の直
線格子パターンを有する第2の回折領域とを具える第2
の回折光学面との2つの回折光学面を具備することを特
徴とする。
Further, in the structure of claim 3 of the present invention, in the above, the first diffractive optical means is m 1 , m 2 , m.
A first diffractive optical surface having a groove-shaped linear grating pattern in which the diffraction efficiencies of + m 1st-order diffracted light and −m 1st- order diffracted light are substantially equal when 3 is an arbitrary natural number; In the optical axis direction, the area where the + m 1st-order diffracted light from the first diffractive optical surface is incident and the diffraction efficiencies of the + m 2nd-order diffracted light and the −m 2nd- order diffracted light become substantially equal. A first diffractive region having a groove cross-sectional shape and a linear grating pattern in a grating direction substantially orthogonal to the grating direction of the first diffractive optical surface and the -m 1st-order diffracted light by the first diffractive optical surface are incident. And a linear grating pattern in a grating direction substantially orthogonal to the grating direction of the first diffractive optical surface in a groove cross-sectional shape in which the diffraction efficiencies of the + m third-order diffracted light and the −m third- order diffracted light are substantially equal. Have Second comprising a second diffraction region
And two diffractive optical surfaces.

【0010】また、本発明の請求項4の構成は、上記に
おいて、前記第1の回折光学手段は、深さを異ならせた
ほぼ正方形の領域を互い違いに市松模様に配された回折
光学素子を有することを特徴とする。
According to a fourth aspect of the present invention, in the above structure, the first diffractive optical means is a diffractive optical element in which substantially square regions having different depths are alternately arranged in a checkered pattern. It is characterized by having.

【0011】また、本発明の請求項5の構成は、光源か
らの光束を輪帯光束に変換する光束分離光学系と、該光
束分離光学系により変換された輪帯光束をレチクル上へ
導くコンデンサ光学系とを有する投影露光装置用照明光
学系において、前記光束分離光学系が、同心リング格子
パターンを有する回折光学手段を具えることを特徴とす
る。
Further, according to a fifth aspect of the present invention, a luminous flux separation optical system for converting a luminous flux from a light source into an annular light flux, and a condenser for guiding the annular light flux converted by the luminous flux separation optical system onto a reticle. An illumination optical system for a projection exposure apparatus having an optical system, wherein the light beam splitting optical system comprises diffractive optical means having a concentric ring grating pattern.

【0012】また、本発明の請求項6の構成は、上記に
おいて、前記回折光学手段の前記同心リング格子パター
ンは、格子ピッチがほぼ等間隔であるとともに前記回折
光学手段に入射される前記光源からの光束の波長に対し
溝断面形状がブレーズ化されていることを特徴とする。
According to a sixth aspect of the present invention, in the above configuration, the concentric ring grating pattern of the diffractive optical means has grating pitches substantially equal to each other, and the concentric ring grating pattern is emitted from the light source incident on the diffractive optical means. The cross-sectional shape of the groove is blazed with respect to the wavelength of the luminous flux of.

【0013】また、本発明の請求項7の構成は、上記に
おいて、前記回折光学手段は、mを任意の自然数とし
たとき、前記同心リング格子パターンの格子ピッチがほ
ぼ等間隔であるとともに+m 次回折光および−m
次回折光の回折効率がほぼ等しくなる溝断面形状の回折
光学素子を有することを特徴とする。また、本発明の請
求項8の構成は、光源からの光束を分離する光束分離光
学系と、該光束分離光学系により分離された光束をレチ
クル上へ導くコンデンサ光学系とを有する投影露光装置
用照明光学系において、前記光束分離光学系が、前記光
源からの光束を4つに分離する直線格子パターンを有す
る回折光学手段を具え、前記回折光学手段は、m
、m を任意の自然数としたとき、+m 次回
折光および−m 次回折光の回折効率がほぼ等しくな
る溝断面形状の直線格子パターンを有する第1の回折光
学面と、前記第1の回折光学面から光軸方向に離間して
配されて前記第1の回折光学面による前記+m 次回
折光を入射される領域であって、+m 次回折光およ
び−m 次回折光の回折効率がほぼ等しくなる溝断面
形状でかつ前記第1の回折光学面の格子方向とほぼ直交
する格子方向の直線格子パターンを有する第1の回折領
域と、前記第1の回折光学面による前記−m 次回折
光を入射される領域であって、+m 次回折光および
−m 次回折光の回折効率がほぼ等しくなる溝断面形
状でかつ前記第1の回折光学面の格子方向とほぼ直交す
る格子方向の直線格子パターンを有する第2の回折領域
とを具える第2の回折光学面との2つの回折光学面を具
備して成ることを特徴とする。また、本発明の請求項9
の構成は、前記第1の回折光学手段および前記第2の回
折光学手段の回折格子パターンは、断面形状がブレーズ
形状または該ブレーズ形状を階段形状に近似した形状で
あることを特徴とする。
[0013] The configuration according to claim 7 of the present invention, in the above, the diffractive optical means, when the m 1 and any natural number, the grating pitch of the concentric rings grid pattern with a substantially equal intervals + m First-order diffracted light and -m 1
It is characterized in that it has a diffractive optical element having a groove cross-sectional shape in which the diffraction efficiency of the second-order diffracted light is substantially equal. Further, the structure of claim 8 of the present invention is for a projection exposure apparatus having a light beam separating optical system for separating a light beam from a light source and a condenser optical system for guiding the light beam separated by the light beam separating optical system onto a reticle. In the illumination optical system, the light beam splitting optical system includes diffractive optical means having a linear grating pattern that splits the light beam from the light source into four, and the diffractive optical means includes m 1 ,
a first diffractive optical surface having a linear grating pattern having a groove cross-sectional shape in which the diffraction efficiencies of + m 1st-order diffracted light and −m 1st- order diffracted light are substantially equal to each other when m 2 and m 3 are arbitrary natural numbers; Of the + m 2nd-order diffracted light and the −m 2nd- order diffracted light, which is arranged apart from the diffractive optical surface in the optical axis direction and into which the + m 1st-order diffracted light is incident. A first diffraction region having a groove cross-sectional shape with substantially the same and having a linear grating pattern in a grating direction substantially orthogonal to the grating direction of the first diffractive optical surface, and the -m 1 by the first diffractive optical surface. In the region where the second diffracted light is incident, the groove cross-sectional shape is such that the diffraction efficiencies of the + m third-order diffracted light and the −m third- order diffracted light are substantially equal to each other, and the grating direction is substantially orthogonal to the grating direction of the first diffractive optical surface. Straight grid putter Characterized by comprising comprises two diffractive optical surface and second diffractive optical surface comprising a second diffraction area having. In addition, claim 9 of the present invention
In the above configuration, the diffraction grating patterns of the first diffractive optical means and the second diffractive optical means have a cross-sectional shape that is a blazed shape or a shape that approximates the blazed shape to a stepped shape.

【0014】[0014]

【作用】4極照明を用いる場合には、照明光束を4つに
分離し、夫々をレチクルに対し傾斜させた角度で入射さ
せる(従来技術では、照明光束の分離に反射部材(ミラ
ー)、屈折部材(プリズム)等を用いている)。本発明
の請求項1の構成によれば、光源からの光束は光束分離
光学系に設けられた回折格子パターンを有する第1の回
折光学手段により4つに分離される。それら4つに分離
された光束は夫々、前記第1の回折光学手段により生じ
た4つの光束に対応する位置に配置され、回折格子パタ
ーンを有する第2の回折光学手段に入射する。そして、
第2の回折光学手段から射出した光束は、コンデンサ光
学系によりレチクル上へ導かれる。その際、照明光束を
分離するために第1および第2の回折光学手段を用いて
いるので、例えば回折光として1次光を用いる場合に回
折作用を発揮させるために回折面に要求される厚さは高
々照明光学系の波長程度であることから、照明光束を反
射部材、屈折部材等を用いて分割する従来例に比べて、
照明光学系を小型化、軽量化することができる。
In the case of using the quadrupole illumination, the illumination light beam is divided into four beams, and each of them is made incident on the reticle at an inclined angle (in the prior art, a reflection member (mirror) and refraction are used to separate the illumination light beam). Members (prism) etc. are used). According to the structure of claim 1 of the present invention, the light beam from the light source is separated into four by the first diffractive optical means having the diffraction grating pattern provided in the light beam separation optical system. The light beams separated into the four light beams are respectively arranged at positions corresponding to the four light beams generated by the first diffractive optical means, and are incident on the second diffractive optical means having a diffraction grating pattern. And
The light flux emitted from the second diffractive optical means is guided onto the reticle by the condenser optical system. At this time, since the first and second diffractive optical means are used to separate the illumination light flux, the thickness required for the diffractive surface to exert a diffractive action when, for example, primary light is used as diffracted light. Since the wavelength is at most about the wavelength of the illumination optical system, compared to the conventional example in which the illumination light beam is divided by using a reflecting member, a refracting member, etc.
The illumination optical system can be reduced in size and weight.

【0015】また、本発明の請求項2の構成によれば、
光源からの光束が光束分離光学系に設けられた第1の回
折光学手段の回折格子パターンである直線格子パターン
に入射する際には、該直線格子パターンはほぼ等間隔の
格子ピッチを有する4つの直線格子パターンより成り、
それらの格子方向は互いに隣合う直線格子パターンの格
子方向がほぼ直交するようにしてあるので、前記光源か
らの光束は入射した直線格子パターンの格子方向に応じ
た方向に回折されることになり、前記光源からの光束か
ら4つの光束が分離される。したがって、第1の回折光
学手段を1つの回折光学面により実現し得るので、構成
が簡略化され、アライメントが容易になる。
According to the second aspect of the present invention,
When the light flux from the light source is incident on the linear grating pattern which is the diffraction grating pattern of the first diffractive optical means provided in the light beam splitting optical system, the linear grating pattern has four grating pitches with substantially equal intervals. Consists of a linear grid pattern,
Since the lattice directions of the linear lattice patterns adjacent to each other are substantially orthogonal to each other, the light flux from the light source is diffracted in the direction corresponding to the lattice direction of the incident linear lattice pattern, Four light beams are separated from the light beam from the light source. Therefore, since the first diffractive optical means can be realized by one diffractive optical surface, the configuration is simplified and the alignment is facilitated.

【0016】また、本発明の請求項3の構成によれば、
例えばm1 =m2 =m3 =1の場合を例に挙げて説明す
ると、第1の回折光学面に入射した光源からの光束は、
直線格子パターンにより+1次回折光、−1次回折光お
よびその他の次数の回折光に分離され、このとき+1次
回折光および−1次回折光の強度はほぼ等しくなる。第
1の回折光学面により回折された+1次回折光は、第2
の回折光学面の第1の回折領域に入射した後、第2の回
折光学面に第1の回折光学面の格子方向とほぼ直交する
方向に形成された直線格子パターンにより+1次回折
光、−1次回折光およびその他の次数の回折光に分離さ
れる。同様に、第1の回折光学面により回折された−1
次回折光は、第2の回折光学面の第2の回折領域に入射
した後、第2の回折光学面に第1の回折光学面の格子方
向とほぼ直交する方向に形成された直線格子パターンに
より+1次回折光、−1次回折光およびその他の次数の
回折光に分離される。
According to the structure of claim 3 of the present invention,
For example, in the case of m 1 = m 2 = m 3 = 1, the light flux from the light source incident on the first diffractive optical surface is
The linear grating pattern separates the + 1st-order diffracted light, the -1st-order diffracted light, and the diffracted light of other orders, and at this time, the + 1st-order diffracted light and the -1st-order diffracted light have substantially the same intensity. The + 1st order diffracted light diffracted by the first diffractive optical surface is
+ 1st order diffracted light by the linear grating pattern formed on the second diffractive optical surface in a direction substantially orthogonal to the grating direction of the first diffractive optical surface after entering the first diffractive region of the diffractive optical surface of It is separated into the diffracted light of the next order and the diffracted light of other orders. Similarly, -1 diffracted by the first diffractive optical surface
The secondary diffracted light is incident on the second diffractive region of the second diffractive optical surface, and then, by the linear grating pattern formed on the second diffractive optical surface in a direction substantially orthogonal to the grating direction of the first diffractive optical surface. It is separated into + 1st-order diffracted light, -1st-order diffracted light, and diffracted light of other orders.

【0017】この場合、第1の回折光学面により形成さ
れた+1次回折光が第2の回折領域で+1次回折光およ
び−1次回折光に回折されたものと、第1の回折光学面
により形成された−1次回折光が第2の回折領域で+1
次回折光および−1次回折光に回折されたものとの、合
計4つの光束が形成され、照明光束として用いられるこ
とになる。この請求項3の構成は、回折光学面により光
束の径が変わることはないので、最終的に同一の径の光
束を形成するのであれば、光束を波面分割する請求項2
の構成に比べ、第1の回折光学手段に入射する光束の径
を小さくすることができる。したがって、光源に第1の
回折光学手段を接近させることができ、照明光学系の全
長の短縮が可能になる。
In this case, the + 1st-order diffracted light formed by the first diffractive optical surface is diffracted into the + 1st-order diffracted light and the -1st-order diffracted light in the second diffractive region and the first diffractive optical surface. -1st order diffracted light is +1 in the second diffraction area
A total of four light fluxes including the diffracted light of the first-order diffracted light and the one diffracted to the -1st-order diffracted light are formed and used as the illumination light flux. According to the structure of claim 3, since the diameter of the light flux does not change due to the diffractive optical surface, if the light flux having the same diameter is finally formed, the light flux is divided into wavefronts.
The diameter of the light beam incident on the first diffractive optical means can be made smaller than that of the above configuration. Therefore, the first diffractive optical means can be brought close to the light source, and the total length of the illumination optical system can be shortened.

【0018】また、本発明の請求項4の構成によれば、
光源からの光束は光束分離光学系の第1の回折光学手段
に設けられた回折光学素子に入射し、該回折光学素子に
は深さを異ならせたほぼ正方形の領域を互い違いに市松
模様に配されているので、図40(a)に示すXおよび
Y方向について考えると、入射された光束は回折格子の
ピッチと深さにより決定される、回折し得る次数に回折
される。よって、全体について考えると、ほぼ正方形の
領域を市松模様状に配された回折光学素子に入射した光
束は図41に示すように、ほぼ方眼模様の格子点の位置
に回折されることになるので、これらの光束の中から通
常、強度が高くかつほぼ正方形状に配される4つの光束
を選択し、照明光束として利用することができる。
According to the fourth aspect of the present invention,
The light beam from the light source is incident on the diffractive optical element provided in the first diffractive optical means of the light beam separating optical system, and the diffractive optical element is arranged in a checkerboard pattern in which substantially square regions having different depths are alternately arranged. Therefore, considering the X and Y directions shown in FIG. 40A, the incident light beam is diffracted into diffractable orders determined by the pitch and depth of the diffraction grating. Therefore, considering the whole, the light beam incident on the diffractive optical elements arranged in a checkerboard pattern in a substantially square region is diffracted to the positions of the grid points of the grid pattern as shown in FIG. 41. Of these luminous fluxes, four luminous fluxes which are usually high in intensity and arranged in a substantially square shape can be selected and used as illumination luminous fluxes.

【0019】一方、輪帯照明を用いる場合には、照明光
束から輪帯光束を形成し、それをレチクルに対し傾斜さ
せた角度で入射させる(従来技術では、輪帯光束を形成
するためにアキシコンレンズ等を用いている)。本発明
の請求項5の構成によれば、光源からの光束は光束分離
光学系に設けられた同心リング格子パターンを有する回
折光学手段により輪帯光束に変換され、それら輪帯光束
は夫々、コンデンサ光学系によりレチクル上へ導かれ
る。その際、輪帯光束を形成するために、アキシコンレ
ンズ等よりも製作の容易な同心リング格子パターンを用
いることができる。
On the other hand, in the case of using the annular illumination, an annular luminous flux is formed from the illumination luminous flux and is incident on the reticle at an inclined angle (in the prior art, the axial luminous flux is formed to form the annular luminous flux. Uses a lens, etc.). According to the configuration of claim 5 of the present invention, the light flux from the light source is converted into the annular light flux by the diffractive optical means having the concentric ring grating pattern provided in the light beam separation optical system, and these annular light fluxes are respectively condensed. It is guided onto the reticle by the optical system. At this time, a concentric ring grating pattern that is easier to manufacture than an axicon lens or the like can be used to form the annular light flux.

【0020】また、本発明の請求項6の構成によれば、
光源からの光束が同心リング格子パターンに入射する際
には、該同心リング格子パターンの溝断面形状は光源か
らの光束に対しブレーズ化されているので、同心リング
格子パターンによる損失は生じず、光源からの光束を高
い効率で輪帯状の光束に変換することができる。
According to the structure of claim 6 of the present invention,
When the light beam from the light source enters the concentric ring grating pattern, the groove cross-sectional shape of the concentric ring grating pattern is blazed with respect to the light beam from the light source, so that the loss due to the concentric ring grating pattern does not occur. It is possible to convert the luminous flux from the light into a ring-shaped luminous flux with high efficiency.

【0021】また、本発明の請求項7の構成によれば、
光源からの光束は同心リング格子パターンの格子ピッチ
および溝の深さにより決定される、回折し得る次数に回
折される。したがって、前記各次数に対応した複数の輪
帯光束が形成され、その中から適切なものが照明光束と
して利用される。その際、例えばm =1とすると、
+m 次光および−m 次光の回折効率がほぼ等しく
なるので、ムラのない照明光束を形成することができ
る。また、最終的に同一輪帯幅の光束を形成するのであ
れば、光束の径は請求項5の構成の約半分にすることが
できる。したがって、光源に回折光学手段を接近させる
ことができ、照明光学系の全長の短縮が可能になる。ま
た、本発明の請求項8の構成によれば、光源からの光束
は光束分離光学系に設けられた直線格子パターンを有す
る回折光学手段により4つに分離され、それら4つに分
離された光束は夫々、コンデンサ光学系によりレチクル
上へ導かれる。その際、照明光束を分離するために回折
光学手段を用いているので、例えば回折光として1次光
を用いる場合に回折作用を発揮させるために回折面に要
求される厚さは高々照明光学系の波長程度であることか
ら、照明光束を反射部材、屈折部材等を用いて分割する
従来例に比べて、照明光学系を小型化、軽量化すること
ができる。また、本発明の請求項8の構成は、回折光学
面により光束の径が変わることはないので、最終的に同
一の径の光束を形成するのであれば、光束を波面分割す
る請求項2の構成に比べ、回折光学手段に入射する光束
の径を小さくすることができる。したがって、光源に回
折光学手段を接近させることができ、照明光学系の全長
の短縮が可能になる。また、本発明の請求項9の構成に
よれば、前記第1の回折光学手段および前記第2の回折
光学手段の回折格子パターンは、断面形状がブレーズ形
状または該ブレーズ形状を階段形状に近似した形状であ
り、光束分離光学系にブレーズ化した回折光学素子を用
いているので、光源で発生された照明光を効率良く利用
することができ、それによりスループットの向上等の効
果がもたらされることになる。
According to the structure of claim 7 of the present invention,
The luminous flux from the light source is diffracted into diffractive orders determined by the grating pitch of the concentric ring grating pattern and the groove depth. Therefore, a plurality of annular light fluxes corresponding to the respective orders are formed, and an appropriate one is used as the illumination light flux. At that time, for example, if m 1 = 1
Since the diffraction efficiencies of the + m 1st- order light and the −m 1st- order light are substantially equal to each other, it is possible to form a uniform illumination light flux. Further, if a light flux having the same annular zone width is finally formed, the diameter of the light flux can be reduced to about half that of the structure of claim 5. Therefore, the diffractive optical means can be brought close to the light source, and the total length of the illumination optical system can be shortened. Further, according to the structure of claim 8 of the present invention, the light flux from the light source is split into four by the diffractive optical means having the linear grating pattern provided in the light flux splitting optical system, and the light flux split into these four light fluxes. Are each guided onto the reticle by the condenser optics. At this time, since the diffractive optical means is used to separate the illumination light flux, the thickness required for the diffractive surface to exhibit a diffractive action when the first-order light is used as the diffracted light is at most an illumination optical system. Since the wavelength is about the same wavelength, it is possible to reduce the size and weight of the illumination optical system, as compared with the conventional example in which the illumination light flux is divided by using a reflecting member, a refracting member, or the like. Further, in the structure of claim 8 of the present invention, since the diameter of the light flux does not change due to the diffractive optical surface, if the light flux of the same diameter is finally formed, the light flux is wavefront-divided. The diameter of the light beam incident on the diffractive optical means can be made smaller than that of the configuration. Therefore, the diffractive optical means can be brought close to the light source, and the total length of the illumination optical system can be shortened. According to the configuration of claim 9 of the present invention, the diffraction grating patterns of the first diffractive optical means and the second diffractive optical means have a blazed cross-sectional shape or a blazed shape approximated to a stepped shape. Since it has a shape and uses a blazed diffractive optical element for the light beam splitting optical system, it is possible to efficiently use the illumination light generated by the light source, which leads to an effect such as an improvement in throughput. Become.

【0022】[0022]

【実施例】以下、本発明の実施例を図面に基づき詳細に
説明する。図1は本発明の投影露光装置用照明光学系の
第1実施例の構成を示す図である。図中1は光源部であ
り、楕円鏡2、水銀ランプ3およびレンズ4から成る。
また、図中51は光束分離部であり、透過型の回折光学
素子61および71から成る。
Embodiments of the present invention will now be described in detail with reference to the drawings. FIG. 1 is a diagram showing the configuration of a first embodiment of an illumination optical system for a projection exposure apparatus of the present invention. Reference numeral 1 in the figure denotes a light source unit, which includes an elliptical mirror 2, a mercury lamp 3 and a lens 4.
Further, reference numeral 51 in the figure denotes a light beam separating section, which is composed of transmissive diffractive optical elements 61 and 71.

【0023】回折光学素子61は例えば石英から成り、
図2(a)の平面図、(b)の側面図、(c)のA部詳
細図に示すように、その一方の面に境界をほぼ十字型に
して配された4つの領域には、等間隔の直線回折格子6
1aが形成され、各領域の格子パターンの方向は隣接す
る領域間で互いに直交するようになっている。直線回折
格子61aの断面形状は1次回折光に対しブレーズ化さ
れている。一方、回折光学素子71は例えば石英から成
り、図3に示すように、直線回折格子61aの4つの領
域に対応する4つの分離された領域には夫々、等間隔の
直線回折格子71aが形成されている。直線回折格子7
1aの断面形状は1次光に対しブレーズ化されている
が、そのブレーズ化の方向は、直線回折格子61aとは
逆になっている。回折光学格子61、71の直線回折格
子を形成されていない他方の面には夫々、光源光に対す
る図示しない反射防止膜がコーティングされている。
The diffractive optical element 61 is made of, for example, quartz,
As shown in the plan view of FIG. 2A, the side view of FIG. 2B, and the detailed view of part A of FIG. Equally spaced linear diffraction grating 6
1a is formed, and the directions of the lattice patterns of the respective areas are orthogonal to each other between the adjacent areas. The cross-sectional shape of the linear diffraction grating 61a is blazed with respect to the first-order diffracted light. On the other hand, the diffractive optical element 71 is made of, for example, quartz, and as shown in FIG. 3, the linear diffraction gratings 71a at equal intervals are formed in four separated regions corresponding to the four regions of the linear diffraction grating 61a. ing. Linear diffraction grating 7
The cross-sectional shape of 1a is blazed with respect to the primary light, but the direction of blazing is opposite to that of the linear diffraction grating 61a. The other surface of the diffractive optical gratings 61 and 71 on which the linear diffraction grating is not formed is coated with an antireflection film (not shown) for the light of the light source.

【0024】図中8はフライアイレンズであり、光束分
離部51で分離された光束に応じて光軸から偏心した4
箇所に配置される。フライアイレンズ8の直後には4つ
の円形開口を有する開口絞り9が配置されている。ま
た、図中10はコンデンサレンズ、11はレチクルであ
り、レチクル11およびウエハ13の間には、結像投影
系12が配置されている。なお、本発明の第1実施例を
用いて実際に照明光学系を構成する場合には、図示しな
い他の光学素子(波長選択フィルタ等)を必要とする
が、それらは従来技術に開示されているものと同様であ
るので説明を省略する。
In the figure, reference numeral 8 is a fly-eye lens, which is decentered from the optical axis according to the light beam separated by the light beam separating section 51.
It is placed in the place. Immediately after the fly-eye lens 8, an aperture stop 9 having four circular apertures is arranged. Further, in the figure, 10 is a condenser lens, 11 is a reticle, and an imaging projection system 12 is arranged between the reticle 11 and the wafer 13. When actually constructing the illumination optical system using the first embodiment of the present invention, other optical elements (not shown) (wavelength selection filter, etc.) are required, which are not disclosed in the prior art. The description is omitted because it is the same as that described above.

【0025】次に、上記第1実施例の照明光束の流れを
図4〜5を用いて説明する。光源部1により形成された
ほぼ平行な光束は回折光学素子61に入射される(この
とき、回折光学素子61の回折格子領域の形状を図4に
示すように方形にした場合には、回折格子領域の形状に
対応させた図示しない絞りを回折光学素子61よりも光
源部側に設置してもよい)。照明光束14は、回折光学
素子61、71の近傍の斜視図である図4に示すよう
に、回折光学素子61により4つの照明光束15に分離
(波面分割)される。このように波面分割されるのは、
回折光学素子61に直線回折格子61aが格子方向また
はブレーズ化方向が夫々異なるように形成されており、
光束が入射された領域毎に所望の角度に回折されるよう
になっているからである。
Next, the flow of the illumination luminous flux of the first embodiment will be described with reference to FIGS. The substantially parallel light flux formed by the light source unit 1 is incident on the diffractive optical element 61 (at this time, when the shape of the diffraction grating region of the diffractive optical element 61 is rectangular as shown in FIG. A stop (not shown) corresponding to the shape of the region may be installed closer to the light source section than the diffractive optical element 61). The illumination light beam 14 is separated (wavefront divided) into four illumination light beams 15 by the diffractive optical element 61, as shown in FIG. 4, which is a perspective view near the diffractive optical elements 61 and 71. The wavefront is divided in this way
A linear diffraction grating 61a is formed in the diffractive optical element 61 so that the grating direction or the blazed direction is different from each other.
This is because the light flux is diffracted at a desired angle for each of the incident areas.

【0026】照明光束15は、回折光学素子71により
夫々光軸にほぼ平行な方向に変換された後、フライアイ
レンズ8に入射される。このとき、直線回折格子61
a、71aの断面形状がブレーズ化されているためほぼ
100%の回折効率が得られるので、光源光の利用効率
が高まることになる。フライアイレンズ8の射出側端面
は2次光源の作用を有するので、その位置に4箇所の円
形開口を有する開口絞り9が配置してある。4箇所の開
口の形状は、分離された光束の形状に合わせて方形とす
ることができるが、円形としてもよい。円形とした場
合、光束の一部がしゃ断されることになるが、本発明の
技術を用いずに、単にこのような開口絞りを設けた場合
に比べると、光源光の利用効率は遥かに高くなる。開口
絞り9の4箇所の開口を通過した照明光束は夫々、コン
デンサレンズ10を介してレチクル11を4極照明する
ことになり、レチクル11の像は、結像光学系12によ
りウエハ13に結像される。
The illumination light beam 15 is converted into a direction substantially parallel to the optical axis by the diffractive optical element 71, and then enters the fly-eye lens 8. At this time, the linear diffraction grating 61
Since the sectional shapes of a and 71a are blazed, a diffraction efficiency of almost 100% can be obtained, so that the utilization efficiency of the light from the light source is improved. Since the exit-side end surface of the fly-eye lens 8 has a function of a secondary light source, four aperture stops 9 having circular openings are arranged at that position. The shape of the four openings can be square according to the shape of the separated light flux, but may be circular. In the case of a circular shape, a part of the light beam is cut off, but the utilization efficiency of the light source is much higher than that in the case of simply providing such an aperture stop without using the technique of the present invention. Become. The illumination light fluxes that have passed through the four apertures of the aperture stop 9 each illuminate the reticle 11 with four poles through the condenser lens 10, and the image of the reticle 11 is formed on the wafer 13 by the image forming optical system 12. To be done.

【0027】ところで、直線回折格子61a、71aの
格子ピッチpは、入射角をθ1 、出射角をθ2 、回折次
数をm、光の波長をλとすると、 p(sinθ1 −sinθ2 )=mλ の関係を満たすようにして決定される。ただし、直線回
折格子61aおよび71aが異なる次数を採用した場合
等においては、直線回折格子61aおよび71aの格子
ピッチを必ずしも同一にする必要はない。また、格子ピ
ッチは必ずしも等間隔にする必要はなく、回折光学素子
61および71の組合せにより4つに分離された平行光
束を取り出せればよいので、回折光学素子61、71に
適当なピッチ分布を付与するようにしてもよいが、実際
には等間隔にした方が製作が容易になる。
By the way, linear diffraction grating 61a, the grating pitch p of 71a, 1 the incident angle theta, 2 the emission angle theta, the diffraction order m, and the wavelength of light and λ, p (sinθ 1 -sinθ 2 ) = Mλ. However, when the linear diffraction gratings 61a and 71a have different orders, the grating pitches of the linear diffraction gratings 61a and 71a do not necessarily have to be the same. Further, the grating pitches do not necessarily have to be evenly spaced, and it is only necessary to take out the parallel light flux divided into four by the combination of the diffractive optical elements 61 and 71, so that the diffractive optical elements 61 and 71 have an appropriate pitch distribution. It may be added, but in practice, it is easier to manufacture if the intervals are equal.

【0028】また、回折光学素子61、71の製作方法
としては、従来より公知の方法、例えば斜めイオンビー
ム照射によりブレーズ化を行って4つの領域の夫々に対
応する部分素子として同一物を4つ製作し、それらを組
み合わせる方法を用いることができる。一方、当初から
1つの素子として製作する方法としては、図2(a)に
示す格子パターンを図5に示すように4つの格子パター
ン61bに分割し、斜めイオンビーム照射により4回に
分けて製作する方法や、あるいは特開平2−1109号
公報に開示されているように、図2(a)の格子パター
ンに対応するn(nは自然数)枚のマスクを用意し、n
回のエッチング工程を繰り返すことによりブレーズ形状
を2n 段の階段形状として近似して製作する方法も採用
することができる。この場合、ブレーズ形状を階段形状
で近似すると回折効率の低下が生じるか否かが問題にな
るが、例えばn=4のとき16段の階段形状になり、9
9%の回折効率が得られるので、実用上問題ない。
As a method of manufacturing the diffractive optical elements 61 and 71, a conventionally known method, for example, blazing by oblique ion beam irradiation and four identical partial elements corresponding to each of the four regions are performed. A method of manufacturing and combining them can be used. On the other hand, as a method for producing one element from the beginning, the lattice pattern shown in FIG. 2A is divided into four lattice patterns 61b as shown in FIG. Method, or as disclosed in Japanese Patent Laid-Open No. 2-1109, prepare n (n is a natural number) masks corresponding to the lattice pattern of FIG.
It is also possible to employ a method of approximating the blazed shape as a stepped shape of 2 n steps by repeating the etching process once. In this case, if the blazed shape is approximated by a staircase shape, whether or not the diffraction efficiency is deteriorated becomes a problem. For example, when n = 4, a 16-step staircase shape is obtained.
Since a diffraction efficiency of 9% is obtained, there is no practical problem.

【0029】以上説明したように、この第1実施例で
は、光束分離光学系にブレーズ化した回折光学素子を用
いているので、光源で発生された照明光を効率良く利用
することができ、それによりスループットの向上等の効
果がもたらされることになる。
As described above, in this first embodiment, since the blazed diffractive optical element is used in the light beam splitting optical system, the illumination light generated by the light source can be efficiently used. This brings about an effect such as an improvement in throughput.

【0030】なお、上記においては、回折光学素子6
1、71上の直線回折格子61a、71aの配置例とし
て図2(a)〜(c)、図3を示したが、本発明はこれ
らに限定されるものではなく、種々の変形または変更を
加えることができる。例えば、図6(a)に示すよう
に、回折光学素子61上のほぼ正方形に4分割した直線
回折格子61cの格子方向が境界に対しほぼ垂直または
ほぼ平行になるように配置し、それと対応して図6
(b)に示すように回折光学素子71上に直線回折格子
71cを配置したり、あるいは、図7(a)に示すよう
に回折光学素子61上のほぼ二等辺三角形に4分割した
直線回折格子61dの格子方向が境界に対しほぼ45°
をなすように配置し、それと対応して図7(b)に示す
ように回折光学素子71上に直線回折格子71dを配置
してもよい。あるいは、図8に示すように、上記回折光
学素子61、71を一体化して対向する2つの面に夫々
回折面を設け、各回折面に図4の直線回折格子61a、
71aを形成するようにしても、第1実施例と同様の効
果が得られる。また、直線回折格子61a、71aの回
折次数を1次としたが、他の次数にしてもよい。さら
に、上記においては光源として水銀ランプ3を用いてい
るが、それ以外のもの、例えばエキシマレーザを用いる
ことができる。さらにまた、回折光学格子61、71の
材料として石英の代わりにそれ以外の透過率のよい光学
材料を使用し得るのは勿論である。
In the above, the diffractive optical element 6 is used.
2 (a) to (c) and FIG. 3 are shown as examples of arrangement of the linear diffraction gratings 61a and 71a on the Nos. 1 and 71, but the present invention is not limited to these and various modifications or changes may be made. Can be added. For example, as shown in FIG. 6A, the linear diffraction grating 61c, which is divided into four substantially squares on the diffractive optical element 61, is arranged so that the grating direction is substantially perpendicular or substantially parallel to the boundary. Figure 6
A linear diffraction grating 71c is arranged on the diffractive optical element 71 as shown in FIG. 7B, or a linear diffraction grating divided into four approximately isosceles triangles on the diffractive optical element 61 as shown in FIG. 7A. The grid direction of 61d is approximately 45 ° to the boundary
Alternatively, a linear diffraction grating 71d may be arranged on the diffractive optical element 71 as shown in FIG. 7B. Alternatively, as shown in FIG. 8, the diffractive optical elements 61 and 71 are integrally provided with two diffractive surfaces facing each other, and each diffractive surface has a linear diffraction grating 61a shown in FIG.
Even if 71a is formed, the same effect as the first embodiment can be obtained. Further, although the diffraction order of the linear diffraction gratings 61a and 71a is set to the first order, other orders may be used. Furthermore, although the mercury lamp 3 is used as the light source in the above, other light sources such as an excimer laser can be used. Furthermore, it is needless to say that instead of quartz as the material of the diffractive optical gratings 61 and 71, other optical materials having a high transmittance can be used.

【0031】図9は本発明の投影露光装置用照明光学系
の第2実施例の構成を示す図であり、第1実施例と同一
の部分には同一符号を付けて説明を省略する。図中52
は光束分離部であり、回折光学素子62および72から
成る。なお、上記第1実施例では光源部1側に面積の小
さい回折光学素子61を配置し、フライアイレンズ8側
に面積の大きい回折光学素子71を配置したが、この第
2実施例では面積の大きい回折光学素子72を光源部1
側に配置し、回折光学素子72、62間にレンズ4が配
置されるように変更している。
FIG. 9 is a view showing the arrangement of the second embodiment of the illumination optical system for a projection exposure apparatus of the present invention. The same parts as those in the first embodiment are designated by the same reference numerals and their description is omitted. 52 in the figure
Is a light beam separating section, and is composed of diffractive optical elements 62 and 72. In the first embodiment, the diffractive optical element 61 having a small area is arranged on the light source 1 side and the diffractive optical element 71 having a large area is arranged on the fly eye lens 8 side. The large diffractive optical element 72 is attached to the light source unit 1.
It is arranged so that the lens 4 is arranged between the diffractive optical elements 72 and 62.

【0032】回折光学素子62は、図10(a)の平面
図、(b)の側面図、(c)のB部詳細図に示すよう
に、その一方の面に境界をほぼ十字型にして配された4
つの領域には、反射型の直線回折格子62aが形成さ
れ、各領域の格子パターンの方向は隣接する領域間で互
いに直交するようになっている。直線回折格子62aの
断面形状は特定の反射回折次数、例えば+1次に対しブ
レーズ化されている。一方、回折光学素子72は、図1
1に示すように、その一方の面の、直線回折格子62a
の4つの領域に対応する4つの分離された領域には夫
々、反射型の直線回折格子72aが形成され、直線回折
格子72aの断面形状は特定の反射回折次数、例えば−
1次に対しブレーズ化されている。さらに、回折光学素
子72の中央付近の領域72bは、回折光学素子72の
位置における照明光束の通過範囲よりも広めにくり抜か
れている。
As shown in the plan view of FIG. 10A, the side view of FIG. 10B, and the detailed view of the portion B in FIG. 10C, the diffractive optical element 62 has a boundary having a substantially cross shape on one surface thereof. Arranged 4
A reflection type linear diffraction grating 62a is formed in one area, and the directions of the grating patterns in the areas are orthogonal to each other. The cross-sectional shape of the linear diffraction grating 62a is blazed for a specific reflection diffraction order, for example, + 1st order. On the other hand, the diffractive optical element 72 is shown in FIG.
As shown in FIG. 1, the linear diffraction grating 62a on one surface thereof is
Reflective linear diffraction grating 72a is formed in each of the four separated regions corresponding to the four regions, and the sectional shape of the linear diffraction grating 72a has a specific reflection diffraction order, for example, −
Blazed for the first order. Further, a region 72b near the center of the diffractive optical element 72 is hollowed out to be wider than the passing range of the illumination light beam at the position of the diffractive optical element 72.

【0033】次に、上記第2実施例の照明光束の流れを
図12を用いて説明する。光源部1により形成されたほ
ぼ平行な照明光束14は、回折光学素子72、62の近
傍の斜視図である図12に示すように、回折光学素子6
2に入射される。この間、水銀ランプ3を発した光束
は、回折光学素子72の領域72bを貫通する。その
後、照明光束14は、回折光学素子62の直線回折格子
62aにより、入射された領域毎に夫々異なる方向に反
射回折され、4つの光束15に分離される。その後、光
束15は、回折光学素子72の直線回折格子72aによ
り夫々光軸に対しほぼ平行な方向に変換され、4つの分
離した光束が形成される。これら4つに分離された光束
は、フライアイレンズ8に入射される。なお、図面の説
明の都合上、光束14、15の一部を省略してある。
Next, the flow of the illumination luminous flux of the second embodiment will be described with reference to FIG. The substantially parallel illumination light flux 14 formed by the light source unit 1 is reflected by the diffractive optical element 6 as shown in FIG. 12 which is a perspective view of the vicinity of the diffractive optical elements 72 and 62.
It is incident on 2. During this time, the light flux emitted from the mercury lamp 3 penetrates the region 72b of the diffractive optical element 72. After that, the illumination light beam 14 is reflected and diffracted by the linear diffraction grating 62 a of the diffractive optical element 62 in different directions for each incident region, and is separated into four light beams 15. After that, the light beam 15 is converted into a direction substantially parallel to the optical axis by the linear diffraction grating 72a of the diffractive optical element 72, and four separated light beams are formed. The light flux divided into these four rays enters the fly-eye lens 8. For convenience of explanation of the drawings, some of the light fluxes 14 and 15 are omitted.

【0034】上記直線回折格子62aは、例えば第1実
施例で説明した方法を用いて石英基板上に形成し、反射
率を向上させるため、金属、例えばアルミニウムを蒸着
しておくものとする。あるいは、ほぼ平行な平面板上に
金属を蒸着し、その金属を直接ルーリングエンジンで加
工することにより直線回折格子を形成するようにしても
よい。また、回折光学素子62、72の材料として金属
を用いることもでき、その場合、ルーリングエンジンに
より直線回折格子を形成するだけでよい。
The linear diffraction grating 62a is formed on a quartz substrate by using, for example, the method described in the first embodiment, and metal such as aluminum is vapor-deposited in order to improve the reflectance. Alternatively, a linear diffraction grating may be formed by vapor-depositing metal on substantially parallel flat plates and directly processing the metal with a ruling engine. Further, metal can be used as the material of the diffractive optical elements 62 and 72, and in that case, it is only necessary to form the linear diffraction grating by the ruling engine.

【0035】この第2実施例では、光束分離光学系に2
枚の反射型回折格子を用いて光路を折り返すようにして
いるので、投影露光装置の光軸方向の長さを短縮するこ
とができる。
In the second embodiment, the light beam splitting optical system has two components.
Since the optical path is folded back by using one reflection type diffraction grating, the length of the projection exposure apparatus in the optical axis direction can be shortened.

【0036】なお、この第2実施例において、レンズ4
を設ける代わりに図13に示すように回折光学素子72
の中央部にレンズ4と同等の機能を有する透過型の回折
格子4aを設けて、レンズ4の機能を回折光学素子72
に付与してレンズ4を回折光学素子72と一体化するこ
とができる。その場合、照明光学系を図14に示すよう
に構成することにより、部品点数の削減が可能になると
ともにアライメントが容易になる。なお、この図14の
構成の場合、透過型の回折格子4aを形成するため、回
折光学素子72の材料としては、石英等の光学材料が望
ましい。さらに、上記第1実施例と同様に、光源として
エキシマレーザ等の水銀ランプ3以外の光源を用いた
り、あるいは、開口絞りを配置すべき位置(フライアイ
レンズ8の直後)に4つの円形開口を有する開口絞り9
を配置したりすることができる。
In the second embodiment, the lens 4
Instead of providing the diffractive optical element 72 as shown in FIG.
A transmission type diffraction grating 4a having the same function as that of the lens 4 is provided in the central portion of the
And the lens 4 can be integrated with the diffractive optical element 72. In that case, by configuring the illumination optical system as shown in FIG. 14, the number of parts can be reduced and the alignment can be facilitated. In the case of the configuration of FIG. 14, since the transmission type diffraction grating 4a is formed, the material of the diffractive optical element 72 is preferably an optical material such as quartz. Further, as in the first embodiment, a light source other than the mercury lamp 3 such as an excimer laser is used as the light source, or four circular apertures are provided at the position where the aperture stop is to be arranged (immediately after the fly-eye lens 8). Aperture stop 9
Can be placed.

【0037】図15は本発明の投影露光装置用照明光学
系の第3実施例の構成を示す図であり、第1実施例と同
一の部分には同一符号を付けて説明を省略する。図中5
3は光束分離部であり、回折光学素子63、73および
光束偏向部材16から成る。回折光学素子63は例えば
石英から成り、図16(a)の平面図、(b)の側面図
に示すように、その一方の面には等間隔の直線回折格子
63aが形成され、その断面形状はデューティ比1:1
の矩形形状になっており、その深さt1 は+1次回折光
および−1次回折光の回折効率の合計値が最大になるよ
うに最適化されている。このとき、深さt1 は、t1
λ/{2(n1 −1)}となり、+1次回折光および−
1次回折光の回折効率の合計値は約81%になる。ただ
し、λは光源の波長、n1 は回折光学素子63の基板の
屈折率である。
FIG. 15 is a diagram showing the structure of a third embodiment of the illumination optical system for a projection exposure apparatus of the present invention. The same parts as those in the first embodiment are designated by the same reference numerals and the description thereof will be omitted. 5 in the figure
Reference numeral 3 denotes a light beam separating section, which includes diffractive optical elements 63 and 73 and a light beam deflecting member 16. The diffractive optical element 63 is made of, for example, quartz, and as shown in the plan view of FIG. 16A and the side view of FIG. Is a duty ratio of 1: 1
And has a depth t 1 optimized so that the total value of the diffraction efficiencies of the + 1st order diffracted light and the −1st order diffracted light is maximized. At this time, the depth t 1 is t 1 =
λ / {2 (n 1 −1)}, and the + 1st order diffracted light and −
The total value of the diffraction efficiency of the first-order diffracted light is about 81%. Where λ is the wavelength of the light source and n 1 is the refractive index of the substrate of the diffractive optical element 63.

【0038】一方、回折光学素子73は例えば石英から
成り、図17(a)の平面図、(b)の側面図に示すよ
うに、その一方の面には、直線回折格子63aにより分
離された光束に対応する2つの分離された領域に直線回
折格子73a、73bが形成され、直線回折格子73
a、73bの格子パターンは光軸方向から見たとき直線
回折格子63aの格子方向と直交する方向に形成されて
いる。このとき、直線回折格子73a、73bの各溝の
断面形状は、直線回折格子63aと同様にデューティ比
1:1の矩形形状になっており、その深さt2 は+1次
回折光および−1次回折光の回折効率が互いに等しくな
るとともに最大になるように最適化されている。直線回
折格子63a、73a、73bは、光源として水銀ラン
プ3を用いる場合、光源部1から発せられる光束の断面
形状が円形になることから、1辺の長さが光束の直径よ
りも大きい正方形領域に形成すればよい。なお、正方形
領域の代わりに円形領域としてもよいことは勿論である
が、正方形領域とした方が一般に製作が容易である。
On the other hand, the diffractive optical element 73 is made of, for example, quartz, and as shown in the plan view of FIG. 17A and the side view of FIG. 17B, one surface thereof is separated by a linear diffraction grating 63a. The linear diffraction gratings 73a and 73b are formed in the two separated regions corresponding to the light flux, and the linear diffraction grating 73
The grating patterns a and 73b are formed in a direction orthogonal to the grating direction of the linear diffraction grating 63a when viewed from the optical axis direction. At this time, the cross-sectional shape of each groove of the linear diffraction gratings 73a and 73b is a rectangular shape with a duty ratio of 1: 1 like the linear diffraction grating 63a, and the depth t 2 thereof is + 1st-order diffracted light and -1st-order diffracted light. The diffraction efficiencies of the folded light are optimized so as to be equal to each other and maximized. When the mercury lamp 3 is used as the light source, the linear diffraction gratings 63a, 73a, and 73b have a square area whose one side is longer than the diameter of the light flux because the cross-sectional shape of the light flux emitted from the light source unit 1 is circular. It may be formed in. It is needless to say that a circular region may be used instead of the square region, but a square region is generally easier to manufacture.

【0039】光束偏向部材16は例えば石英から成り、
図18に示すように、その一方の面には、回折光学素子
73の直線回折格子73a、73bの夫々からの+1次
光、−1次光に対応する、互いに分離された4つの領域
に等間隔の直線回折格子16aが形成されており、直線
回折格子16aの断面形状は、特定の回折次数光、例え
ば1次光に対しブレーズ化されている。
The light beam deflecting member 16 is made of, for example, quartz,
As shown in FIG. 18, one surface thereof is divided into four regions corresponding to the + 1st-order light and the -1st-order light from the linear diffraction gratings 73a and 73b of the diffractive optical element 73, which are separated from each other. The linear diffraction gratings 16a are formed at intervals, and the cross-sectional shape of the linear diffraction grating 16a is blazed for a specific diffraction order light, for example, first-order light.

【0040】次に、上記第3実施例の照明光束の流れを
図19を用いて説明する。回折光学素子63に入射され
た光束は、回折光学素子63、73の近傍の斜視図であ
る図19に示すように、直線回折格子63aにより+1
次光14a、−1次光14bおよびその他の次数の回折
光に回折される。このとき、上述したように+1次光、
−1次光に対し直線回折格子63aの深さt1 が最適化
されているので、入射光束の内、約40.5%が+1次
光14aに、約40.5%が−1次光14bに、残り
(約19%)がそれ以外の次数光に分離される。+1次
光14a、−1次光14bは夫々、回折光学素子73の
直線回折格子73a、73bに入射される。
Next, the flow of the illumination luminous flux of the third embodiment will be described with reference to FIG. The light beam incident on the diffractive optical element 63 is +1 by the linear diffraction grating 63a as shown in FIG. 19 which is a perspective view in the vicinity of the diffractive optical elements 63 and 73.
The light is diffracted into the second-order light 14a, the −1st-order light 14b, and other orders of diffracted light. At this time, as described above, the + 1st order light,
Since the depth t 1 of the linear diffraction grating 63a is optimized for the −1st order light, about 40.5% of the incident light flux is + 1st order light and about 40.5% is −1st order light. In 14b, the rest (about 19%) is split into other order lights. The + 1st order light 14a and the −1st order light 14b are incident on the linear diffraction gratings 73a and 73b of the diffractive optical element 73, respectively.

【0041】直線回折格子73aに入射された光束は、
+1次光15a、−1次光15bおよびその他の次数の
回折光に回折され、同様に、直線回折格子73bに入射
された光束は、+1次光15c、−1次光15dおよび
その他の次数の回折光に回折される。これら4つの光束
15a、15b、15c、15dは光束偏向部材16に
入射され、直線回折格子16aにより夫々光軸に対しほ
ぼ平行な光束に変換された後、フライアイレンズ8に入
射される。
The light beam incident on the linear diffraction grating 73a is
The light flux diffracted into the + 1st order light 15a, the −1st order light 15b and other orders of diffracted light and similarly incident on the linear diffraction grating 73b has a + 1st order light 15c, a −1st order light 15d and other orders. Diffracted into diffracted light. These four light beams 15a, 15b, 15c, 15d are incident on the light beam deflecting member 16, are converted into light beams substantially parallel to the optical axis by the linear diffraction grating 16a, and are then incident on the fly-eye lens 8.

【0042】この第3実施例においては、光束分離光学
系に断面がデューティ比1:1の矩形形状を有する回折
光学素子を用いているためブレーズ化する必要がなく、
容易に製作し得るという利点を有している。よって、回
折光学素子63、73の製作方法としては、従来より公
知の方法、例えばフォトリソグラフィ技術およびドライ
エッチング技術により矩形形状を製作する方法を用いる
ことができる。また、回折光学素子63、73により回
折される+1次光、−1次光以外の光束により損失が生
じるが、各回折格子による光の損失は約19%であるこ
とから、総合的に見ても回折光学素子63に入射された
光束に対し約65%の利用効率が得られる。この利用効
率は、本発明の技術を用いずに、単に開口絞りに4つの
開口を有する絞りを設けた場合に比べ、遥かに高いもの
となる。また、回折光学素子63により光束の径が変わ
ることはないので、最終的に同一の径の4本の光束を形
成するのであれば、照明光束が4つに波面分割される第
1実施例に比べ、光束14の径を半分にすることがで
き、レンズ4を光源に接近させることができる。これに
より、照明光学系の全長が短縮されることになる。
In the third embodiment, since a diffractive optical element having a rectangular cross section with a duty ratio of 1: 1 is used in the light beam splitting optical system, there is no need for blazing.
It has an advantage that it can be easily manufactured. Therefore, as a method of manufacturing the diffractive optical elements 63 and 73, a conventionally known method, for example, a method of manufacturing a rectangular shape by a photolithography technique and a dry etching technique can be used. Further, although a loss occurs due to a light beam other than the + 1st order light and the −1st order light diffracted by the diffractive optical elements 63 and 73, the light loss due to each diffraction grating is about 19%. Also, a utilization efficiency of about 65% can be obtained for the light beam incident on the diffractive optical element 63. This utilization efficiency is much higher than in the case where the aperture stop is simply provided with a diaphragm having four apertures without using the technique of the present invention. Further, since the diameter of the light flux does not change due to the diffractive optical element 63, if four light fluxes of the same diameter are finally formed, the illumination light flux is divided into four wavefronts in the first embodiment. In comparison, the diameter of the light flux 14 can be halved, and the lens 4 can be brought closer to the light source. As a result, the total length of the illumination optical system is shortened.

【0043】なお、この第3実施例では、光束偏向部材
としてブレーズ化した回折光学素子を用いたが、代わり
に4つの三角プリズム、ミラー等の他の部材を用いて同
様の効果を得ることができる。しかし、図18に示すよ
うな回折光学素子を用いた方が光束偏向部材の一体的な
製作が可能になるので、アライメントが容易でかつ安価
になる。また、+1次回折光、−1次回折光の回折効率
を等しくする回折格子の溝断面形状は上述したデューテ
ィ比1:1の矩形形状に限定されず、左右対称な台形形
状または正弦波形状とすることもできる。ただし、+1
次回折光、−1次回折光の回折効率の合計値が最大にな
るのは、本実施例の矩形形状の場合である。
Although the blazed diffractive optical element is used as the light beam deflecting member in the third embodiment, the same effect can be obtained by using other members such as four triangular prisms and mirrors. it can. However, the use of the diffractive optical element as shown in FIG. 18 makes it possible to integrally manufacture the light beam deflecting member, so that the alignment is easy and the cost is low. Further, the groove cross-sectional shape of the diffraction grating that equalizes the diffraction efficiency of the + 1st-order diffracted light and the -1st-order diffracted light is not limited to the rectangular shape with the duty ratio of 1: 1 described above, and should be a symmetrical trapezoidal shape or a sine wave shape. You can also However, +1
The maximum value of the diffraction efficiencies of the first-order diffracted light and the −1st-order diffracted light is maximum in the case of the rectangular shape of the present embodiment.

【0044】さらに、回折光学素子63、73を図20
に示すように1つの回折光学素子としてまとめることも
可能である。その場合、一方の面には直線回折格子63
aを形成し、他方の面には直線回折格子63aと直交す
る方向に直線回折格子73cを形成し、直線回折格子6
3a、73cの断面形状をデューティ比1:1の矩形形
状とし、その深さを+1次回折光および−1次回折光の
回折効率の合計値が最大になるように最適化しておく。
このとき、1枚の回折光学素子で光束分離が行えるので
構成が簡略化され、アライメントも容易になるという利
点がある。
Further, the diffractive optical elements 63 and 73 are shown in FIG.
It is also possible to combine them into one diffractive optical element as shown in FIG. In that case, the linear diffraction grating 63 is provided on one surface.
a is formed, and a linear diffraction grating 73c is formed on the other surface in a direction orthogonal to the linear diffraction grating 63a.
The cross-sectional shape of 3a and 73c is a rectangular shape with a duty ratio of 1: 1 and the depth thereof is optimized so that the total value of the diffraction efficiency of the + 1st order diffracted light and the −1st order diffracted light is maximized.
At this time, since the light beam can be separated by one diffractive optical element, there is an advantage that the configuration is simplified and the alignment is facilitated.

【0045】図21は本発明の投影露光装置用照明光学
系の第4実施例の構成を示す図であり、第1実施例と同
一の部分には同一符号を付けて説明を省略する。図中5
4は光束分離部であり、透過型の回折光学素子64およ
び74から成る。回折光学素子64は例えば石英から成
り、図22(a)の平面図、(b)の側面図に示すよう
に、その一方の面には等間隔等ピッチで同心のリングパ
ターン回折格子64aが形成されている。回折格子64
aの断面形状は、1次光に対しブレーズ化されている。
一方、回折光学素子74は例えば石英から成り、図23
(a)の平面図、(b)の側面図に示すように、その回
折面には、回折格子64aからの光束に対応する輪帯状
の領域に等間隔等ピッチで同心のリングパターン回折格
子74aが形成されている。回折格子74aの断面形状
は、1次光に対しブレーズ化されている。ただし、ブレ
ーズ化の方向は回折格子64aとは逆になっている。フ
ライアイレンズ8は、光束分離部54により形成された
光束に対応するように輪帯状に配置されている。また、
開口絞り9には、図24に示すようにフライアイレンズ
8に対応した輪帯状の開口が形成されている。
FIG. 21 is a diagram showing the structure of a fourth embodiment of the illumination optical system for a projection exposure apparatus of the present invention. The same parts as those in the first embodiment are designated by the same reference numerals and the description thereof will be omitted. 5 in the figure
Reference numeral 4 denotes a light beam separation unit, which includes transmissive diffractive optical elements 64 and 74. The diffractive optical element 64 is made of, for example, quartz, and as shown in the plan view of FIG. 22A and the side view of FIG. 22B, concentric ring pattern diffraction gratings 64a are formed on one surface thereof at equal intervals and at equal pitches. Has been done. Diffraction grating 64
The cross-sectional shape of a is blazed with respect to the primary light.
On the other hand, the diffractive optical element 74 is made of, for example, quartz, and
As shown in the plan view of (a) and the side view of (b), the diffraction pattern has concentric ring pattern diffraction gratings 74a at equal intervals in annular zones corresponding to the light flux from the diffraction grating 64a. Are formed. The cross-sectional shape of the diffraction grating 74a is blazed with respect to the primary light. However, the blazing direction is opposite to that of the diffraction grating 64a. The fly-eye lens 8 is arranged in an annular shape so as to correspond to the luminous flux formed by the luminous flux separating section 54. Also,
As shown in FIG. 24, the aperture stop 9 has a ring-shaped aperture corresponding to the fly-eye lens 8.

【0046】上記回折光学素子64、74のようなブレ
ーズ化されたほぼ同心のリングパターン回折格子を製作
する方法としては、従来より公知の方法、例えば特開平
2−1109号公報や特公昭63−21171号公報に
開示されている方法を用いることができる。
As a method for producing a blazed substantially concentric ring pattern diffraction grating such as the diffractive optical elements 64 and 74, a conventionally known method, for example, Japanese Laid-Open Patent Publication No. 2-1109 or JP-B-63-63. The method disclosed in 21171 can be used.

【0047】次に、上記第4実施例の照明光束の流れを
図25を用いて説明する。光源部1からほぼ平行な照明
光束14が出射され、回折光学素子64に入射される。
回折光学素子64に入射された照明光束14は、回折光
学素子64、74の近傍の斜視図である図25に示すよ
うに、回折光学素子64の回折格子64aにより輪帯照
明光束15に変換され、輪帯照明光束15は、回折光学
素子74により光軸に対しほぼ平行な方向に変換された
後、フィライアイレンズ8に入射される。このとき、フ
ライアイレンズ8の射出側の端面が2次光源の作用をな
すので、その直後に配置された開口絞り9の輪帯状の開
口を通過した光束は、コンデンサレンズ10を介してレ
チクル11を輪帯照明することになる。
Next, the flow of the illumination luminous flux of the fourth embodiment will be described with reference to FIG. A substantially parallel illumination light flux 14 is emitted from the light source unit 1 and is incident on the diffractive optical element 64.
The illumination light beam 14 incident on the diffractive optical element 64 is converted into an annular illumination light beam 15 by the diffraction grating 64a of the diffractive optical element 64, as shown in FIG. 25 which is a perspective view of the vicinity of the diffractive optical elements 64 and 74. The annular illumination light beam 15 is converted into a direction substantially parallel to the optical axis by the diffractive optical element 74, and then is incident on the Philaye lens 8. At this time, since the end surface of the fly-eye lens 8 on the exit side functions as a secondary light source, the light flux that has passed through the ring-shaped aperture of the aperture stop 9 arranged immediately after that passes through the condenser lens 10 and the reticle 11. To illuminate the zone.

【0048】この第4実施例においては、光束分離光学
系にブレーズ化した回折光学素子を用いているので、光
源で発生された照明光を効率良く利用することができ、
それによりスループットの向上がもたらされる。また、
光束分離部の回折光学素子の製作が容易であり、回折光
学素子として2枚の平板を配置するだけでよいので、従
来例に比べて構成が簡略化され、アライメントが容易に
なる。
In the fourth embodiment, since the blazed diffractive optical element is used in the light beam splitting optical system, the illumination light generated by the light source can be used efficiently.
This results in improved throughput. Also,
Since the diffractive optical element of the light beam splitting portion can be easily manufactured and only two flat plates need to be arranged as the diffractive optical element, the configuration is simplified and the alignment is facilitated as compared with the conventional example.

【0049】図26は本発明の投影露光装置用照明光学
系の第5実施例の構成を示す図であり、第1実施例と同
一の部分には同一符号を付けて説明を省略する。図中5
5は光束分離部であり、透過型の回折光学素子65およ
び75から成る。回折光学素子65は、図27(a)の
平面図、(b)の側面図に示すように、その一方の面に
は等間隔等ピッチで同心のリングパターン回折格子65
aが形成されている。回折格子64aの断面形状はデュ
ーティ比1:1の矩形形状になっており、その深さt3
は+1次光および−1次光の回折効率が等しくかつ最大
になるように最適化されている。このとき、t3 =λ/
{2(n−1)}となることは第3実施例と同様であ
る。一方、回折光学素子75の表面には、図28(a)
の平面図、(b)の側面図に示すように、回折格子65
aからの光束に対応する輪帯状の領域に等間隔等ピッチ
で同心のリングパターン回折格子75aが形成されてい
る。回折格子75aの断面形状は、特定の回折次数光、
例えば1次光に対しブレーズ化されている。
FIG. 26 is a view showing the arrangement of the fifth embodiment of the illumination optical system for a projection exposure apparatus of the present invention. The same parts as those in the first embodiment are designated by the same reference numerals and their description is omitted. 5 in the figure
Reference numeral 5 denotes a light beam separation unit, which includes transmissive diffractive optical elements 65 and 75. As shown in the plan view of FIG. 27A and the side view of FIG. 27B, the diffractive optical element 65 has, on one surface thereof, a concentric ring pattern diffraction grating 65 at equal intervals and pitches.
a is formed. The cross-sectional shape of the diffraction grating 64a is a rectangular shape with a duty ratio of 1: 1 and its depth t 3
Are optimized so that the diffraction efficiencies of the + 1st-order light and the -1st-order light are equal and maximized. At this time, t 3 = λ /
The fact that {2 (n-1)} is obtained is the same as in the third embodiment. On the other hand, on the surface of the diffractive optical element 75, FIG.
Of the diffraction grating 65 as shown in the plan view of FIG.
Concentric ring pattern diffraction gratings 75a are formed at equal intervals and pitches in a ring-shaped region corresponding to the light flux from a. The cross-sectional shape of the diffraction grating 75a has a specific diffraction order light,
For example, it is blazed for the primary light.

【0050】次に、上記第5実施例の照明光束の流れを
図29を用いて説明する。まず、説明の簡明化のため、
光軸を含む平面内について考察する、光源部1からの光
束14は、回折光学素子65に入射される。このとき、
回折光学素子65の回折格子65aは、同心円状のパタ
ーンになっているが、角度方向に微小な領域では直線回
折格子とほぼ等価であると言える。よって、回折光学素
子65に入射された光束は、回折格子65aにより+1
次光、−1次光およびその他の次数光に回折される。上
述したように、+1次光および−1次光に対し回折格子
65aの深さt3 が最適化されているので、入射光束の
内、約40.5%が+1次光に、約40.5%が−1次
光に、残り(約19%)がそれ以外の次数光に分離され
る。+1次光および−1次光は、回折光学素子75の回
折格子75aに入射され、光軸に対しほぼ平行な方向に
変換される。
Next, the flow of the illumination luminous flux of the fifth embodiment will be described with reference to FIG. First, for simplicity of explanation,
The light flux 14 from the light source unit 1, which is considered in the plane including the optical axis, is incident on the diffractive optical element 65. At this time,
Although the diffraction grating 65a of the diffractive optical element 65 has a concentric pattern, it can be said that it is almost equivalent to a linear diffraction grating in a region minute in the angular direction. Therefore, the light beam incident on the diffractive optical element 65 is +1 by the diffraction grating 65a.
The light is diffracted into second-order light, −1st-order light and other order lights. As described above, since the depth t 3 of the diffraction grating 65a is optimized for the + 1st order light and the −1st order light, about 40.5% of the incident luminous flux is about the + 1st order light and about 40. 5% is separated into -1st-order light, and the rest (about 19%) is separated into other-order light. The + 1st-order light and the -1st-order light are incident on the diffraction grating 75a of the diffractive optical element 75 and are converted into a direction substantially parallel to the optical axis.

【0051】次に、全体について考察する。上述したよ
うな角度方向に微小な領域について考察すると、回折光
学素子65、75の近傍の斜視図である図29に示すよ
うに、回折格子65aに入射された光束は+1次光およ
び−1次光に分離されることになる。よって、この考え
を全周に展開すると、回折光学素子65に入射された光
束14は回折格子65aにより輪帯状の光束15に変換
されることが分かる。変換された光束15は回折光学素
子75に入射され、回折格子75aにより輪帯状のまま
進行方向を変換される。なお、その後の光束の流れは第
4実施例と同様であるので説明を省略する。
Next, the whole will be considered. Considering the minute area in the angle direction as described above, as shown in FIG. 29, which is a perspective view of the vicinity of the diffractive optical elements 65 and 75, the light flux incident on the diffraction grating 65a is + 1st order light and −1st order light. It will be separated into light. Therefore, if this idea is applied to the entire circumference, it will be understood that the light beam 14 incident on the diffractive optical element 65 is converted into the annular light beam 15 by the diffraction grating 65a. The converted light flux 15 is incident on the diffractive optical element 75, and its traveling direction is converted by the diffraction grating 75a in the form of a ring. The subsequent flow of the luminous flux is the same as that in the fourth embodiment, and the description thereof will be omitted.

【0052】この第5実施例は、光束分離光学系にデュ
ーティ比1:1の矩形形状を有する回折光学素子を用い
ているので、製作が容易であるという利点を有してい
る。また、最終的に同一輪帯幅の光束を形成するのであ
れば、光束の径は上記第4実施例の約半分でよいので、
レンズ4を光源に接近させることができ、照明光学系の
全長の短縮が可能になる。
The fifth embodiment uses the diffractive optical element having a rectangular shape with a duty ratio of 1: 1 in the light beam splitting optical system, and therefore has the advantage of being easy to manufacture. Further, if the light flux having the same annular zone width is finally formed, the diameter of the light flux may be about half of that in the fourth embodiment.
The lens 4 can be brought close to the light source, and the total length of the illumination optical system can be shortened.

【0053】図30は本発明の投影露光装置用照明光学
系の第6実施例の構成を示す図であり、第1実施例と同
一の部分には同一符号を付けて説明を省略する。図中5
6は光束分離部であり、透過型の回折光学素子66およ
び76から成る。なお、上記第4、第5実施例では光源
部1側に面積の小さい回折光学素子を配置し、フライア
イレンズ8側に面積の大きい回折光学素子を配置した
が、この第6実施例では面積の大きい回折光学素子76
を光源部1側に配置し、回折光学素子76、66間にレ
ンズ4が配置されるように変更している。
FIG. 30 is a diagram showing the structure of the sixth embodiment of the illumination optical system for a projection exposure apparatus of the present invention. The same parts as those in the first embodiment are designated by the same reference numerals and the description thereof will be omitted. 5 in the figure
Reference numeral 6 denotes a light beam separation unit, which includes transmissive diffractive optical elements 66 and 76. In the fourth and fifth embodiments, the diffractive optical element having a small area is arranged on the light source section 1 side and the diffractive optical element having a large area is arranged on the fly eye lens 8 side. Diffractive optical element 76 with large
Is arranged on the light source section 1 side, and the lens 4 is arranged between the diffractive optical elements 76 and 66.

【0054】回折光学素子66は、図31(a)の平面
図、(b)の側面図に示すように、その一方の面に等間
隔等ピッチで同心のリングパターン回折格子66aが形
成され、その断面形状は、特定の反射回折次数光、例え
ば+1次光に対しブレーズ化されている。一方、回折光
学素子76は例えば石英から成り、図32(a)の平面
図、(b)の側面図に示すように、その一方の表面の輪
帯状の領域には回折格子76aが同心状に形成されてい
る。回折格子76aの断面形状は特定の反射回折次数
光、例えば−1次光に対しブレーズ化されている。さら
に、回折光学素子76の中央付近の領域76bは、回折
光学素子76の位置における照明光束の通過範囲よりも
広めにくり抜かれている。
As shown in the plan view of FIG. 31A and the side view of FIG. 31B, the diffractive optical element 66 has concentric ring pattern diffraction gratings 66a formed on one surface thereof at equal intervals and pitches. The cross-sectional shape is blazed for a specific reflected diffraction order light, for example, + 1st order light. On the other hand, the diffractive optical element 76 is made of, for example, quartz, and as shown in the plan view of FIG. 32 (a) and the side view of FIG. 32 (b), the diffraction grating 76a is concentrically formed in the ring-shaped region on one surface thereof. Has been formed. The cross-sectional shape of the diffraction grating 76a is blazed for a specific reflected diffraction order light, for example, -1st order light. Further, the area 76b near the center of the diffractive optical element 76 is hollowed out to be wider than the passing range of the illumination light beam at the position of the diffractive optical element 76.

【0055】次に、上記第6実施例の照明光束の流れを
図33を用いて説明する。光源部1によりほぼ平行な照
明光束14が形成され、回折光学素子66に入射され
る。その間、水銀ランプ3より発せられた光束は回折光
学素子76の領域76bを貫通する。回折光学素子66
に入射された照明光束14は、回折光学素子66、76
の近傍の斜視図である図33に示すように、回折光学素
子66の回折格子66aにより反射回折され、輪帯照明
光束15に変換される。その後、輪帯照明光束15は、
回折光学素子76の回折格子76aにより反射回折され
て光軸に対しほぼ平行な方向に変換された後、フィライ
アイレンズ8に入射される。なお、その後の光束の流れ
は第4実施例と同様であるので説明を省略する。
Next, the flow of the illumination luminous flux of the sixth embodiment will be described with reference to FIG. A substantially parallel illumination light flux 14 is formed by the light source unit 1 and is incident on the diffractive optical element 66. Meanwhile, the light flux emitted from the mercury lamp 3 penetrates the area 76b of the diffractive optical element 76. Diffractive optical element 66
The illumination light flux 14 incident on the diffractive optical elements 66, 76
As shown in FIG. 33, which is a perspective view of the vicinity of, the light is reflected and diffracted by the diffraction grating 66a of the diffractive optical element 66 and converted into the annular illumination light beam 15. After that, the annular illumination luminous flux 15 is
After being reflected and diffracted by the diffraction grating 76 a of the diffractive optical element 76 and converted into a direction substantially parallel to the optical axis, the light is incident on the Philaye lens 8. The subsequent flow of the luminous flux is the same as that in the fourth embodiment, and the description thereof will be omitted.

【0056】ところで、この第6実施例は、図34に示
すように光学系を変更することができる。この場合、光
束分離部を反射型の回折光学素子166、167より成
る光束分離部156に変更する。回折光学素子166
は、図35(a)の平面図、(b)の側面図に示すよう
に、その一方の面に等間隔等ピッチで同心のリングパタ
ーン回折格子166aが形成され、その断面形状はデュ
ーティ比1:1の矩形形状になっており、その深さt4
は+1次の反射回折光および−1次の反射回折光の回折
効率が等しくかつ最大になるように最適化されている。
このとき、t4 =λ/4となる。ただし、λは光源の波
長である。一方、回折光学素子176は、図36(a)
の平面図、(b)の側面図に示すように、その一方の面
の輪帯状の領域に等間隔等ピッチで同心にリングパター
ン回折格子176aが形成され、その断面形状は特定の
反射回折次数光、例えば1次光に対しブレーズ化されて
いる。さらに、回折光学素子176の中央部付近の領域
176bには、光源波長に対する図示しない反射防止膜
がコーティングされている。
By the way, in the sixth embodiment, the optical system can be changed as shown in FIG. In this case, the light beam splitting unit is changed to a light beam splitting unit 156 including reflective diffractive optical elements 166 and 167. Diffractive optical element 166
As shown in the plan view of FIG. 35 (a) and the side view of FIG. 35 (b), concentric ring pattern diffraction gratings 166a are formed on one surface thereof at equal intervals and pitches, and the sectional shape thereof has a duty ratio of 1 : 1 has a rectangular shape and its depth t 4
Are optimized so that the diffraction efficiencies of the + 1st-order reflected diffracted light and the -1st-order reflected diffracted light are equal and maximum.
At this time, t 4 = λ / 4. However, λ is the wavelength of the light source. On the other hand, the diffractive optical element 176 is shown in FIG.
As shown in the plan view and the side view of (b), ring pattern diffraction gratings 176a are formed concentrically at equal intervals and in a ring-shaped region on one surface thereof, and the cross-sectional shape has a specific reflection diffraction order. It is blazed with respect to light, for example, primary light. Further, a region 176b near the center of the diffractive optical element 176 is coated with an antireflection film (not shown) for the wavelength of the light source.

【0057】上記図34の構成の場合、照明光束の流れ
は以下のようになる。すなわち、上記と同様にして回折
光学素子166に入射された照明光束14は、回折光学
素子166の回折格子166aにより反射回折され、反
射回折された+1次光および−1次光により輪帯照明光
束15が形成される。この場合の回折格子166aの作
用は、透過型と反射型の相違点を除き基本的には第5実
施例と同様である。その後、輪帯照明光束15は回折光
学素子176に入射されて反射回折される。反射回折さ
れた輪帯照明光束15は光軸に対しほぼ平行に変換さ
れ、フライアイレンズ8に入射される。なお、その後の
光束の流れは第4実施例と同様であるので説明を省略す
る。
In the case of the configuration shown in FIG. 34, the flow of the illumination luminous flux is as follows. That is, the illumination light flux 14 that is incident on the diffractive optical element 166 in the same manner as described above is reflected and diffracted by the diffraction grating 166a of the diffractive optical element 166, and is the annular illumination light flux by the + 1st-order light and the -1st-order light that are reflected and diffracted. 15 is formed. The operation of the diffraction grating 166a in this case is basically the same as that of the fifth embodiment except the difference between the transmission type and the reflection type. After that, the annular illumination light beam 15 enters the diffractive optical element 176 and is reflected and diffracted. The reflected and diffracted annular illumination light beam 15 is converted into substantially parallel to the optical axis and is incident on the fly-eye lens 8. The subsequent flow of the luminous flux is the same as that in the fourth embodiment, and the description thereof will be omitted.

【0058】この第6実施例では、光束分離光学系に2
枚の反射型回折光学素子を用いて光路を折り返している
ので、投影露光装置の光軸方向の長さを短縮することが
できる。
In the sixth embodiment, the light beam splitting optical system has two elements.
Since the optical path is folded back by using one reflective diffractive optical element, the length of the projection exposure apparatus in the optical axis direction can be shortened.

【0059】なお、この第6実施例において、レンズ4
を設ける代わりに図37に示すように回折光学素子76
の中央部にレンズ4と同等の機能を有する透過型の回折
格子4aを設けて、レンズ4の機能を回折光学素子72
に付与してレンズ4を回折光学素子72と一体化するこ
とができる。その場合、照明光学系の構成は図38に示
すようになり、部品点数の削減が可能になるとともにア
ライメントが容易になる。
In the sixth embodiment, the lens 4
Instead of providing the diffractive optical element 76 as shown in FIG.
A transmission type diffraction grating 4a having the same function as that of the lens 4 is provided in the central portion of the
And the lens 4 can be integrated with the diffractive optical element 72. In that case, the configuration of the illumination optical system is as shown in FIG. 38, and the number of parts can be reduced and the alignment is facilitated.

【0060】図39は本発明の投影露光装置用照明光学
系の第7実施例の構成を示す図であり、第1実施例と同
一の部分には同一符号を付けて説明を省略する。図中5
7は光束分離部であり、透過型の回折光学素子67およ
び光束偏向部材16から成る。回折光学素子67は例え
ば石英から成り、図40(a)の平面図、(b)、
(c)の側面図に示すように、その一方の面に回折格子
67aが形成されている。回折格子67aは、方眼紙の
ように縦横に等間隔の直線により区画された多数の正方
形領域において図40で斜線を付けた正方形の部分が他
の正方形の部分よりも高さtだけ高くなる構造を有
している。縦横に延在する等間隔の直線と平行な方向で
見ると、その断面形状はデューティ比1:1の矩形形状
になっており、その深さtは+1次回折光および−
1次回折光の回折効率の合計値が最大になるように最適
化されている。
FIG. 39 is a diagram showing the structure of a seventh embodiment of the illumination optical system for a projection exposure apparatus of the present invention. The same parts as those in the first embodiment are designated by the same reference numerals and the description thereof will be omitted. 5 in the figure
Reference numeral 7 denotes a light beam separating section, which includes a transmission type diffractive optical element 67 and a light beam deflecting member 16. The diffractive optical element 67 is made of, for example, quartz, and has a plan view of FIG.
As shown in the side view of (c), a diffraction grating 67a is formed on one surface thereof. In the diffraction grating 67a, a square portion shaded in FIG. 40 is higher than the other square portions by a height t S in a large number of square regions partitioned by straight lines that are vertically and horizontally equidistant like graph paper. It has a structure. When viewed in a direction parallel to straight lines extending at equal intervals in the vertical and horizontal directions, its sectional shape is a rectangular shape with a duty ratio of 1: 1 and its depth t S is + 1st order diffracted light and −
It is optimized so that the total value of the diffraction efficiencies of the first-order diffracted light is maximized.

【0061】光束偏向部材16は例えば石英から成り、
先に説明した図18に示すように、その一方の面には、
回折光学素子67からの+1次光、−1次光に対応す
る、互いに分離された4つの領域に、等間隔の直線回折
格子16aが形成されており、直線回折格子16aの断
面形状は、特定の回折次数光、例えば1次光に対しブレ
ーズ化されている。
The light beam deflecting member 16 is made of, for example, quartz,
As shown in FIG. 18 described above, one of the surfaces is
The linear diffraction gratings 16a at equal intervals are formed in four mutually separated regions corresponding to the + 1st order light and the -1st order light from the diffractive optical element 67, and the cross-sectional shape of the linear diffraction grating 16a is specified. Is blazed with respect to the diffraction order light of, for example, the first-order light.

【0062】次に、上記第7実施例の照明光束の流れを
説明する。回折光学素子67に入射された光束は回折格
子67aにより回折され、図40(a)のx方向につい
て考察すると、+1次光、−1次光およびその他の次数
光に分離され、y方向についても同様に+1次光、−1
次光およびその他の次数光に分離される。これらの内、
x,y両方向の+1次光、−1次光の合計4つの光束1
5が夫々、光束偏向部材16に形成された4箇所の直線
回折格子16aに入射される。直線回折格子16aに入
射された光束15は、光軸に対しほぼ平行な方向に変換
される。
Next, the flow of the illumination luminous flux of the seventh embodiment will be described. The light beam incident on the diffractive optical element 67 is diffracted by the diffraction grating 67a, and considering the x direction in FIG. 40A, it is separated into + 1st order light, −1st order light and other order lights, and also in the y direction. Similarly, + 1st order light, -1
It is split into second and other orders. Of these,
A total of four luminous fluxes of + 1st-order light and -1st-order light in both x and y directions 1
5 are respectively incident on the four linear diffraction gratings 16 a formed on the light beam deflecting member 16. The light beam 15 incident on the linear diffraction grating 16a is converted into a direction substantially parallel to the optical axis.

【0063】この第7実施例においては、光束分離光学
系に断面がデューティ比1:1の矩形形状を有する回折
光学素子を用いているためブレーズ化する必要がなく、
容易に製作し得るという利点を有している。よって、回
折光学素子67を製作する方法として、従来より公知の
方法、例えばフォトリソグラフィ技術およびドライエッ
チング技術により矩形形状を製作する方法を用いること
ができる。また、回折光学素子67により光束の径が変
わることはないので、最終的に同一の径の4本の光束を
形成するのであれば、照明光束が4つに波面分割される
第1実施例に比べ、光束14の径を半分にすることがで
き、レンズ4を光源に接近させることができる。これに
より、照明光学系の全長が短縮されることになる。ま
た、この第7実施例においては、結果的に2つの回折面
を1つにまとめたことになるので、上記と同様に+1次
光、−1次光を利用する第3実施例と比較すると、回折
光学素子を製作する際に、製作行程が短縮される利点が
ある。
In the seventh embodiment, since a diffractive optical element having a rectangular cross section with a duty ratio of 1: 1 is used in the light beam splitting optical system, there is no need for blazing.
It has an advantage that it can be easily manufactured. Therefore, as a method of manufacturing the diffractive optical element 67, a conventionally known method, for example, a method of manufacturing a rectangular shape by a photolithography technique and a dry etching technique can be used. Further, since the diameter of the light beam is not changed by the diffractive optical element 67, if the final four light beams having the same diameter are formed, the illumination light beam is divided into four wavefronts in the first embodiment. In comparison, the diameter of the light flux 14 can be halved, and the lens 4 can be brought closer to the light source. As a result, the total length of the illumination optical system is shortened. In addition, in the seventh embodiment, since the two diffractive surfaces are combined into one as a result, a comparison with the third embodiment using the + 1st order light and the −1st order light as in the above is made. When manufacturing a diffractive optical element, there is an advantage that the manufacturing process is shortened.

【0064】なお、この第7実施例では、光束偏向部材
としてブレーズ化した回折光学素子を用いたが、代わり
に4つの三角プリズム、ミラー等の他の部材を用いて同
様の効果を得ることができる。しかし、図18に示すよ
うな回折光学素子を用いた方が光束偏向部材の一体的な
製作が可能になるので、アライメントが容易でかつ安価
になる。
Although the blazed diffractive optical element is used as the light beam deflecting member in the seventh embodiment, the same effect can be obtained by using other members such as four triangular prisms and mirrors. it can. However, the use of the diffractive optical element as shown in FIG. 18 makes it possible to integrally manufacture the light beam deflecting member, so that the alignment is easy and the cost is low.

【0065】[0065]

【発明の効果】以上説明したように本発明によれば、照
明光束を4つに分離したり、輪帯状に変換するために、
回折光学素子を用いているので、構成が簡略化され、機
械的な信頼性が向上する。また、回折格子の製作には公
知の方法を用いることができるので、実現が容易であ
る。さらに、照明光束を高い効率で利用することがで
き、光源光の利用効率が高まる利点を有している。
As described above, according to the present invention, in order to separate the illumination luminous flux into four or convert it into an annular shape,
Since the diffractive optical element is used, the structure is simplified and the mechanical reliability is improved. Further, since a known method can be used for manufacturing the diffraction grating, it is easy to realize. Further, it has an advantage that the illumination light flux can be used with high efficiency and the utilization efficiency of the light source light is increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の投影露光装置用照明光学系の第1実施
例の構成を示す図である。
FIG. 1 is a diagram showing a configuration of a first embodiment of an illumination optical system for a projection exposure apparatus of the present invention.

【図2】(a)、(b)、(c)は夫々、回折光学素子
61を示す平面図、側面図、A部詳細図である。
2 (a), (b), and (c) are a plan view, a side view, and a detailed view of a portion A showing a diffractive optical element 61, respectively.

【図3】回折光学素子71を示す平面図、側面図であ
る。
3A and 3B are a plan view and a side view showing a diffractive optical element 71.

【図4】回折光学素子61、71の近傍の斜視図であ
る。
FIG. 4 is a perspective view of the vicinity of diffractive optical elements 61 and 71.

【図5】回折光学素子61、71の製作方法を説明する
ための図である。
FIG. 5 is a diagram for explaining a method of manufacturing the diffractive optical elements 61 and 71.

【図6】(a)、(b)は回折光学素子61、71の他
の構成例を示す図である。
6A and 6B are diagrams showing another configuration example of the diffractive optical elements 61 and 71.

【図7】(a)、(b)は回折光学素子61、71の他
の構成例を示す図である。
7A and 7B are diagrams showing another configuration example of the diffractive optical elements 61 and 71.

【図8】回折光学素子61、71の他の構成例を示す図
である。
FIG. 8 is a diagram showing another configuration example of the diffractive optical elements 61 and 71.

【図9】本発明の投影露光装置用照明光学系の第2実施
例の構成を示す図である。
FIG. 9 is a diagram showing a configuration of a second example of the illumination optical system for the projection exposure apparatus of the present invention.

【図10】(a)、(b)、(c)は夫々、回折光学素
子62を示す平面図、側面図、B部詳細図である。
10A, 10B, and 10C are a plan view, a side view, and a detailed view of a B part, respectively, showing a diffractive optical element 62.

【図11】回折光学素子72を示す平面図である。FIG. 11 is a plan view showing a diffractive optical element 72.

【図12】回折光学素子62、72の近傍の斜視図であ
る。
FIG. 12 is a perspective view of the vicinity of diffractive optical elements 62 and 72.

【図13】回折光学素子72の他の構成例を示す図であ
る。
FIG. 13 is a diagram showing another configuration example of the diffractive optical element 72.

【図14】図13に対応する投影露光装置用照明光学系
の構成を示す図である。
14 is a diagram showing a configuration of an illumination optical system for a projection exposure apparatus corresponding to FIG.

【図15】本発明の投影露光装置用照明光学系の第3実
施例の構成を示す図である。
FIG. 15 is a diagram showing the configuration of a third example of the illumination optical system for a projection exposure apparatus of the present invention.

【図16】(a)、(b)は夫々、回折光学素子63を
示す平面図、側面図である。
16A and 16B are a plan view and a side view showing a diffractive optical element 63, respectively.

【図17】(a)、(b)は夫々、回折光学素子73を
示す平面図、側面図である。
17A and 17B are a plan view and a side view showing a diffractive optical element 73, respectively.

【図18】光束偏向部材16を示す平面図である。FIG. 18 is a plan view showing a light beam deflecting member 16.

【図19】回折光学素子63、73の近傍の斜視図であ
る。
FIG. 19 is a perspective view near the diffractive optical elements 63 and 73.

【図20】回折光学素子63、73の他の構成例を示す
図である。
FIG. 20 is a diagram showing another configuration example of the diffractive optical elements 63 and 73.

【図21】本発明の投影露光装置用照明光学系の第4実
施例の構成を示す図である。
FIG. 21 is a diagram showing the configuration of a fourth example of the illumination optical system for a projection exposure apparatus of the present invention.

【図22】(a)、(b)は夫々、回折光学素子64を
示す平面図、側面図である。
22A and 22B are a plan view and a side view, respectively, showing the diffractive optical element 64.

【図23】(a)、(b)は夫々、回折光学素子74を
示す平面図、側面図である。
23A and 23B are respectively a plan view and a side view showing the diffractive optical element 74.

【図24】開口絞り9を示す平面図である。FIG. 24 is a plan view showing an aperture stop 9.

【図25】回折光学素子64、74の近傍の斜視図であ
る。
FIG. 25 is a perspective view of the vicinity of diffractive optical elements 64 and 74.

【図26】本発明の投影露光装置用照明光学系の第5実
施例の構成を示す図である。
FIG. 26 is a diagram showing the configuration of a fifth example of the illumination optical system for a projection exposure apparatus of the present invention.

【図27】(a)、(b)は夫々、回折光学素子65を
示す平面図、側面図である。
27A and 27B are a plan view and a side view, respectively, showing the diffractive optical element 65.

【図28】(a)、(b)は夫々、回折光学素子75を
示す平面図、側面図である。
28A and 28B are a plan view and a side view, respectively, showing the diffractive optical element 75.

【図29】回折光学素子65、75の近傍の斜視図であ
る。
FIG. 29 is a perspective view near the diffractive optical elements 65 and 75.

【図30】本発明の投影露光装置用照明光学系の第6実
施例の構成を示す図である。
FIG. 30 is a diagram showing the configuration of a sixth example of the illumination optical system for a projection exposure apparatus of the present invention.

【図31】(a)、(b)は夫々、回折光学素子66を
示す平面図、側面図である。
31A and 31B are a plan view and a side view, respectively, showing the diffractive optical element 66.

【図32】(a)、(b)は夫々、回折光学素子76を
示す平面図、側面図である。
32A and 32B are a plan view and a side view showing a diffractive optical element 76, respectively.

【図33】回折光学素子66、76の近傍の斜視図であ
る。
FIG. 33 is a perspective view of the vicinity of the diffractive optical elements 66 and 76.

【図34】第6実施例の投影露光装置用照明光学系の他
の構成を示す図である。
FIG. 34 is a diagram showing another configuration of the illumination optical system for the projection exposure apparatus of the sixth example.

【図35】(a)、(b)は夫々、回折光学素子166
を示す平面図、側面図である。
35A and 35B are diffractive optical element 166, respectively.
3A and 3B are a plan view and a side view, respectively.

【図36】(a)、(b)は夫々、回折光学素子176
を示す平面図、側面図である。
36A and 36B are diffractive optical element 176, respectively.
3A and 3B are a plan view and a side view, respectively.

【図37】回折光学素子76の他の構成例を示す図であ
る。
FIG. 37 is a diagram showing another configuration example of the diffractive optical element 76.

【図38】図37に対応する投影露光装置用照明光学系
の構成を示す図である。
FIG. 38 is a diagram showing a configuration of an illumination optical system for a projection exposure apparatus corresponding to FIG. 37.

【図39】本発明の投影露光装置用照明光学系の第7実
施例の構成を示す図である。
FIG. 39 is a diagram showing the configuration of a seventh example of the illumination optical system for a projection exposure apparatus of the present invention.

【図40】(a)、(b)および(c)は夫々、回折光
学素子67を示す平面図および側面図である。
40 (a), (b) and (c) are a plan view and a side view showing a diffractive optical element 67, respectively.

【図41】 回折光学素子67の作用を示す平面図であ
る。
41 is a plan view showing the operation of the diffractive optical element 67. FIG.

【図42】従来技術を説明するための図である。FIG. 42 is a diagram for explaining a conventional technique.

【図43】従来技術を説明するための図である。FIG. 43 is a diagram for explaining a conventional technique.

【図44】従来技術を説明するための図である。FIG. 44 is a diagram for explaining a conventional technique.

【図45】従来技術を説明するための図である。FIG. 45 is a diagram for explaining a conventional technique.

【符号の説明】[Explanation of symbols]

1 光源部 2 楕円鏡 3 水銀ランプ 4 レンズ 8 フライアイレンズ 9 開口絞り 10 コンデンサレンズ 11 レチクル 12 結像投影系 13 ウエハ 51 光束分離部 61 回折光学素子 61a 直線回折格子 71 回折光学素子 71a 直線回折格子 1 light source 2 elliptical mirror 3 Mercury lamp 4 lenses 8 fly eye lens 9 Aperture stop 10 Condenser lens 11 reticle 12 Imaging projection system 13 wafers 51 Light flux separation unit 61 Diffractive optical element 61a Linear diffraction grating 71 Diffractive optical element 71a Linear diffraction grating

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−225514(JP,A) 特開 平5−188577(JP,A) 特開 平5−326366(JP,A) 特開 昭62−294202(JP,A) 特開 平6−310396(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 21/027 G02B 27/42 G03F 7/20 521 ─────────────────────────────────────────────────── --- Continuation of the front page (56) References JP-A-4-225514 (JP, A) JP-A-5-188577 (JP, A) JP-A-5-326366 (JP, A) JP-A-62- 294202 (JP, A) JP-A-6-310396 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H01L 21/027 G02B 27/42 G03F 7/20 521

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 光源からの光束を分離する光束分離光学
系と、該光束分離光学系により分離された光束をレチク
ル上へ導くコンデンサ光学系とを有する投影露光装置用
照明光学系において、 前記光束分離光学系が、前記光源からの光束を4つに分
離する回折格子パターンを有する第1の回折光学手段
と、 前記第1の回折光学手段により生じた4つの光束に対応
する位置に配置され、回折格子パターンを有する第2の
回折光学手段とを具えることを特徴とする投影露光装置
用照明光学系。
1. An illumination optical system for a projection exposure apparatus, comprising: a light beam separating optical system for separating a light beam from a light source; and a condenser optical system for guiding the light beam separated by the light beam separating optical system onto a reticle. A separation optical system, which is arranged at a position corresponding to four light beams generated by the first diffractive optical means, which has a diffraction grating pattern for separating the light beam from the light source into four An illumination optical system for a projection exposure apparatus, comprising: a second diffractive optical means having a diffraction grating pattern.
【請求項2】 前記第1の回折光学手段の回折格子パタ
ーンは直線格子パターンであって、該直線格子パターン
は境界をほぼ十字型になすように配されるとともにほぼ
等間隔の格子ピッチを有する4つの直線格子パターンで
あり、互いに隣合う直線格子パターンの格子方向がほぼ
直交するようにしたことを特徴とする、請求項1記載の
投影露光装置用照明光学系。
2. The diffraction grating pattern of the first diffractive optical means is a linear grating pattern, and the linear grating pattern is arranged so as to form a boundary in a substantially cross shape and has a grating pitch of substantially equal intervals. 2. The illumination optical system for a projection exposure apparatus according to claim 1, wherein the linear grating patterns are four linear grating patterns, and the grating directions of adjacent linear grating patterns are substantially orthogonal to each other.
【請求項3】 前記第1の回折光学手段は、m 、m
、m を任意の自然数としたとき、+m 次回折
光および−m 次回折光の回折効率がほぼ等しくなる
溝断面形状の直線格子パターンを有する第1の回折光学
面と、 前記第1の回折光学面から光軸方向に離間して配されて
前記第1の回折光学面による前記+m 次回折光を入
射される領域であって、+m 次回折光および−m
次回折光の回折効率がほぼ等しくなる溝断面形状でかつ
前記第1の回折光学面の格子方向とほぼ直交する格子方
向の直線格子パターンを有する第1の回折領域と、前記
第1の回折光学面による前記−m 次回折光を入射さ
れる領域であって、+m 次回折光および−m 次回
折光の回折効率がほぼ等しくなる溝断面形状でかつ前記
第1の回折光学面の格子方向とほぼ直交する格子方向の
直線格子パターンを有する第2の回折領域とを具える第
2の回折光学面との2つの回折光学面を具備して成るこ
とを特徴とする、請求項1記載の投影露光装置用照明光
学系。
3. The first diffractive optical means comprises m 1 , m
2 , a first diffractive optical surface having a linear grating pattern having a groove cross-sectional shape in which the diffraction efficiencies of + m 1st-order diffracted light and −m 1st- order diffracted light are substantially equal to each other when 2 and m 3 are arbitrary natural numbers; A region which is arranged apart from the diffractive optical surface in the optical axis direction and into which the + m 1st-order diffracted light from the first diffractive optical surface is incident, and which is + m 2nd-order diffracted light and −m 2
A first diffractive region having a groove cross-sectional shape in which the diffraction efficiency of the second-order diffracted light is substantially equal and having a linear grating pattern in a grating direction substantially orthogonal to the grating direction of the first diffractive optical surface; and the first diffractive optical surface. Is a region into which the -m 1st-order diffracted light is incident, and has a groove cross-sectional shape in which the diffraction efficiencies of the + m 3rd-order diffracted light and the -m 3rd- order diffracted light are substantially equal to each other, and is substantially the same as the grating direction of the first diffractive optical surface. Projection exposure according to claim 1, characterized in that it comprises two diffractive optical surfaces, a second diffractive optical surface comprising a second diffractive area having a linear grating pattern in orthogonal grating directions. Lighting optics for equipment.
【請求項4】 前記第1の回折光学手段は、深さを異な
らせたほぼ正方形の領域を互い違いに市松模様に配され
た回折光学素子を有することを特徴とする、請求項1記
載の投影露光装置用照明光学系。
4. The projection according to claim 1, wherein the first diffractive optical means has diffractive optical elements in which substantially square regions having different depths are alternately arranged in a checkered pattern. Illumination optical system for exposure equipment.
【請求項5】 光源からの光束を輪帯光束に変換する光
束分離光学系と、該光束分離光学系により変換された輪
帯光束をレチクル上へ導くコンデンサ光学系とを有する
投影露光装置用照明光学系において、 前記光束分離光学系が、同心リング格子パターンを有す
る回折光学手段を具えることを特徴とする投影露光装置
用照明光学系。
5. A projection exposure apparatus illumination having a light beam splitting optical system for converting a light beam from a light source into an annular light beam, and a condenser optical system for guiding the annular light beam converted by the light beam splitting optical system onto a reticle. In the optical system, the illumination optical system for a projection exposure apparatus, wherein the light beam splitting optical system includes diffractive optical means having a concentric ring grating pattern.
【請求項6】 前記回折光学手段の前記同心リング格子
パターンは、格子ピッチがほぼ等間隔であるとともに前
記回折光学手段に入射される前記光源からの光束の波長
に対し溝断面形状がブレーズ化されていることを特徴と
する、請求項5記載の投影露光装置用照明光学系。
6. The concentric ring grating pattern of the diffractive optical means is such that the grating pitches are substantially equal and the groove cross-sectional shape is blazed with respect to the wavelength of the light beam from the light source incident on the diffractive optical means. The illumination optical system for a projection exposure apparatus according to claim 5, wherein:
【請求項7】 前記回折光学手段は、m を任意の自
然数としたとき、前記同心リング格子パターンの格子ピ
ッチがほぼ等間隔であるとともに+m 次回折光およ
び−m 次回折光の回折効率がほぼ等しくなる溝断面
形状の回折光学素子を有することを特徴とする、請求項
5記載の投影露光装置用照明光学系。
7. The diffractive optical means is such that when m 1 is an arbitrary natural number, the grating pitches of the concentric ring grating patterns are substantially equal, and the diffraction efficiency of + m 1st-order diffracted light and −m 1st- order diffracted light is high. The illumination optical system for a projection exposure apparatus according to claim 5, further comprising a diffractive optical element having a groove cross-sectional shape that is substantially equal.
【請求項8】 光源からの光束を分離する光束分離光学
系と、該光束分離光学系により分離された光束をレチク
ル上へ導くコンデンサ光学系とを有する投影露光装置用
照明光学系において、 前記光束分離光学系が、前記光源からの光束を4つに分
離する直線格子パターンを有する回折光学手段を具え、 前記回折光学手段は、m 、m 、m を任意の自
然数としたとき、+m 次回折光および−m 次回折
光の回折効率がほぼ等しくなる溝断面形状の直線格子パ
ターンを有する第1の回折光学面と、 前記第1の回折光学面から光軸方向に離間して配されて
前記第1の回折光学面による前記+m 次回折光を入
射される領域であって、+m 次回折光および−m
次回折光の回折効率がほぼ等しくなる溝断面形状でかつ
前記第1の回折光学面の格子方向とほぼ直交する格子方
向の直線格子パターンを有する第1の回折領域と、前記
第1の回折光学面による前記−m 次回折光を入射さ
れる領域であって、+m 次回折光および−m 次回
折光の回折効率がほぼ等しくなる溝断面形状でかつ前記
第1の回折光学面の格子方向とほぼ直交する格子方向の
直線格子パターンを有する第2の回折領域とを具える第
2の回折光学面との2つの回折光学面を具備して成るこ
とを特徴とする、投影露光装置用照明光学系。
8. An illumination optical system for a projection exposure apparatus, comprising: a light beam separating optical system for separating a light beam from a light source; and a condenser optical system for guiding the light beam separated by the light beam separating optical system onto a reticle. The separation optical system comprises a diffractive optical means having a linear grating pattern for separating the light flux from the light source into four, and the diffractive optical means is + m when m 1 , m 2 and m 3 are arbitrary natural numbers. A first diffractive optical surface having a linear grating pattern having a groove cross-sectional shape in which the diffraction efficiencies of the first-order diffracted light and the -m first- order diffracted light are substantially equal to each other, and the first diffractive optical surface is spaced apart from the first diffractive optical surface in the optical axis direction. Is a region where the + m 1st-order diffracted light is made incident by the first diffractive optical surface, and the + m 2nd-order diffracted light and −m 2
A first diffractive region having a groove cross-sectional shape in which the diffraction efficiency of the second-order diffracted light is substantially equal and having a linear grating pattern in a grating direction substantially orthogonal to the grating direction of the first diffractive optical surface; and the first diffractive optical surface. Is a region into which the -m 1st-order diffracted light is incident, and has a groove cross-sectional shape in which the diffraction efficiencies of the + m 3rd-order diffracted light and the -m 3rd- order diffracted light are substantially equal, and is substantially the same as the grating direction of the first diffractive optical surface. An illumination optical system for a projection exposure apparatus, comprising: two diffractive optical surfaces, a second diffractive optical surface having a second diffractive area having a linear grating pattern in orthogonal grating directions. .
【請求項9】 前記第1の回折光学手段および前記第2
の回折光学手段の回折格子パターンは、断面形状がブレ
ーズ形状または該ブレーズ形状を階段形状に近似した形
状であることを特徴とする、請求項1記載の投影露光装
置用照明光学系。
9. The first diffractive optical means and the second diffractive optical means.
2. The illumination optical system for a projection exposure apparatus according to claim 1, wherein the diffraction grating pattern of the diffractive optical means has a blazed shape or a shape in which the blazed shape is approximated to a stepped shape.
JP05160994A 1994-03-23 1994-03-23 Illumination optical system for projection exposure equipment Expired - Fee Related JP3415251B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP05160994A JP3415251B2 (en) 1994-03-23 1994-03-23 Illumination optical system for projection exposure equipment
US08/408,819 US5695274A (en) 1994-03-23 1995-03-23 Illuminating optical system for use in projecting exposure device
US08/899,898 US6095667A (en) 1994-03-23 1997-07-24 Illuminating optical system for use in projecting exposure device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05160994A JP3415251B2 (en) 1994-03-23 1994-03-23 Illumination optical system for projection exposure equipment

Publications (2)

Publication Number Publication Date
JPH07263313A JPH07263313A (en) 1995-10-13
JP3415251B2 true JP3415251B2 (en) 2003-06-09

Family

ID=12891652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05160994A Expired - Fee Related JP3415251B2 (en) 1994-03-23 1994-03-23 Illumination optical system for projection exposure equipment

Country Status (1)

Country Link
JP (1) JP3415251B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU9762398A (en) * 1997-11-10 1999-05-31 Nikon Corporation Exposure apparatus
JP2001174615A (en) 1999-04-15 2001-06-29 Nikon Corp Diffraction optical element, method of producing the element, illumination device equipped with the element, projection exposure device, exposure method, light homogenizer, and method of producing the light homogenizer
JP3919419B2 (en) 2000-03-30 2007-05-23 キヤノン株式会社 Illumination apparatus and exposure apparatus having the same
KR100518586B1 (en) * 2003-07-24 2005-10-04 삼성전자주식회사 Diffractive optical element, illumination system comprising same, and method for fabricating semiconductor device using same
JP4883482B2 (en) * 2006-08-18 2012-02-22 株式会社ニコン Illumination optical apparatus, exposure apparatus, and device manufacturing method
JP5090780B2 (en) * 2007-04-26 2012-12-05 株式会社オーク製作所 Exposure drawing device
NL1036877A (en) * 2008-08-18 2010-03-09 Asml Netherlands Bv Diffractive optical element, lithographic apparatus and semiconductor device manufacturing method.
DE102014203348A1 (en) * 2014-02-25 2015-08-27 Carl Zeiss Smt Gmbh Bundle distribution optics, illumination optics with such a bundle distribution optics, optical system with such illumination optics and projection exposure system with such an optical system

Also Published As

Publication number Publication date
JPH07263313A (en) 1995-10-13

Similar Documents

Publication Publication Date Title
KR100827874B1 (en) Exposure apparatus, method for manufacturing thereof, method for exposing, method for manufacturing microdevice, and method for manufacturing device
US5300971A (en) Projection exposure apparatus
US5715089A (en) Exposure method and apparatus therefor
TWI569106B (en) Lighting optics, exposure devices, lighting methods and exposure methods
JP3246615B2 (en) Illumination optical device, exposure apparatus, and exposure method
JP4859311B2 (en) Laser illumination optical system, exposure apparatus using the optical system, laser processing machine, and projection apparatus
US6095667A (en) Illuminating optical system for use in projecting exposure device
US4683524A (en) Illumination apparatus
KR20040074077A (en) Diffraction optical device, refraction optical device, illuminating optical device, exposure system and exposure method
KR101560617B1 (en) Light Generating Apparatus and Method For Controlling the Same
JP3415251B2 (en) Illumination optical system for projection exposure equipment
JP5447445B2 (en) Illumination optical system, exposure apparatus, and projection apparatus
JPS61169815A (en) Lighting optical device
JP3212197B2 (en) Projection exposure apparatus and projection exposure method
JPH08220482A (en) Optical system including diffraction optical element
JP3303322B2 (en) Projection exposure apparatus and method, and element manufacturing method
JP2673915B2 (en) Fine pattern projection exposure equipment
US20030227684A1 (en) Diffractive optical element, refractive optical element, illuminating optical apparatus, exposure apparatus and exposure method
JPH0774085A (en) Illumination system of projection exposing device
JP3074843B2 (en) Projection exposure apparatus, exposure method, and circuit pattern forming method
JP3360319B2 (en) Projection exposure apparatus and method of forming semiconductor element
JP3438730B2 (en) Scanning exposure apparatus and device manufacturing method using the scanning exposure apparatus
WO2021044756A1 (en) Exposure device and article manufacturing method
JP2884848B2 (en) Projection exposure apparatus and circuit pattern forming method
JP3316695B2 (en) Scanning exposure method and device manufacturing method using the same, and scanning exposure apparatus and device manufacturing method using the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030304

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090404

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090404

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100404

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees