JP3414499B2 - Zoom lens - Google Patents

Zoom lens

Info

Publication number
JP3414499B2
JP3414499B2 JP14320994A JP14320994A JP3414499B2 JP 3414499 B2 JP3414499 B2 JP 3414499B2 JP 14320994 A JP14320994 A JP 14320994A JP 14320994 A JP14320994 A JP 14320994A JP 3414499 B2 JP3414499 B2 JP 3414499B2
Authority
JP
Japan
Prior art keywords
group
lens group
lens
negative
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14320994A
Other languages
Japanese (ja)
Other versions
JPH085921A (en
Inventor
山梨隆則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optic Co Ltd filed Critical Olympus Optic Co Ltd
Priority to JP14320994A priority Critical patent/JP3414499B2/en
Publication of JPH085921A publication Critical patent/JPH085921A/en
Application granted granted Critical
Publication of JP3414499B2 publication Critical patent/JP3414499B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ズームレンズに関し、
特に、広角端の画角が少なくとも73°程度を包含し、
望遠端の画角が35°程度以下で、かつ、口径比が1:
2.8程度の大口径比を持つズームレンズに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a zoom lens,
In particular, the angle of view at the wide-angle end includes at least about 73 °,
The angle of view at the telephoto end is about 35 ° or less, and the aperture ratio is 1:
The present invention relates to a zoom lens having a large aperture ratio of about 2.8.

【0002】[0002]

【従来の技術】従来、いわゆる大口径広角ズームレンズ
は、第1レンズ群が負屈折力を有する負群先行型の提案
が多い。例えば、特開昭63−241511号や特開平
5−134184号等が開示されている。これらは共
に、負群先行型の4群ズームレンズであり、第1レンズ
群が像面位置の補正作用を担っている。そのため、変倍
用に後群がほぼ線形移動する際に、第1レンズ群は2次
関数的に移動し、変倍率との関係で変曲点を有する。し
たがって、屈折力配置に起因するレンズ系の全長変化が
大きいのが特徴となっている。また、広角化と大口径比
化による性能面の問題は、非球面の使用で解決する動き
が一般化している。また、フォーカシングには、従来通
り、比較的に屈折力が大きい第1レンズ群の物体側移動
によって行っている。そのため、屈折力配置に起因する
フォーカシングによる収差変動が課題として残り、望遠
域で球面収差の補正が困難な状態にあった。
2. Description of the Related Art Conventionally, many so-called large-aperture wide-angle zoom lenses have been proposed as a negative group preceding type in which the first lens group has a negative refractive power. For example, JP-A-63-241511, JP-A-5-134184 and the like are disclosed. Both of them are negative-group-leading 4-group zoom lenses, and the first lens group has a function of correcting the image plane position. Therefore, when the rear lens group moves substantially linearly for zooming, the first lens group moves as a quadratic function and has an inflection point in relation to the zoom ratio. Therefore, the change in the entire length of the lens system due to the arrangement of the refractive power is large. In addition, the problem of performance due to the widening of the angle and the increase in the aperture ratio is generally solved by using an aspherical surface. Further, focusing is performed by moving the first lens group, which has a relatively large refractive power, toward the object side, as in the conventional case. Therefore, the aberration variation due to focusing caused by the refractive power arrangement remains a problem, and it is difficult to correct spherical aberration in the telephoto range.

【0003】[0003]

【発明が解決しようとする課題】本出願人は、上記問題
点の解決を意図して、ズーミング時に全長の変化をしな
い光学系の提案を特開平5−19169号で行い、ま
た、フォーカシング方法の1提案を特開平6−5120
3号で行った。
The present applicant proposes an optical system in which the total length does not change during zooming in Japanese Patent Laid-Open No. 19169/1993, with the intention of solving the above-mentioned problems. 1 proposal is disclosed in JP-A-6-5120.
I went to No. 3.

【0004】しかしながら、大口径広角ズームレンズに
対する問題点の解決が行われておらず、上記提案のフォ
ーカシングでは、有限遠物体距離が制限されるという課
題を残していた。
However, the problem with the large-diameter wide-angle zoom lens has not been solved, and the focusing proposed above has a problem that the finite object distance is limited.

【0005】本発明はこのような従来技術の問題点に鑑
みてなされたものであり、その目的は、広角端の画角が
少なくとも73°程度を包含し、望遠端の画角が35°
程度以下で、かつ、口径比が1:2.8程度の大口径比
を持つズームレンズにおいて、無限遠から近接撮影距離
まで安定した結像性能を得ることを可能とするズームレ
ンズを提供することである。
The present invention has been made in view of the above problems of the prior art, and an object thereof is that the angle of view at the wide-angle end includes at least about 73 ° and the angle of view at the telephoto end is 35 °.
By providing a zoom lens having a large aperture ratio of about 1: 2.8 or less and a stable aperture performance from infinity to a close-up distance, it is possible to obtain a stable imaging performance. is there.

【0006】[0006]

【課題を解決するための手段】上記目的を達成する本発
明のズームレンズは、物体側より順に、負屈折力の第1
レンズ群、正屈折力の第2レンズ群、負屈折力の第3レ
ンズ群、正屈折力の第4レンズ群、及び、正屈折力の第
5レンズ群より構成し、広角端から望遠端までのズーミ
ングは、第1レンズ群と第5レンズ群を固定し、第2レ
ンズ群から第4レンズ群をそれぞれ相対間隔を変化させ
ながら物体側に移動することによって行い、無限遠物体
から有限遠物体へのフォーカシングは、第1レンズ群を
負屈折力の前群(G11)と正屈折力の中群(G12)と負
屈折力の後群(G13)に分割し、前記後群(G13)を固
定した状態で、前記前群(G11)と中群(G12)を各々
物体側に移動することによって行い、かつ、以下の条件
を満足することを特徴とするものである。 0.5<|φ11/φ12|<3.0 ・・・(3) 1<ΔG11/ΔG12<1.8 ・・・(4) ただし、φ11は第1レンズ群内の前群(G11)の屈折
力、φ12は第1レンズ群内の中群(G12)の屈折力、Δ
11は第1レンズ群内の前群(G11)の最短撮影距離ま
でのフォーカシング移動量、ΔG12は第1レンズ群内の
中群(G12)の最短撮影距離までのフォーカシング移動
量であり、フォーカシング移動量の基準位置を無限遠物
体位置とし、物体側に移動する時に負符号をとるものと
する。
A zoom lens according to the present invention which achieves the above object has a first negative refractive power in order from the object side.
It is composed of a lens group, a second lens group having a positive refractive power, a third lens group having a negative refractive power, a fourth lens group having a positive refractive power, and a fifth lens group having a positive refractive power, from the wide angle end to the telephoto end. Zooming is performed by fixing the first lens group and the fifth lens group, and moving the second lens group to the fourth lens group toward the object side while changing the relative distances respectively, and from the object at infinity to the object at finite distance. Focusing on the first lens group is divided into a front lens group (G 11 ) having negative refractive power, a middle lens group (G 12 ) having positive refractive power, and a rear lens group (G 13 ) having negative refractive power, and the rear lens group (G 13 ) G 13 ) is fixed, the front group (G 11 ) and the middle group (G 12 ) are moved to the object side, respectively, and the following conditions are satisfied. . 0.5 <| φ 11 / φ 12 | <3.0 (3) 1 <ΔG 11 / ΔG 12 <1.8 (4) where φ 11 is in front of the first lens group The refractive power of the group (G 11 ), φ 12 is the refractive power of the middle group (G 12 ) in the first lens group, Δ
G 11 is the amount of focusing movement to the shortest shooting distance of the front lens unit (G 11 ) in the first lens unit, ΔG 12 is the amount of focusing movement to the shortest shooting distance of the middle lens unit (G 12 ) in the first lens unit The reference position of the focusing movement amount is the infinite object position, and a negative sign is taken when moving to the object side.

【0007】本発明のもう1つのズームレンズは、物体
側より順に、負屈折力の第1レンズ群、正屈折力の第2
レンズ群、負屈折力の第3レンズ群、正屈折力の第4レ
ンズ群、及び、正屈折力の第5レンズ群より構成し、広
角端から望遠端までのズーミングは、第1レンズ群と第
5レンズ群を固定し、第2レンズ群から第4レンズ群を
それぞれ相対間隔を変化させながら物体側に移動するこ
とによって行い、無限遠物体から有限遠物体へのフォー
カシングは、第1レンズ群を負屈折力の前群(G11)と
正屈折力の中群(G12)と負屈折力の後群(G13)に分
割し、前記後群(G13)を固定した状態で、前記前群
(G11)と中群(G12)の軸上間隔を可変とし各々物体
側に移動することによって行い、前記前群(G11)は、
負レンズ成分を少なくとも2枚で構成し、かつ、以下の
条件を満足することを特徴とするものである。 0.2<|φ1W/φW |<0.95 ・・・(1) 0.1<φ234W/φW <1.2 ・・・(2) ただし、φ1W、φ234Wは広角端でのそれぞれ第1レンズ
群の屈折力、第2レンズ群から第4レンズ群までの合成
屈折力、φW は全系の広角端での屈折力である。本発明
のさらにもう1つのズームレンズは、物体側より順に、
負屈折力の第1レンズ群、正屈折力の第2レンズ群、負
屈折力の第3レンズ群、正屈折力の第4レンズ群、及
び、正屈折力の第5レンズ群より構成し、広角端から望
遠端までのズーミングは、第1レンズ群と第5レンズ群
を固定し、第2レンズ群から第4レンズ群をそれぞれ相
対間隔を変化させながら物体側に移動することによって
行い、無限遠物体から有限遠物体へのフォーカシング
は、第1レンズ群を負屈折力の前群(G11)と正屈折力
の中群(G12)と負屈折力の後群(G13)に分割し、前
記後群(G13)を固定した状態で、前記前群(G11)と
中群(G12)の軸上間隔を可変とし各々物体側に移動す
ることによって行い、かつ、以下の条件を満足すること
を特徴とするものである。 0.2<|φ1W/φW |<0.95 ・・・(1) 0.1<φ234W/φW <1.2 ・・・(2) 1<ΔG11/ΔG12<1.8 ・・・(4) ただし、φ1W、φ234Wは広角端でのそれぞれ第1レンズ
群の屈折力、第2レンズ群から第4レンズ群までの合成
屈折力、φW は全系の広角端での屈折力であり、ΔG11
は第1レンズ群内の前群(G11)の最短撮影距離までの
フォーカシング移動量、ΔG12は第1レンズ群内の中群
(G12)の最短撮影距離までのフォーカシング移動量で
あり、フォーカシング移動量の基準位置を無限遠物体位
置とし、物体側に移動する時に負符号をとるものとす
る。
Another zoom lens according to the present invention comprises, in order from the object side, a first lens group having a negative refractive power and a second lens group having a positive refractive power.
It is composed of a lens group, a third lens group having a negative refracting power, a fourth lens group having a positive refracting power, and a fifth lens group having a positive refracting power, and zooming from the wide-angle end to the telephoto end is performed with the first lens group. Focusing from an object at infinity to an object at finite distance is performed by moving the second lens group to the fourth lens group toward the object side while changing the relative spacing, while fixing the fifth lens group. Is divided into a front group (G 11 ) having a negative refractive power, a middle group (G 12 ) having a positive refractive power, and a rear group (G 13 ) having a negative refractive power, and the rear group (G 13 ) is fixed, performed by moving the axial distance to each object side is variable of the front group (G 11) and Chugun (G 12), said front group (G 11) is
It is characterized in that at least two negative lens components are formed and the following conditions are satisfied. 0.2 <| φ 1W / φ W | <0.95 ··· (1) 0.1 <φ 234W / φ W <1.2 ··· (2) However, φ 1W, φ 234W wide-angle end In the above, the refracting power of the first lens group, the combined refracting power from the second lens group to the fourth lens group, and φ W are the refracting powers at the wide-angle end of the entire system. Still another zoom lens according to the present invention, in order from the object side,
A first lens group having negative refractive power, a second lens group having positive refractive power, a third lens group having negative refractive power, a fourth lens group having positive refractive power, and a fifth lens group having positive refractive power, Zooming from the wide-angle end to the telephoto end is performed by fixing the first lens group and the fifth lens group and moving the second lens group to the fourth lens group toward the object side while changing the relative intervals, respectively. Focusing from a distant object to a finite object is performed by dividing the first lens group into a front group (G 11 ) having negative refractive power, a middle group (G 12 ) having positive refractive power, and a rear group (G 13 ) having negative refractive power. Then, in the state where the rear group (G 13 ) is fixed, the axial distance between the front group (G 11 ) and the middle group (G 12 ) is made variable, and each is moved toward the object side. It is characterized by satisfying the conditions. 0.2 <| φ 1W / φ W | <0.95 ··· (1) 0.1 <φ 234W / φ W <1.2 ··· (2) 1 <ΔG 11 / ΔG 12 <1. 8 (4) where φ 1W and φ 234W are the refracting power of the first lens group at the wide-angle end, the combined refracting power from the second lens group to the fourth lens group, and φ W is the wide angle of the entire system. The refractive power at the edge, ΔG 11
Is the amount of focusing movement to the shortest shooting distance of the front group (G 11 ) in the first lens group, ΔG 12 is the amount of focusing movement to the shortest shooting distance of the middle group (G 12 ) in the first lens group, It is assumed that the reference position of the amount of focusing movement is the infinite object position, and a negative sign is taken when moving to the object side.

【0008】[0008]

【作用】本発明において、上記構成をとる理由と作用に
ついて説明する。大口径広角ズームレンズには、前記し
たような負群先行型と正群先行型のズームレンズがある
が、広角化には、逆望遠タイプとなる前者が多く提案さ
れている。この理由としては、後者では、フォーカシン
グまで考慮する正屈折力の第1レンズ群が大きくなるこ
とがあげられる。一方で、負群先行型は、第1レンズ群
の屈折力が大きくなるために、これをフォーカシングレ
ンズ群とすれば、移動量を抑えることが可能である。
In the present invention, the reason why the above structure is adopted and the function thereof will be described. As the large-diameter wide-angle zoom lens, there are the negative group leading type and the positive group leading type zoom lenses as described above, but for widening the angle, the former of the reverse telephoto type has been proposed in many cases. The reason for this is that in the latter case, the first lens group having a positive refracting power, which takes into account even focusing, becomes large. On the other hand, in the negative group preceding type, since the refractive power of the first lens group becomes large, if this is used as the focusing lens group, the movement amount can be suppressed.

【0009】しかし、第2レンズ群に入射する光束が発
散性であるために、望遠域では球面収差やコマ収差の変
動が著しくなる傾向がある。したがって、大口径比化に
難点を持ったタイプであると考えられる。また、変倍率
を高くすと、本来全長が短くなる広角端でかなりレンズ
全長が大きくなるという特徴を潜在的に持っている。こ
れに対する解決方法としては、非球面の使用が一般化し
ているが、フォーカシングによる収差変動の課題までは
解決できない。
However, since the light beam incident on the second lens group is divergent, spherical aberration and coma aberration tend to be significantly changed in the telephoto range. Therefore, it is considered that this type has a difficulty in increasing the aperture ratio. In addition, it has the characteristic that the overall lens length becomes considerably large at the wide-angle end where the overall length becomes short when the zoom ratio is increased. As a solution to this, the use of an aspherical surface is generally used, but the problem of aberration variation due to focusing cannot be solved.

【0010】そこで、本発明では、操作性を考慮し、か
つ、近距離撮影においても安定した結像性能を維持する
ために、以下のレンズ構成を提案する。すなわち、物体
側より順に、負屈折力の第1レンズ群、正屈折力の第2
レンズ群、負屈折力の第3レンズ群、正屈折力の第4レ
ンズ群、及び、正屈折力の第5レンズ群より構成し、広
角端から望遠端までのズーミングは、第1レンズ群から
第5レンズ群中の少なくとも3つのレンズ群を移動する
ことによって行い、無限遠物体から有限遠物体へのフォ
ーカシングは、第1レンズ群を負屈折力の前群(G11
と正屈折力の中群(G12)と負屈折力の後群(G13)に
分割し、前群(G11)、中群(G12)各々が物体側に移
動することによって行うことを特徴とするズームレンズ
である。
Therefore, the present invention proposes the following lens structure in consideration of operability and in order to maintain stable image forming performance even in short-distance shooting. That is, in order from the object side, the first lens group having negative refractive power and the second lens group having positive refractive power
The third lens group having a negative refractive power, the fourth lens group having a positive refractive power, and the fifth lens group having a positive refractive power are used. Zooming from the wide-angle end to the telephoto end is performed from the first lens group. Focusing from an object at infinity to an object at finite distance is performed by moving at least three lens groups in the fifth lens group, and the first lens group has a negative refractive power front group (G 11 ).
And the middle group (G 12 ) of positive refracting power and the rear group (G 13 ) of negative refracting power, and the front group (G 11 ) and the middle group (G 12 ) each move toward the object side. Is a zoom lens.

【0011】本発明のズームレンズは、固定レンズ群と
しての第1レンズ群が強い発散性の屈折力を持つことが
1つの特徴である。また、可動レンズ群である正屈折力
の第2レンズ群をほぼ線形移動させる時に、負屈折力の
第3レンズ群を像面位置補正用に機能させることで、正
屈折力の第4レンズ群はほぼ線形に近い移動となる。ま
た、像面を起こす作用を担う固定の第5レンズ群が後置
される。この移動軌跡を示したのが図1である。図中、
第1〜第5レンズ群をそれぞれG1〜G5で示してあ
る。また、第1レンズ群G1の前群、中群、後群をそれ
ぞれG11、G12、G13で示してある。
One feature of the zoom lens of the present invention is that the first lens group as a fixed lens group has a strong divergent refractive power. Further, when the second lens group having a positive refractive power, which is a movable lens group, is moved substantially linearly, the third lens group having a negative refractive power is caused to function for image plane position correction, so that the fourth lens group having a positive refractive power is corrected. Is a movement that is almost linear. In addition, a fixed fifth lens group, which has a function of raising the image plane, is placed behind. FIG. 1 shows this movement locus. In the figure,
The first to fifth lens groups are indicated by G1 to G5, respectively. The front lens group, the middle lens group, and the rear lens group of the first lens group G1 are denoted by G 11 , G 12 , and G 13 , respectively.

【0012】ところで、負屈折力の第1レンズ群は、広
角域では、開口絞りとの光軸上距離が大きく軸外主光線
の入射角度が大きいので、画角の関数で展開される歪曲
収差とコマ収差の補正の間に困難が生じやすい。そのた
め、非球面の採用が望まれる。また、望遠域で補正過剰
となる球面収差の補正を第2レンズ群にて行うことが必
要になる。
In the wide-angle range, the first lens unit having a negative refractive power has a large distance on the optical axis from the aperture stop and a large incident angle of the off-axis chief ray, so that the distortion aberration developed as a function of the angle of view is large. A difficulty is likely to occur between the correction of coma and the coma. Therefore, adoption of an aspherical surface is desired. In addition, it is necessary to correct spherical aberration, which is overcorrected in the telephoto range, in the second lens group.

【0013】また、第3レンズ群のズーミング時の移動
は、変倍の増倍作用は低いが、一方で像面彎曲の補正に
有効である。また、第4レンズ群は、変倍時の増倍作用
を持つ。また、固定の第5レンズ群が正屈折力を持つた
めに、第1レンズ群から第4レンズ群の屈折力が大きく
なると同時に各レンズ群の屈折力が大きくなるのを抑え
るので、収差補正面では有利になる。また、良好に収差
補正する上で、以下の条件式を満たすことが望ましい。
Further, the movement of the third lens unit during zooming has a small effect of increasing the magnification, but on the other hand, it is effective for correcting the curvature of field. Further, the fourth lens group has a multiplying effect at the time of zooming. Further, since the fixed fifth lens group has a positive refracting power, it is possible to prevent the refracting powers of the first to fourth lens groups from increasing at the same time as increasing the refracting powers of the respective lens groups. Then it becomes advantageous. Further, in order to satisfactorily correct aberrations, it is desirable to satisfy the following conditional expression.

【0014】 0.2<|φ1W/φW |<0.95 ・・・(1) 0.1<φ234W/φW <1.2 ・・・(2) ただし、φ1W、φ234Wは広角端でのそれぞれ第1レンズ
群の屈折力、第2レンズ群から第4レンズ群までの合成
屈折力、φW は全系の広角端での屈折力である。
0.2 <| φ 1W / φ W | <0.95 ・ ・ ・ (1) 0.1 <φ 234W / φ W <1.2 ・ ・ ・ (2) However, φ 1W , φ 234W Is the refracting power of the first lens group at the wide-angle end, the combined refracting power from the second lens group to the fourth lens group, and φ W is the refracting power at the wide-angle end of the entire system.

【0015】条件式(1)は、発散作用を有する第1レ
ンズ群の屈折力を表し、広角化を意図する上で必要な条
件である。上限値の0.95を越えると、レンズ系全長
の短縮には効果が出るが、像面湾曲、倍率色収差、歪曲
収差等の軸外収差の補正が難しくなる。一方、下限値の
0.2を越えると、第1レンズ群内での収差補正面では
有利になるが、レンズ系全長と外径の増大傾向となり、
望ましくない。
Conditional expression (1) represents the refracting power of the first lens unit having a divergent action, and is a condition necessary for widening the angle of view. When the upper limit of 0.95 is exceeded, it is effective in reducing the total length of the lens system, but it becomes difficult to correct off-axis aberrations such as field curvature, chromatic aberration of magnification, and distortion. On the other hand, when the lower limit of 0.2 is exceeded, it is advantageous in terms of aberration correction in the first lens group, but there is a tendency for the total length of the lens system and the outer diameter to increase.
Not desirable.

【0016】条件式(2)は、全体として正の屈折力の
第2レンズ群から第4レンズ群までの合成屈折力を規定
する。上限値の1.2を越えると、各レンズ群の厚肉レ
ンズ成分が大きく構成される結果を招き、収差補正面で
の有利さよりズーミング時の移動空間が充分に確保でき
ず、変倍率を下げる必要が生ずるので、望ましくない。
また、第5レンズ群の軸外光束通過位置が高くなりやす
く、機構構成上とカメラミラー禁止域の制限が発生し、
望ましくない結果となる。下限値の0.1を越える時、
高次収差発生を招くこととなり、コマ収差、球面収差等
の製造誤差に対する感度が高くなり、望ましくない。
Conditional expression (2) defines the combined refracting power from the second lens group to the fourth lens group having a positive refracting power as a whole. If the upper limit of 1.2 is exceeded, the thick lens component of each lens group will be made large, and it will not be possible to secure a sufficient moving space during zooming due to the advantage in terms of aberration correction, and the scaling factor will be reduced. It is not desirable because it will be necessary.
Further, the off-axis light flux passing position of the fifth lens group is likely to be high, which causes a restriction in the mechanical structure and the camera mirror prohibited area,
The result is undesired. When the lower limit of 0.1 is exceeded,
This leads to the generation of higher-order aberrations, which increases sensitivity to manufacturing errors such as coma and spherical aberration, which is not desirable.

【0017】また、前記の如く負群先行型のズームレン
ズでは、広角側よりもむしろ望遠側でフォーカシング時
の球面収差の変動が著しく顕著であり、この対策が望ま
れている。本発明では、フォーカシングレンズ群を第1
レンズ群とすることは、従来と同様であるが、無限遠物
体から有限遠物体へのフォーカシングをするために、第
1レンズ群を負屈折力の前群(G11)と正屈折力の中群
(G12)と負屈折力の後群(G13)に分割し、前群(G
11)、中群(G12)各々が物体側に移動することによっ
て無限遠物体から有限遠物体へのフォーカシングを実現
するようにしている。
Further, as described above, in the zoom lens of the negative group preceding type, the fluctuation of the spherical aberration during focusing on the telephoto side rather than the wide angle side is remarkably remarkable, and a countermeasure against this is desired. In the present invention, the focusing lens group is the first
Although the lens group is the same as the conventional one, in order to focus from an object at infinity to an object at finite distance, the first lens group is formed of a front lens group (G 11 ) of negative refracting power and a positive refracting power. It is divided into a group (G 12 ) and a rear group (G 13 ) of negative refracting power, and a front group (G 12 )
11 ) and each of the middle group (G 12 ) move toward the object side to realize focusing from an object at infinity to an object at finite distance.

【0018】第1レンズ群内の前群(G11)は、負レン
ズ成分を少なくとも2枚で構成し、入射する軸外光束を
中群(G12)に射出する角度を緩くし、サジタルコマ収
差の発生を抑える。さらに、フォーカシング時に、前群
(G11)と中群(G12)の軸上間隔を可変とすること
で、軸外収差の変動を容易に抑え得る。また、負屈折力
の後群(G13)は、像面湾曲補正に用いるフィールドフ
ラットナーレンズであり、中群(G12)との軸上間隔を
可変とすることで、さらに強い効果を得ることが可能で
ある。この考えは、広角系レンズのフローティングの考
え方に共通するものである。
The front lens group (G 11 ) in the first lens group is composed of at least two negative lens components, and the incident off-axis light beam is made gentle to the middle lens group (G 12 ) to reduce the sagittal coma aberration. Suppress the occurrence of. Furthermore, by changing the axial distance between the front lens group (G 11 ) and the middle lens group (G 12 ) during focusing, fluctuations in off-axis aberrations can be easily suppressed. The rear group (G 13 ) of negative refracting power is a field flattener lens used for field curvature correction, and the axial distance from the middle group (G 12 ) is made variable to obtain a stronger effect. It is possible. This idea is common to the idea of floating wide-angle lenses.

【0019】収差補正とフォーカシング時の収差変動の
程度を考慮した時に、以下の条件式を満足することが望
ましい。 0.5<|φ11/φ12|<3.0 ・・・(3) ただし、φ11は第1レンズ群内の前群(G11)の屈折
力、φ12は第1レンズ群内の中群(G12)の屈折力であ
る。
In consideration of the degree of aberration variation during aberration correction and focusing, it is desirable to satisfy the following conditional expression. 0.5 <| φ 11 / φ 12 | <3.0 (3) where φ 11 is the refracting power of the front group (G 11 ) in the first lens group, and φ 12 is the first lens group. It is the refractive power of the middle group (G 12 ).

【0020】条件式(3)の上限値の3.0を越える時
に、前群(G11)の発散作用が強くなりすぎて負レンズ
成分の増加が必要となり、像面湾曲増大等、結像性能面
で不利になる。また、下限値の0.5を越える時、収差
補正面で有利となるが、軸外光束の通過位置が高くな
り、レンズ系の大型化を招く。
When the upper limit of 3.0 of the conditional expression (3) is exceeded, the diverging action of the front lens group (G 11 ) becomes too strong and the negative lens component must be increased, which causes an increase in field curvature and the like. It is disadvantageous in terms of performance. On the other hand, when the lower limit of 0.5 is exceeded, it is advantageous in terms of aberration correction, but the passing position of the off-axis light beam becomes high, and the lens system becomes large.

【0021】また、各々の焦点距離変化に関わらず、第
1レンズ群内の前群(G11)と中群(G12)の最短撮影
距離におけるフォーカシング移動量比は、以下の関係で
あることが望ましい。
The focusing movement amount ratio at the shortest shooting distance between the front lens group (G 11 ) and the middle lens group (G 12 ) in the first lens group should have the following relationship, regardless of changes in the focal lengths. Is desirable.

【0022】 1<ΔG11/ΔG12<1.8 ・・・(4) ただし、ΔG11は第1レンズ群内の前群(G11)の最短
撮影距離までのフォーカシング移動量、ΔG12は第1レ
ンズ群内の中群(G12)の最短撮影距離までのフォーカ
シング移動量であり、フォーカシング移動量の基準位置
を無限遠物体位置とし、物体側に移動する時に負符号を
とるものとする。
1 <ΔG 11 / ΔG 12 <1.8 (4) where ΔG 11 is the focusing movement amount to the shortest shooting distance of the front lens group (G 11 ) in the first lens group, and ΔG 12 is It is the focusing movement amount up to the shortest shooting distance of the middle group (G 12 ) in the first lens group, and the reference position of the focusing movement amount is the object position at infinity, and a negative sign is taken when moving to the object side. .

【0023】条件式(4)は、有限遠物体へのフォーカ
シング時の移動量関係を意味しており、第1レンズ群の
みの移動ではフォーカシングによる収差変動が著しく、
後群(G13)の配置のみでは、像面の変動に対する効果
はあるがまだ実用面で充分ではなく、前群(G11)の移
動速度より中群(G12)の移動速度を遅らせることによ
り、収差変動の抑制をすることを可能とした。したがっ
て、上限値の1.8の範囲外では、第1レンズ群内での
フォーカシングによる収差変動が逆に大きくなり、本発
明のレンズ構成では性能面での問題が発生する。また、
下限値の1を越える時、レンズ成分間の干渉が起き得、
かつ、収差変動補正効果が著しく低減するので、望まし
くない。
Conditional expression (4) means the relationship of the amount of movement at the time of focusing on an object at a finite distance, and when only the first lens group is moved, aberration fluctuation due to focusing is remarkable,
Only the arrangement of the rear group (G 13 ) has an effect on the fluctuation of the image plane, but it is still not practically sufficient, and the moving speed of the middle group (G 12 ) is delayed from the moving speed of the front group (G 11 ). This makes it possible to suppress aberration fluctuations. Therefore, outside the upper limit of 1.8, the fluctuation of aberration due to focusing in the first lens group becomes large on the contrary, which causes a problem in performance in the lens configuration of the present invention. Also,
When the lower limit of 1 is exceeded, interference between lens components may occur,
In addition, the effect of correcting aberration variation is significantly reduced, which is not desirable.

【0024】次に、後記する実施例1に基づて、収差変
動の状況を三次収差係数で見ることにする。ここで、表
−1、表−2に広角端及び望遠端の無限遠物体と至近距
離(1m以下)の三次球面収差係数SA3、三次コマ収
差係数CM3、及び、三次非点収差係数AS3を示す。
収差係数の符号は実収差と対応している。また、広角端
と望遠端では、正規化する焦点距離は同一である。
Next, based on Example 1 which will be described later, the situation of aberration variation will be viewed with a third-order aberration coefficient. Here, Table-1 and Table-2 show the third-order spherical aberration coefficient SA3, third-order coma-aberration coefficient CM3, and third-order astigmatism coefficient AS3 at infinite distance objects at the wide-angle end and the telephoto end and at a close range (1 m or less). .
The sign of the aberration coefficient corresponds to the actual aberration. Further, the focal length to be normalized is the same at the wide-angle end and the telephoto end.

【0025】 [0025]

【0026】 [0026]

【0027】広角端での各収差係数によれば、球面収
差、非点収差とコマ収差係数の変化は逆方向であるもの
の、フォーカシングレンズ群以外のレンズ群での収差発
生状況が無限遠物体と有限遠物体で大きく異ならないた
めに、フォーカシング部での収差発生量が全系の性能に
寄与することになる。したがって、表−1、表−2に示
すように、前群(G11)、中群(G12)、後群(G13
で補正がなされていることが分かる。望遠端では、特に
球面収差の変動が大きいことが分かるが、特に発散性の
前群(G11)で発生する過剰補正球面収差が中群
(G12)にて補正不足の球面収差を発生させることで打
ち消して補償していることが分かる。後群(G13)によ
る発生量は、無限遠物体と有限遠物体時でほとんど変化
しないので、球面収差に対する補正作用の点では、中群
(G12)の作用が極めて重要であることが分かる。
According to each aberration coefficient at the wide-angle end, although the spherical aberration, astigmatism, and coma aberration change in opposite directions, the aberrations occurring in the lens groups other than the focusing lens group are similar to those of an infinite object. Since the objects at a finite distance do not differ greatly, the amount of aberration generated in the focusing portion contributes to the performance of the entire system. Therefore, as shown in Tables 1 and 2, the front group (G 11 ), the middle group (G 12 ), the rear group (G 13 ).
It can be seen that the correction has been made. At the telephoto end, it can be seen that the spherical aberration fluctuates particularly, but the overcorrected spherical aberration generated in the divergent front group (G 11 ) causes the undercorrected spherical aberration in the middle group (G 12 ). It can be seen that it cancels and compensates. Since the amount generated by the rear group (G 13 ) hardly changes between an object at infinity and an object at finite distance, it can be seen that the effect of the middle group (G 12 ) is extremely important in terms of correcting spherical aberration. .

【0028】[0028]

【実施例】以下、本発明の実施例1〜3のズームレンズ
について説明する。各実施例の数値データは後記する
が、実施例1〜3の無限遠物体での広角端(a)と望遠
端(b)のレンズ断面図をそれぞれ図2〜図4に示す。
EXAMPLES The zoom lenses of Examples 1 to 3 of the present invention will be described below. Numerical data of each example will be described later, but FIGS. 2 to 4 show lens cross-sectional views of the wide-angle end (a) and the telephoto end (b) of the infinitely distant objects of Examples 1 to 3, respectively.

【0029】実施例1は、画角73.54°から35.
54°の口径比1:2.85の広角大口径比ズームレン
ズである。発散性の第1レンズ群G1は、物体側に凸面
を向けた負メニスカスレンズと両凹レンズでその前群G
11を構成しており、中群G12は、物体側に凸面を向けた
正メニスカスレンズにて構成している。また、フィール
ドフラットナーレンズの後群G13は、物体側に凸面を向
けた負メニスカスレンズである。
In the first embodiment, the angle of view from 73.54 ° to 35.
It is a wide-angle large-aperture-ratio zoom lens with an aperture ratio of 54 ° of 1: 2.85. The divergent first lens group G1 includes a negative meniscus lens having a convex surface directed toward the object side and a biconcave lens, and the front group G1 thereof.
The intermediate group G 12 includes a positive meniscus lens having a convex surface directed toward the object side. The rear group G 13 of the field flattener lens is a negative meniscus lens having a convex surface directed toward the object side.

【0030】すでに述べたように、前群G11と中群G12
を可変間隔とすることで、補正が困難なサジタルコマ収
差を補正可能とするのと同時に、ズームレンズで問題と
なる二線ボケ等の改善にも結び付いている。また、軸外
像面の平坦性を表す像面湾曲の補正には、中群G12と後
群G13の間隔を可変とすることで、フォーカシングによ
る収差変動を解決している。正屈折力の第2レンズ群G
2の屈折力とレンズ構成は、球面収差の補正に大きな作
用を担っており、望遠側の口径比制限と関係するので重
要である。レンズ構成は、接合レンズを含み、正レンズ
成分2枚を最少構成としている。この実施例では、物体
側に凸面を向けた正メニスカスレンズと、物体側に凸面
を向けた負メニスカスレンズ、物体側に凸面を向けた正
メニスカスレンズの接合レンズと、両凸レンズとから構
成している。
As already mentioned, the front group G 11 and the middle group G 12
The variable spacing makes it possible to correct sagittal coma aberration, which is difficult to correct, and at the same time, it also leads to improvement of two-line blurring, which is a problem in zoom lenses. Further, in correcting the field curvature that represents the flatness of the off-axis image surface, the distance between the middle group G 12 and the rear group G 13 is made variable to solve the aberration variation due to focusing. Second lens unit G having positive refractive power
The refracting power of 2 and the lens configuration play a large role in correcting spherical aberration, and are important because they are related to the aperture ratio limitation on the telephoto side. The lens configuration includes a cemented lens and has a minimum of two positive lens components. In this embodiment, a positive meniscus lens having a convex surface on the object side, a negative meniscus lens having a convex surface on the object side, a cemented lens of a positive meniscus lens having a convex surface on the object side, and a biconvex lens are used. There is.

【0031】また、負屈折力の第3レンズ群G3は、正
レンズと負レンズの接合レンズを少なくとも1つ含むこ
とで、ズーミング時の像面湾曲補正の際に色収差の変動
が大きくならぬようにしている。この実施例では、像側
に凸面を向けた正メニスカスレンズと両凹レンズの接合
レンズであり、その物体側に絞りが一体に配置されてい
る。
Further, the third lens group G3 having negative refracting power includes at least one cemented lens of a positive lens and a negative lens so that the variation of chromatic aberration does not become large during the field curvature correction during zooming. I have to. In this embodiment, it is a cemented lens of a positive meniscus lens having a convex surface facing the image side and a biconcave lens, and an aperture is integrally arranged on the object side.

【0032】正屈折力の第4レンズ群G4は、正レンズ
と負レンズの接合レンズと1枚の正レンズ成分を有して
いてリレーレンズとして作用する。この実施例では、像
側に凸面を向けた正メニスカスレンズと、両凸レンズ、
像側に凸面を向けた負メニスカスレンズの接合レンズと
から構成している。
The fourth lens group G4 having a positive refracting power has a cemented lens of a positive lens and a negative lens and one positive lens component, and acts as a relay lens. In this embodiment, a positive meniscus lens having a convex surface facing the image side, a biconvex lens,
It is composed of a cemented lens of a negative meniscus lens with a convex surface facing the image side.

【0033】また、第5レンズ群G5は正レンズ成分で
あり、第1レンズ群G1から第4レンズ群G4で残る像
面の倒れを補正する重要な作用を持っている。このレン
ズ群を配することで、第1レンズ群G1から第4レンズ
群G4までの各々のレンズ群の屈折力が必要以上に大き
くなることを抑え得る。この実施例では、両凸レンズと
像側に凸面を向けた負メニスカスレンズの接合レンズで
ある。
The fifth lens group G5 is a positive lens component, and has an important function of correcting the tilt of the image plane remaining in the first lens group G1 to the fourth lens group G4. By disposing this lens group, it is possible to prevent the refractive power of each lens group from the first lens group G1 to the fourth lens group G4 from becoming unnecessarily large. In this embodiment, it is a cemented lens of a biconvex lens and a negative meniscus lens having a convex surface facing the image side.

【0034】また、非球面は、第1レンズ群G1の第1
レンズ成分の裏面、第2レンズ群G2の最終レンズ成分
の表面、及び、第4レンズ群G4の第1レンズ成分の表
面の3面に用いており、第1レンズ群G1の第1レンズ
成分の裏面に用いた非球面は歪曲収差の補正に大きな効
果を持ち、これを補正することで、コマ収差の劣化を招
くことが少ない。第2レンズ群G2で使用した非球面
は、望遠域での軸上球面収差の補正を意図している。ま
た、第4レンズ群G4内に使用している非球面は軸外コ
マ収差等の補正を有効に行うために使用している。
The aspherical surface is the first lens group of the first lens group G1.
It is used for the three surfaces of the back surface of the lens component, the front surface of the final lens component of the second lens group G2, and the front surface of the first lens component of the fourth lens group G4. The aspherical surface used for the back surface has a great effect on the correction of the distortion aberration, and by correcting this, the deterioration of the coma aberration is less likely to occur. The aspherical surface used in the second lens group G2 is intended to correct axial spherical aberration in the telephoto range. The aspherical surface used in the fourth lens group G4 is used to effectively correct off-axis coma.

【0035】実施例1の収差図を図5〜図10に示す。
図5は広角端の無限遠物体における収差図、図6は広角
端の有限遠物体でレンズ第1面頂点より0.67mでの
収差図を示す。収差図は、球面収差、非点収差、倍率色
収差及び歪曲収差を示す。以下、同じ。図5、図6で見
られるように、フォーカシングによる収差変動は非常に
小さいことが明らかである。また、中間焦点距離の無限
遠物体における収差図を図7に、中間焦点距離における
有限遠物体で0.89mでの収差図を図8に示す。さら
に、望遠端の無限遠物体における収差図を図9に、望遠
端の有限遠物体で0.98mでの収差図を図10に示
す。何れも、フォーカシング時の収差変動が小さく抑え
られていることが示されている。
Aberration diagrams of Example 1 are shown in FIGS.
FIG. 5 is an aberration diagram for an object at infinity at the wide-angle end, and FIG. 6 is an aberration diagram for an object at finite distance at the wide-angle end at 0.67 m from the apex of the first lens surface. The aberration diagram shows spherical aberration, astigmatism, lateral chromatic aberration, and distortion. same as below. As can be seen from FIGS. 5 and 6, it is clear that the aberration variation due to focusing is very small. Further, FIG. 7 shows an aberration diagram for an object at infinity at an intermediate focal length, and FIG. 8 shows an aberration diagram for an object at finite distance at an intermediate focal length at 0.89 m. Further, FIG. 9 shows an aberration diagram of an object at infinity at the telephoto end, and FIG. 10 shows an aberration diagram of a finite object at the telephoto end at 0.98 m. It is shown that the aberration variation during focusing is suppressed to be small in all cases.

【0036】なお、図6の状態では、前群G11と中群G
12の間隔(d4 )は無限遠物体時における1.945か
ら2.631に増加し、中群G12と後群G13の間隔(d
6 )は無限遠物体時における0.500から3.710
に増加する。図8の状態では、前群G11と中群G12の間
隔(d4 )は無限遠物体時における1.945から2.
088に増加し、中群G12と後群G13の間隔(d6 )は
無限遠物体時における0.500から4.303に増加
する。図10の状態では、前群G11と中群G12の間隔
(d4 )は無限遠物体時における1.945から2.0
96に増加し、中群G12と後群G13の間隔(d6 )は無
限遠物体時における0.500から3.889に増加す
る。
In the state of FIG. 6, the front group G 11 and the middle group G 11
12 distance (d 4) is increased from 1.945 at infinity object to 2.631, the spacing of the middle group G 12 and the rear group G 13 (d
6 ) is from 0.500 to 3.710 for an object at infinity
Increase to. In the state of FIG. 8, the distance (d 4 ) between the front group G 11 and the middle group G 12 is from 1.945 to 2.
The distance (d 6 ) between the middle group G 12 and the rear group G 13 increases from 0.500 at an object at infinity to 4.303. In the state of FIG. 10, the distance (d 4 ) between the front group G 11 and the middle group G 12 is from 1.945 to 2.0 at the time of an object at infinity.
96, and the distance (d 6 ) between the middle group G 12 and the rear group G 13 increases from 0.500 at an object at infinity to 3.889.

【0037】また、実施例2は、画角73.58°から
35.59°の口径比1:2.85の広角大口径比ズー
ムレンズである。実施例1に対して、第5レンズ群G5
を正レンズ成分1枚で構成したものである。
The second embodiment is a wide-angle, large-aperture-ratio zoom lens having an aperture ratio of 1: 2.85 with a field angle of 73.58 ° to 35.59 °. As compared with Example 1, the fifth lens group G5
Is composed of one positive lens component.

【0038】第1レンズ群G1は、物体側に凸面を向け
た負メニスカスレンズと両凹レンズでその前群G11を、
物体側に凸面を向けた正メニスカスレンズにて中群G12
を、物体側に凸面を向けた負メニスカスレンズで後群G
13をそれぞれ構成している。第2レンズ群G2は、物体
側に凸面を向けた正メニスカスレンズと、物体側に凸面
を向けた負メニスカスレンズ、物体側に凸面を向けた正
メニスカスレンズの接合レンズと、両凸レンズとから構
成している。
The first lens group G1 is a negative meniscus lens having a convex surface directed toward the object side and a biconcave lens, and its front group G 11 is composed of:
Middle group G 12 with a positive meniscus lens with the convex surface facing the object side
With a negative meniscus lens with a convex surface facing the object side.
13 are composed respectively. The second lens group G2 includes a positive meniscus lens having a convex surface facing the object side, a negative meniscus lens having a convex surface facing the object side, a cemented lens of a positive meniscus lens having a convex surface facing the object side, and a biconvex lens. is doing.

【0039】第3レンズ群G3は、像側に凸面を向けた
正メニスカスレンズと両凹レンズの接合レンズで構成し
ており、その物体側に絞りが一体に配置されている。第
4レンズ群G4は、像側に凸面を向けた正メニスカスレ
ンズと、両凸レンズ、両凹レンズの接合レンズとから構
成している。また、第5レンズ群G5は、両凸レンズ1
枚で構成している。非球面は、第1レンズ群G1の第1
レンズ成分の裏面、第2レンズ群G2の最終レンズ成分
の表面、及び、第4レンズ群G4の最終レンズ成分の裏
面の3面に用いている。
The third lens group G3 is composed of a cemented lens of a positive meniscus lens having a convex surface facing the image side and a biconcave lens, and an aperture is integrally arranged on the object side. The fourth lens group G4 includes a positive meniscus lens having a convex surface directed toward the image side, and a cemented lens including a biconvex lens and a biconcave lens. The fifth lens group G5 includes the biconvex lens 1
It consists of one sheet. The aspherical surface is the first lens of the first lens group G1.
It is used for the three surfaces of the back surface of the lens component, the front surface of the final lens component of the second lens group G2, and the back surface of the final lens component of the fourth lens group G4.

【0040】実施例2の収差図を図11〜図16に示
す。広角端の無限遠物体における収差を図11に、広角
端の有限遠物体でレンズ第1面頂点より0.67mでの
収差を図12に、中間焦点距離の無限遠物体における収
差図を図13に、中間焦点距離における有限遠物体で
0.89mでの収差図を図14に、望遠端の無限遠物体
における収差図を図15に、望遠端の有限遠物体で0.
98mでの収差図を図16に示す。
Aberration diagrams of Example 2 are shown in FIGS. FIG. 11 shows aberrations at an object at infinity at the wide-angle end, FIG. 12 shows aberrations at an object at finite distance at the wide-angle end at 0.67 m from the apex of the first lens surface, and FIG. 13 shows aberration diagrams at an object at infinity at an intermediate focal length. FIG. 14 shows an aberration diagram at 0.89 m for a finite object at the intermediate focal length, FIG. 15 shows an aberration diagram for an infinite object at the telephoto end, and FIG.
The aberration diagram at 98 m is shown in FIG.

【0041】なお、図12の状態では、前群G11と中群
12の間隔(d4 )は無限遠物体時における2.812
から3.089に増加し、中群G12と後群G13の間隔
(d6)は無限遠物体時における0.500から5.2
76に増加する。図14の状態では、前群G11と中群G
12の間隔(d4 )は無限遠物体時における2.812か
ら2.949に増加し、中群G12と後群G13の間隔(d
6 )は無限遠物体時における0.500から4.440
に増加する。図16の状態では、前群G11と中群G12
間隔(d4 )は無限遠物体時における2.812から
2.964に増加し、中群G12と後群G13の間隔
(d6 )は無限遠物体時における0.500から3.9
88に増加する。
In the state of FIG. 12, the distance (d 4 ) between the front group G 11 and the middle group G 12 is 2.812 when an object is at infinity.
The distance (d 6 ) between the middle group G 12 and the rear group G 13 increases from 0.500 to 5.2 at an object at infinity.
Increase to 76. In the state of FIG. 14, the front group G 11 and the middle group G
12 distance (d 4) is increased from 2.812 at infinity object to 2.949, the spacing of the middle group G 12 and the rear group G 13 (d
6 ) is from 0.500 to 4.440 for an infinite object
Increase to. In the state of FIG. 16, the distance between the front group G 11 and Chugun G 12 (d 4) is infinity increased from 2.812 at the object at the time of 2.964, the distance between the middle lens group G 12 rear group G 13 ( d 6 ) is from 0.500 to 3.9 when the object is at infinity.
Increase to 88.

【0042】実施例3は、画角73.45°から35.
54°の口径比1:2.85の広角大口径比ズームレン
ズである。この実施例は、第1レンズ群G1の外径が極
めて小型化され得ることが効果として得られる。また、
この実施例では、第4レンズ群G4内の一部が空気レン
ズとなっている。
In the third embodiment, the angle of view is from 73.45 ° to 35.
It is a wide-angle large-aperture-ratio zoom lens with an aperture ratio of 54 ° of 1: 2.85. This example has the effect that the outer diameter of the first lens group G1 can be made extremely small. Also,
In this embodiment, a part of the fourth lens group G4 is an air lens.

【0043】第1レンズ群G1は、物体側に凸面を向け
た負メニスカスレンズ2枚でその前群G11を、物体側に
凸面を向けた正メニスカスレンズにて中群G12を、物体
側に凸面を向けた負メニスカスレンズで後群G13をそれ
ぞれ構成している。第2レンズ群G2は、物体側に凸面
を向けた正メニスカスレンズと、物体側に凸面を向けた
負メニスカスレンズ、物体側に凸面を向けた正メニスカ
スレンズの接合レンズと、両凸レンズとから構成してい
る。
The first lens group G1 is composed of two negative meniscus lenses having a convex surface facing the object side, the front group G 11 thereof, and a positive meniscus lens having a convex surface facing the object side is the middle group G 12 ; The negative meniscus lens having the convex surface facing toward each other constitutes the rear group G 13 . The second lens group G2 includes a positive meniscus lens having a convex surface facing the object side, a negative meniscus lens having a convex surface facing the object side, a cemented lens of a positive meniscus lens having a convex surface facing the object side, and a biconvex lens. is doing.

【0044】第3レンズ群G3は、像側に凸面を向けた
正メニスカスレンズと両凹レンズの接合レンズで構成し
ており、その物体側に絞りが一体に配置されている。第
4レンズ群G4は、両凸レンズと、像側に凸面を向けた
正メニスカスレンズと、像側に凸面を向けた負メニスカ
スレンズとから構成している。また、第5レンズ群G5
は、両凸レンズ1枚で構成している。非球面は、第1レ
ンズ群G1の第1レンズ成分の裏面、第2レンズ群G2
の最終レンズ成分の表面、及び、第4レンズ群G4の最
終レンズ成分の裏面の3面に用いている。
The third lens group G3 is composed of a cemented lens of a positive meniscus lens having a convex surface facing the image side and a biconcave lens, and an aperture is integrally arranged on the object side. The fourth lens group G4 includes a biconvex lens, a positive meniscus lens having a convex surface directed toward the image side, and a negative meniscus lens having a convex surface directed toward the image side. In addition, the fifth lens group G5
Consists of one biconvex lens. The aspherical surface is the back surface of the first lens component of the first lens group G1, the second lens group G2.
Are used for the three surfaces of the front surface of the final lens component of and the back surface of the final lens component of the fourth lens group G4.

【0045】実施例3の収差図を図17〜図22に示
す。広角端の無限遠物体における収差を図17に、広角
端の有限遠物体でレンズ第1面頂点より0.66mでの
収差を図18に、中間焦点距離の無限遠物体における収
差図を図19に、中間焦点距離における有限遠物体で
0.88mでの収差図を図20に、望遠端の無限遠物体
における収差図を図21に、望遠端の有限遠物体で0.
97mでの収差図を図22に示す。
Aberration diagrams of the third embodiment are shown in FIGS. FIG. 17 shows aberrations of an object at infinity at the wide-angle end, FIG. 18 shows aberrations of a finite object at the wide-angle end at 0.66 m from the apex of the first lens surface, and FIGS. 20 shows an aberration diagram at 0.88 m for a finite object at the intermediate focal length, FIG. 21 shows an aberration diagram for an infinite object at the telephoto end, and FIG.
The aberration diagram at 97 m is shown in FIG.

【0046】なお、図18の状態では、前群G11と中群
12の間隔(d4 )は無限遠物体時における2.266
から3.095に増加し、中群G12と後群G13の間隔
(d6)は無限遠物体時における0.543から5.5
42に増加する。図20の状態では、前群G11と中群G
12の間隔(d4 )は無限遠物体時における2.266か
ら2.578に増加し、中群G12と後群G13の間隔(d
6 )は無限遠物体時における0.543から6.053
に増加する。図22の状態では、前群G11と中群G12
間隔(d4 )は無限遠物体時における2.266から
2.624に増加し、中群G12と後群G13の間隔
(d6 )は無限遠物体時における0.543から5.1
60に増加する。
In the state shown in FIG. 18, the distance (d 4 ) between the front group G 11 and the middle group G 12 is 2.266 when an object at infinity is used.
From 3.043 to 3.095, the distance (d 6 ) between the middle group G 12 and the rear group G 13 is changed from 0.543 to 5.5 at an object at infinity.
42. In the state of FIG. 20, the front group G 11 and the middle group G
12 distance (d 4) is increased from 2.266 at infinity object to 2.578, the spacing of the middle group G 12 and the rear group G 13 (d
6 ) is from 0.543 to 6.053 for an object at infinity
Increase to. In the state of FIG. 22, the distance between the front group G 11 and Chugun G 12 (d 4) is infinity increased from 2.266 at the object at the time of 2.624, the distance between the middle lens group G 12 rear group G 13 ( d 6 ) is 0.543 to 5.1 for an infinitely distant object.
Increase to 60.

【0047】以下に、各実施例の数値データを示すが、
記号は上記の外、fは全系焦点距離、FNOはFナンバ
ー、2ωは画角、r1 、r2 …は各レンズ面の曲率半
径、d1、d2 …は各レンズ面間の間隔、nd1、nd2
は各レンズのd線の屈折率、νd1、νd2…は各レンズの
アッベ数である。なお、非球面形状は、光軸上光の進行
方向をx、光軸に直交する方向をyとしたとき、次の式
で表される。 x=(y2 /r)/[1+{1−(y/r)2 1/2
+A44 +A66 +A88 +A10 10 ただし、rは近軸曲率半径、A4、A6、A8、A10 はそれぞ
れ4次、6次、8次、10次の非球面係数である。
The numerical data of each example are shown below.
Symbols are other than the above, f is the focal length of the entire system, F NO is the F number, 2ω is the angle of view, r 1 , r 2 ... Is the radius of curvature of each lens surface, and d 1 , d 2 ... Is between each lens surface. Interval, n d1 , n d2 ...
Is the d-line refractive index of each lens, and ν d1 , ν d2 ... Is the Abbe number of each lens. The aspherical shape is expressed by the following equation, where x is the traveling direction of light on the optical axis and y is the direction orthogonal to the optical axis. x = (y 2 / r) / [1+ {1- (y / r) 2} 1/2]
+ A 4 y 4 + A 6 y 6 + A 8 y 8 + A 10 y 10 However, r is the paraxial radius of curvature, and A 4 , A 6 , A 8 , and A 10 are the 4th, 6th, 8th, and 10th orders, respectively. It is an aspherical coefficient.

【0048】実施例1 f = 28.950 〜 52.001 〜 67.501 FNO= 2.85 〜 2.85 〜 2.85 2ω= 73.4 °〜 45.2 °〜 35.4 ° r1 = 118.8694 d1 = 1.7000 nd1 =1.60342 νd1 =38.01 r2 = 24.8027(非球面) d2 =11.5689 r3 = -96.2164 d3 = 1.7000 nd2 =1.49782 νd2 =66.83 r4 = 147.6071 d4 = 1.9451 r5 = 57.7091 d5 = 4.3718 nd3 =1.80518 νd3 =25.43 r6 = 253.0803 d6 = 0.5000 r7 = 84.6626 d7 = 1.7000 nd4 =1.49700 νd4 =81.61 r8 = 46.9601 d8 =(可変) r9 = 45.5868 d9 = 4.4110 nd5 =1.80610 νd5 =40.95 r10= 140.6935 d10= 0.1000 r11= 65.6584 d11= 1.7000 nd6 =1.80518 νd6 =25.43 r12= 23.2774 d12= 8.1471 nd7 =1.69680 νd7 =55.52 r13= 162.1932 d13= 0.1000 r14= 54.7604(非球面) d14= 4.6107 nd8 =1.81554 νd8 =44.36 r15= -706.7788 d15=(可変) r16= ∞(絞り) d16= 2.5400 r17= -101.2008 d17= 5.1588 nd9 =1.78470 νd9 =26.22 r18= -17.6567 d18= 1.7000 nd10=1.79952 νd10=42.24 r19= 44.0678 d19=(可変) r20= -56.6426(非球面) d20= 5.8584 nd11=1.80100 νd11=34.97 r21= -34.3019 d21= 0.1000 r22= 99.3499 d22= 8.8319 nd12=1.56873 νd12=63.16 r23= -22.1708 d23= 0.5000 nd13=1.80518 νd13=25.43 r24= -150.1097 d24=(可変) r25= 263.2085 d25= 5.5248 nd14=1.77250 νd14=49.66 r26= -72.7759 d26= 1.7000 nd15=1.80518 νd15=25.43 r27= -81.9754 非球面係数 第2面 A4 =-0.40787×10-5 A6 =-0.69357×10-8 A8 = 0.80237×10-11 A10=-0.36456×10-13 第14面 A4 =-0.89659×10-6 A6 =-0.44490×10-9 A8 = 0.27638×10-11 A10=-0.23523×10-14 第20面 A4 = 0.13481×10-5 A6 =-0.14582×10-7 A8 = 0.11878×10-9 A10=-0.26708×10-12
Example 1 f = 28.950 ~ 52.001 ~ 67.501 F NO = 2.85 ~ 2.85 ~ 2.85 2ω = 73.4 ° ~ 45.2 ° ~ 35.4 ° r 1 = 118.8694 d 1 = 1.7000 n d1 = 1.60342 ν d1 = 38.01 r 2 = 24.8027 (aspherical surface) d 2 = 11.5689 r 3 = -96.2164 d 3 = 1.7000 n d2 = 1.49782 ν d2 = 66.83 r 4 = 147.6071 d 4 = 1.9451 r 5 = 57.7091 d 5 = 4.3718 n d3 = 1.80518 ν d3 = 25.43 r 6 = 253.0803 d 6 = 0.5000 r 7 = 84.6626 d 7 = 1.7000 n d4 = 1.49700 ν d4 = 81.61 r 8 = 46.9601 d 8 = (variable) r 9 = 45.5868 d 9 = 4.4110 n d5 = 1.80610 ν d5 = 40.95 r 10 = 140.6935 d 10 = 0.1000 r 11 = 65.6584 d 11 = 1.7000 n d6 = 1.80518 ν d6 = 25.43 r 12 = 23.2774 d 12 = 8.1471 n d7 = 1.69680 ν d7 = 55.52 r 13 = 162.1932 d 13 = 0.1000 r 14 = 54.7604 (aspherical surface) d 14 = 4.6107 n d8 = 1.81554 ν d8 = 44.36 r 15 = -706.7788 d 15 = (variable) r 16 = ∞ (aperture) d 16 = 2.5400 r 17 = -101.2008 d 17 = 5.1588 n d9 = 1.78470 ν d9 = 26.22 r 1 8 = -17.6567 d 18 = 1.7000 n d10 = 1.79952 ν d10 = 42.24 r 19 = 44.0678 d 19 = (Variable) r 20 = -56.6426 (aspherical) d 20 = 5.8584 n d11 = 1.80100 ν d11 = 34.97 r 21 = -34.3019 d 21 = 0.1000 r 22 = 99.3499 d 22 = 8.8319 n d12 = 1.56873 ν d12 = 63.16 r 23 = -22.1708 d 23 = 0.5000 n d13 = 1.80518 ν d13 = 25.43 r 24 = -150.1097 d 24 = (variable) r 25 = 263.2085 d 25 = 5.5248 n d14 = 1.77250 ν d14 = 49.66 r 26 = -72.7759 d 26 = 1.7000 n d15 = 1.80518 ν d15 = 25.43 r 27 = -81.9754 Aspheric coefficient 2nd surface A 4 = -0.40787 × 10 -5 A 6 = -0.69357 × 10 -8 A 8 = 0.80237 × 10 -11 A 10 = -0.36456 × 10 -13 14th surface A 4 = -0.89659 × 10 -6 A 6 = -0.44 490 × 10 -9 A 8 = 0.27638 × 10 -11 A 10 = -0.23523 × 10 -14 20th surface A 4 = 0.13481 × 10 -5 A 6 = -0.14582 × 10 -7 A 8 = 0.11878 × 10 -9 A 10 = -0.26708 × 10 -12
.

【0049】実施例2 f = 28.930 〜 52.000 〜 67.400 FNO= 2.85 〜 2.86 〜 2.85 2ω= 73.6 °〜 45.2 °〜 35.6 ° r1 = 147.0443 d1 = 1.7000 nd1 =1.60562 νd1 =43.72 r2 = 25.6888(非球面) d2 =10.9702 r3 = -102.0030 d3 = 1.7000 nd2 =1.51454 νd2 =54.69 r4 = 130.8939 d4 = 2.8119 r5 = 60.1551 d5 = 4.5829 nd3 =1.80518 νd3 =25.43 r6 = 392.2320 d6 = 0.5000 r7 = 111.5955 d7 = 1.7000 nd4 =1.50048 νd4 =65.99 r8 = 50.3553 d8 =(可変) r9 = 47.3815 d9 = 4.4051 nd5 =1.79952 νd5 =42.24 r10= 158.6478 d10= 2.4675 r11= 77.8646 d11= 1.7000 nd6 =1.80518 νd6 =25.43 r12= 24.5247 d12= 8.2319 nd7 =1.69680 νd7 =55.52 r13= 271.7259 d13= 0.1000 r14= 54.9531(非球面) d14= 4.7526 nd8 =1.81554 νd8 =44.36 r15= -744.5762 d15=(可変) r16= ∞(絞り) d16= 2.5400 r17= -102.4460 d17= 5.1580 nd9 =1.78472 νd9 =25.71 r18= -18.4708 d18= 1.7000 nd10=1.80440 νd10=39.58 r19= 54.8323 d19=(可変) r20= -49.2201 d20= 4.6200 nd11=1.83481 νd11=42.72 r21= -33.7462 d21= 0.1000 r22= 67.7196 d22= 7.1886 nd12=1.56873 νd12=63.16 r23= -28.7406 d23= 0.5000 nd13=1.74000 νd13=28.29 r24= 251.1481(非球面) d24=(可変) r25= 147.6334 d25= 5.6225 nd14=1.61700 νd14=62.79 r26= -83.6457 非球面係数 第2面 A4 =-0.34861×10-5 A6 =-0.52512×10-8 A8 = 0.38616×10-11 A10=-0.23053×10-13 第14面 A4 =-0.57723×10-6 A6 =-0.89606×10-9 A8 = 0.38110×10-11 A10=-0.43244×10-14 第24面 A4 = 0.23759×10-5 A6 = 0.23187×10-8 A8 =-0.61246×10-11A10= 0.75478×10-14
Example 2 f = 28.930 ~ 52.000 ~ 67.400 F NO = 2.85 ~ 2.86 ~ 2.85 2ω = 73.6 ° ~ 45.2 ° ~ 35.6 ° r 1 = 147.0443 d 1 = 1.7000 n d1 = 1.60562 ν d1 = 43.72 r 2 = 25.6888 (aspherical surface) d 2 = 10.9702 r 3 = -102.0030 d 3 = 1.7000 n d2 = 1.51454 ν d2 = 54.69 r 4 = 130.8939 d 4 = 2.8119 r 5 = 60.1551 d 5 = 4.5829 n d3 = 1.80518 ν d3 = 25.43 r 6 = 392.2320 d 6 = 0.5000 r 7 = 111.5955 d 7 = 1.7000 n d4 = 1.50048 ν d4 = 65.99 r 8 = 50.3553 d 8 = (variable) r 9 = 47.3815 d 9 = 4.4051 n d5 = 1.79952 ν d5 = 42.24 r 10 = 158.6478 d 10 = 2.4675 r 11 = 77.8646 d 11 = 1.7000 n d6 = 1.80518 ν d6 = 25.43 r 12 = 24.5247 d 12 = 8.2319 n d7 = 1.69680 ν d7 = 55.52 r 13 = 271.7259 d 13 = 0.1000 r 14 = 54.9531 (aspherical surface) d 14 = 4.7526 n d8 = 1.81554 ν d8 = 44.36 r 15 = -744.5762 d 15 = (variable) r 16 = ∞ (aperture) d 16 = 2.5400 r 17 = -102.4460 d 17 = 5.1580 n d9 = 1.78472 ν d9 = 25.71 r 18 = -18.4708 d 18 = 1.7000 n d10 = 1.80440 ν d10 = 39.58 r 19 = 54.8323 d 19 = (variable) r 20 = -49.2201 d 20 = 4.6200 n d11 = 1.83481 ν d11 = 42.72 r 21 = -33.7462 d 21 = 0.1000 r 22 = 67.7196 d 22 = 7.1886 n d12 = 1.56873 ν d12 = 63.16 r 23 = -28.7406 d 23 = 0.5000 n d13 = 1.74000 ν d13 = 28.29 r 24 = 251.1481 ( aspherical) d 24 = (variable) r 25 = 147.6334 d 25 = 5.6225 n d14 = 1.61700 ν d14 = 62.79 r 26 = -83.6457 Aspheric coefficient 2nd surface A 4 = -0.34861 × 10 -5 A 6 = -0.52512 × 10 -8 A 8 = 0.38616 × 10 -11 A 10 = -0.23053 × 10 -13 14th surface A 4 = -0.57723 × 10 -6 A 6 = -0.89606 x 10 -9 A 8 = 0.38110 x 10 -11 A 10 = -0.43244 x 10 -14 24th surface A 4 = 0.23759 x 10 -5 A 6 = 0.23187 x 10 -8 A 8 = -0.61246 × 10 -11 A 10 = 0.75478 × 10 -14
.

【0050】実施例3 f = 28.950 〜 51.999 〜 67.399 FNO= 2.85 〜 2.86 〜 2.85 2ω= 73.4 °〜 45.2 °〜 35.6 ° r1 = 145.5081 d1 = 1.7000 nd1 =1.61700 νd1 =62.80 r2 = 25.9863(非球面) d2 = 9.0598 r3 = 2588.2205 d3 = 1.7000 nd2 =1.49700 νd2 =81.61 r4 = 67.4698 d4 = 2.2659 r5 = 45.7230 d5 = 5.0194 nd3 =1.80610 νd3 =33.27 r6 = 160.2035 d6 = 0.5427 r7 = 119.9935 d7 = 1.7000 nd4 =1.58215 νd4 =42.09 r8 = 43.1309 d8 =(可変) r9 = 42.3538 d9 = 4.3924 nd5 =1.83481 νd5 =42.72 r10= 106.6088 d10= 0.1000 r11= 68.7133 d11= 1.7000 nd6 =1.84666 νd6 =23.88 r12= 26.8981 d12= 6.6749 nd7 =1.69680 νd7 =55.53 r13= 133.9447 d13= 0.1000 r14= 41.9880(非球面) d14= 5.3467 nd8 =1.81554 νd8 =44.36 r15= -7498.9818 d15=(可変) r16= ∞(絞り) d16= 2.5400 r17= -60.0377 d17= 3.5236 nd9 =1.84666 νd9 =23.88 r18= -23.3751 d18= 1.7000 nd10=1.80400 νd10=46.58 r19= 46.3105 d19=(可変) r20= 72.4846 d20= 4.6200 nd11=1.69680 νd11=55.53 r21= -30.7488 d21= 0.1000 r22= -58.8016 d22= 3.4860 nd12=1.61117 νd12=55.92 r23= -30.7002 d23= 0.5000 r24= -26.1241 d24= 1.7000 nd13=1.84666 νd13=23.88 r25= -145.4460(非球面) d25=(可変) r26= 172.0449 d26= 4.5171 nd14=1.83481 νd14=42.72 r27= -131.1502 非球面係数 第2面 A4 =-0.37627×10-5 A6 =-0.46229×10-8 A8 =-0.64026×10-12 A10=-0.16800×10-13 第14面 A4 =-0.83267×10-6 A6 =-0.25105×10-8 A8 = 0.41376×10-11 A10= 0.73187×10-14 第25面 A4 = 0.38463×10-5 A6 = 0.65925×10-8 A8 =-0.22350×10-10 A10= 0.19856×10-13
Example 3 f = 28.950 ~ 51.999 ~ 67.399 F NO = 2.85 ~ 2.86 ~ 2.85 2ω = 73.4 ° ~ 45.2 ° ~ 35.6 ° r 1 = 145.5081 d 1 = 1.7000 n d1 = 1.61700 ν d1 = 62.80 r 2 = 25.9863 (aspherical surface) d 2 = 9.0598 r 3 = 2588.2205 d 3 = 1.7000 n d2 = 1.49700 ν d2 = 81.61 r 4 = 67.4698 d 4 = 2.2659 r 5 = 45.7230 d 5 = 5.0194 n d3 = 1.80610 ν d3 = 33.27 r 6 = 160.2035 d 6 = 0.5427 r 7 = 119.9935 d 7 = 1.7000 n d4 = 1.58215 ν d4 = 42.09 r 8 = 43.1309 d 8 = (variable) r 9 = 42.3538 d 9 = 4.3924 n d5 = 1.83481 ν d5 = 42.72 r 10 = 106.6088 d 10 = 0.1000 r 11 = 68.7133 d 11 = 1.7000 n d6 = 1.84666 ν d6 = 23.88 r 12 = 26.8981 d 12 = 6.6749 n d7 = 1.69680 ν d7 = 55.53 r 13 = 133.9447 d 13 = 0.1000 r 14 = 41.9880 (aspherical surface) d 14 = 5.3467 n d8 = 1.81554 ν d8 = 44.36 r 15 = -7498.9818 d 15 = (variable) r 16 = ∞ (aperture) d 16 = 2.5400 r 17 = -60.0377 d 17 = 3.5236 n d9 = 1.84666 ν d9 = 23.88 r 18 = -23.3751 d 18 = 1.7000 n d10 = 1.80400 ν d10 = 46.58 r 19 = 46.3105 d 19 = (Variable) r 20 = 72.4846 d 20 = 4.6200 n d11 = 1.69680 ν d11 = 55.53 r 21 = -30.7488 d 21 = 0.1000 r 22 = -58.8016 d 22 = 3.4860 n d12 = 1.61117 ν d12 = 55.92 r 23 = -30.7002 d 23 = 0.5000 r 24 = -26.1241 d 24 = 1.7000 n d13 = 1.84666 ν d13 = 23.88 r 25 = -145.4460 ( Aspherical surface) d 25 = (variable) r 26 = 172.0449 d 26 = 4.5171 n d14 = 1.83481 ν d14 = 42.72 r 27 = -131.1502 Aspheric coefficient 2nd surface A 4 = -0.37627 × 10 -5 A 6 = -0.46229 × 10 -8 A 8 = -0.64026 × 10 -12 A 10 = -0.16 800 × 10 -13 14th surface A 4 = -0.83267 × 10 -6 A 6 = -0.25 105 × 10 -8 A 8 = 0.41376 × 10 -11 A 10 = 0.73187 × 10 -14 25th surface A 4 = 0.38463 × 10 -5 A 6 = 0.65925 × 10 -8 A 8 = -0.22350 x 10 -10 A 10 = 0.19856 x 10 -13
.

【0051】次に、上記実施例1〜3の条件式(4)の
値を次の表−3、表−4に示す。
Next, the values of the conditional expressions (4) in the above Examples 1 to 3 are shown in Tables 3 and 4 below.

【0052】 [0052]

【0053】[0053]

【発明の効果】以上の説明から明らかなように、本発明
の上記の構成により、広角大口径比ズームレンズにおい
て、従来困難とされていた無限遠から近接撮影距離まで
のフォーカシングを含めて、安定した結像性能を得るこ
とを可能にした。
As is apparent from the above description, with the above-described structure of the present invention, in the wide-angle, large-aperture-ratio zoom lens, stable focusing can be achieved, including focusing from infinity to a close-up distance, which has been difficult in the past. It was possible to obtain imaging performance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のズームレンズのズーミングの際の各群
の移動軌跡を示す図である。
FIG. 1 is a diagram showing a locus of movement of each group during zooming of a zoom lens of the present invention.

【図2】本発明のズームレンズの実施例1の無限遠物体
での広角端(a)と望遠端(b)のレンズ断面図であ
る。
FIG. 2 is a lens cross-sectional view of a wide-angle end (a) and a telephoto end (b) of an object at infinity according to Example 1 of the zoom lens of the present invention.

【図3】実施例2の図2と同様なレンズ断面図である。FIG. 3 is a lens cross-sectional view similar to FIG. 2 of Example 2.

【図4】実施例3の図2と同様なレンズ断面図である。FIG. 4 is a lens cross-sectional view similar to FIG. 2 of Example 3.

【図5】実施例1の広角端の無限遠物体における収差図
である。
FIG. 5 is an aberration diagram of an object at infinity at the wide-angle end according to Example 1.

【図6】実施例1の広角端の有限遠物体における収差図
である。
FIG. 6 is an aberration diagram of an object at finite distance at the wide-angle end of Example 1.

【図7】実施例1の中間焦点距離の無限遠物体における
収差図である。
FIG. 7 is an aberration diagram for an object at infinity with an intermediate focal length in Example 1.

【図8】実施例1の中間焦点距離の有限遠物体における
収差図である。
FIG. 8 is an aberration diagram of an object at finite distance with an intermediate focal length of Example 1.

【図9】実施例1の望遠端の無限遠物体における収差図
である。
FIG. 9 is an aberration diagram of an object at infinity at the telephoto end according to Example 1.

【図10】実施例1の望遠端の有限遠物体における収差
図である。
FIG. 10 is an aberration diagram of a finite object at the telephoto end according to Example 1.

【図11】実施例2の広角端の無限遠物体における収差
図である。
FIG. 11 is an aberration diagram of an object at infinity at the wide-angle end according to Example 2.

【図12】実施例2の広角端の有限遠物体における収差
図である。
FIG. 12 is an aberration diagram of an object at finite distance at the wide-angle end according to Example 2.

【図13】実施例2の中間焦点距離の無限遠物体におけ
る収差図である。
FIG. 13 is an aberration diagram of an object at infinity with an intermediate focal length in Example 2.

【図14】実施例2の中間焦点距離の有限遠物体におけ
る収差図である。
FIG. 14 is an aberration diagram of an object at finite distance with an intermediate focal length of Example 2.

【図15】実施例2の望遠端の無限遠物体における収差
図である。
FIG. 15 is an aberration diagram of an object at infinity at the telephoto end according to Example 2.

【図16】実施例2の望遠端の有限遠物体における収差
図である。
FIG. 16 is an aberration diagram of a finite object at the telephoto end according to Example 2.

【図17】実施例3の広角端の無限遠物体における収差
図である。
FIG. 17 is an aberration diagram of an object at infinity at the wide-angle end according to Example 3.

【図18】実施例3の広角端の有限遠物体における収差
図である。
FIG. 18 is an aberration diagram of an object at finite distance at the wide-angle end according to Example 3.

【図19】実施例3の中間焦点距離の無限遠物体におけ
る収差図である。
FIG. 19 is an aberration diagram of an object at infinity with an intermediate focal length in Example 3.

【図20】実施例3の中間焦点距離の有限遠物体におけ
る収差図である。
FIG. 20 is an aberration diagram of an object at finite distance with an intermediate focal length in Example 3.

【図21】実施例3の望遠端の無限遠物体における収差
図である。
FIG. 21 is an aberration diagram of an object at infinity at the telephoto end according to Example 3.

【図22】実施例3の望遠端の有限遠物体における収差
図である。
FIG. 22 is an aberration diagram of a finite object at the telephoto end according to Example 3.

【符号の説明】[Explanation of symbols]

G1…第1レンズ群 G2…第2レンズ群 G3…第3レンズ群 G4…第4レンズ群 G5…第5レンズ群 G11…第1レンズ群の前群 G12…第1レンズ群の中群 G13…第1レンズ群の後群G1 ... middle lens group of the first lens group G2 ... the second lens group G3 ... third lens group G4 ... fourth lens group G5 ... front group G 12 ... the first lens group in the fifth lens group G 11 ... the first lens group G 13 ... rear group of the first lens group

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 物体側より順に、負屈折力の第1レンズ
群、正屈折力の第2レンズ群、負屈折力の第3レンズ
群、正屈折力の第4レンズ群、及び、正屈折力の第5レ
ンズ群より構成し、広角端から望遠端までのズーミング
は、第1レンズ群と第5レンズ群を固定し、第2レンズ
群から第4レンズ群をそれぞれ相対間隔を変化させなが
ら物体側に移動することによって行い、無限遠物体から
有限遠物体へのフォーカシングは、第1レンズ群を負屈
折力の前群(G11)と正屈折力の中群(G12)と負屈折
力の後群(G13)に分割し、前記後群(G13)を固定し
た状態で、前記前群(G11)と中群(G12)を各々物体
側に移動することによって行い、かつ、以下の条件を満
足することを特徴とするズームレンズ。 0.5<|φ11/φ12|<3.0 ・・・(3) 1<ΔG11/ΔG12<1.8 ・・・(4) ただし、φ11は第1レンズ群内の前群(G11)の屈折
力、φ12は第1レンズ群内の中群(G12)の屈折力、Δ
11は第1レンズ群内の前群(G11)の最短撮影距離ま
でのフォーカシング移動量、ΔG12は第1レンズ群内の
中群(G12)の最短撮影距離までのフォーカシング移動
量であり、フォーカシング移動量の基準位置を無限遠物
体位置とし、物体側に移動する時に負符号をとるものと
する。
1. A first lens group having a negative refracting power, a second lens group having a positive refracting power, a third lens group having a negative refracting power, a fourth lens group having a positive refracting power, and a positive refracting power in order from the object side. The fifth lens group of power is used, and for zooming from the wide-angle end to the telephoto end, the first lens group and the fifth lens group are fixed, and the second lens group is fixed.
While changing the relative distance from the lens group to the fourth lens group,
Performed by moving Luo object side, infinity focusing from an object to a finite distance object is a first lens group having negative refracting power of the front group (G 11) and the positive refractive power middle lens group and (G 12) negative divided into groups (G 13) after the power, while fixing the rear group (G 13), it is performed by moving Chugun the (G 12) respectively on the object side to the front group (G 11) And a zoom lens characterized by satisfying the following conditions. 0.5 <| φ 11 / φ 12 | <3.0 (3) 1 <ΔG 11 / ΔG 12 <1.8 (4) where φ 11 is in front of the first lens group The refractive power of the group (G 11 ), φ 12 is the refractive power of the middle group (G 12 ) in the first lens group, Δ
G 11 is the amount of focusing movement to the shortest shooting distance of the front lens unit (G 11 ) in the first lens unit, ΔG 12 is the amount of focusing movement to the shortest shooting distance of the middle lens unit (G 12 ) in the first lens unit The reference position of the focusing movement amount is the infinite object position, and a negative sign is taken when moving to the object side.
【請求項2】 物体側より順に、負屈折力の第1レンズ
群、正屈折力の第2レンズ群、負屈折力の第3レンズ
群、正屈折力の第4レンズ群、及び、正屈折力の第5レ
ンズ群より構成し、広角端から望遠端までのズーミング
は、第1レンズ群と第5レンズ群を固定し、第2レンズ
群から第4レンズ群をそれぞれ相対間隔を変化させなが
ら物体側に移動することによって行い、無限遠物体から
有限遠物体へのフォーカシングは、第1レンズ群を負屈
折力の前群(G11)と正屈折力の中群(G12)と負屈折
力の後群(G13)に分割し、前記後群(G13)を固定し
た状態で、前記前群(G11)と中群(G12の軸上間隔
を可変とし各々物体側に移動することによって行い、
記前群(G 11 )は、負レンズ成分を少なくとも2枚で構
成し、かつ、以下の条件を満足することを特徴とするズ
ームレンズ。 0.2<|φ1W/φW |<0.95 ・・・(1) 0.1<φ234W/φW <1.2 ・・・(2) ただし、φ1W、φ234Wは広角端でのそれぞれ第1レンズ
群の屈折力、第2レンズ群から第4レンズ群までの合成
屈折力、φW は全系の広角端での屈折力である。
2. A first lens group having a negative refracting power, a second lens group having a positive refracting power, a third lens group having a negative refracting power, a fourth lens group having a positive refracting power, and a positive refracting power in order from the object side. The fifth lens group of power is used, and for zooming from the wide-angle end to the telephoto end, the first lens group and the fifth lens group are fixed, and the second lens group is fixed.
While changing the relative distance from the lens group to the fourth lens group,
Performed by moving Luo object side, infinity focusing from an object to a finite distance object is a first lens group having negative refracting power of the front group (G 11) and the positive refractive power middle lens group and (G 12) negative divided into groups (G 13) after the power, while fixing the rear group (G 13), axial distance of the front group (G 11) and Chugun (G 12)
Was carried out by moving each object side is made variable, before
The front group (G 11 ) has at least two negative lens components.
Form, and the zoom lens satisfies the following condition. 0.2 <| φ 1W / φ W | <0.95 ··· (1) 0.1 <φ 234W / φ W <1.2 ··· (2) However, φ 1W, φ 234W wide-angle end In the above, the refracting power of the first lens group, the combined refracting power from the second lens group to the fourth lens group, and φ W are the refracting powers at the wide-angle end of the entire system.
【請求項3】 以下の条件を満足することを特徴とする
請求項記載のズームレンズ。 0.5<|φ11/φ12|<3.0 ・・・(3) ただし、φ11は第1レンズ群内の前群(G11)の屈折
力、φ12は第1レンズ群内の中群(G12)の屈折力であ
る。
3. The zoom lens according to claim 2, wherein the following condition is satisfied. 0.5 <| φ 11 / φ 12 | <3.0 (3) where φ 11 is the refracting power of the front group (G 11 ) in the first lens group, and φ 12 is the first lens group. It is the refractive power of the middle group (G 12 ).
【請求項4】 以下の条件を満足することを特徴とする
請求項又は記載のズームレンズ。 1<ΔG11/ΔG12<1.8 ・・・(4) ただし、ΔG11は第1レンズ群内の前群(G11)の最短
撮影距離までのフォーカシング移動量、ΔG12は第1レ
ンズ群内の中群(G12)の最短撮影距離までのフォーカ
シング移動量であり、フォーカシング移動量の基準位置
を無限遠物体位置とし、物体側に移動する時に負符号を
とるものとする。
4. The method of claim 2 or 3, wherein the zoom lens satisfies the following condition. 1 <ΔG 11 / ΔG 12 <1.8 (4) where ΔG 11 is the focusing movement amount to the shortest shooting distance of the front lens group (G 11 ) in the first lens group, and ΔG 12 is the first lens It is the focusing movement amount up to the shortest shooting distance of the middle group (G 12 ) in the group, and the reference position of the focusing movement amount is the object position at infinity, and a negative sign is taken when moving to the object side.
【請求項5】 物体側より順に、負屈折力の第1レンズ
群、正屈折力の第2レンズ群、負屈折力の第3レンズ
群、正屈折力の第4レンズ群、及び、正屈折力の第5レ
ンズ群より構成し、広角端から望遠端までのズーミング
は、第1レンズ群と第5レンズ群を固定し、第2レンズ
群から第4レンズ群をそれぞれ相対間隔を変化させなが
ら物体側に移動することによって行い、無限遠物体から
有限遠物体へのフォーカシングは、第1レンズ群を負屈
折力の前群(G 11 )と正屈折力の中群(G 12 )と負屈折
力の後群(G 13 )に分割し、前記後群(G 13 )を固定し
た状態で、前記前群(G 11 )と中群(G 12 )の軸上間隔
を可変とし各々物体側に移動することによって行い、か
つ、以下の条件を満足することを特徴とするズームレン
ズ。 0.2<|φ 1W /φ W |<0.95 ・・・(1) 0.1<φ 234W /φ W <1.2 ・・・(2) 1<ΔG 11 /ΔG 12 <1.8 ・・・(4) ただし、φ 1W 、φ 234W は広角端でのそれぞれ第1レンズ
群の屈折力、第2レンズ群から第4レンズ群までの合成
屈折力、φ W は全系の広角端での屈折力であり、 ΔG 11
は第1レンズ群内の前群(G 11 )の最短撮影距離までの
フォーカシング移動量、ΔG 12 は第1レンズ群内の中群
(G 12 )の最短撮影距離までのフォーカシング移動量で
あり、フォーカシング移動量の基準位置を無限遠物体位
置とし、物体側に移動する時に負符号をとるものとす
る。
5. A first lens having negative refractive power in order from the object side.
Group, second lens group having positive refractive power, third lens having negative refractive power
Group, fourth lens group having positive refracting power, and fifth lens group having positive refracting power
Zoom from the wide-angle end to the telephoto end
Fixes the first lens group and the fifth lens group, and the second lens
While changing the relative distance from the lens group to the fourth lens group,
From the object at infinity
Focusing on an object at finite distance causes the first lens group to bend.
Folding power front group (G 11 ) and positive refractive power middle group (G 12 ) and negative refraction
Divided into groups after the force (G 13), the rear group of (G 13) fixed
The axial distance between the front group (G 11 ) and the middle group (G 12 )
By moving each object side.
A zoom lens characterized by satisfying the following conditions . 0.2 <| φ 1W / φ W | <0.95 ··· (1) 0.1 <φ 234W / φ W <1.2 ··· (2) 1 <ΔG 11 / ΔG 12 <1. 8 (4) However, φ 1W and φ 234W are the first lenses at the wide-angle end, respectively.
Refractive power of the group, composition from the second lens group to the fourth lens group
Refractive power, φ W, is the refractive power at the wide-angle end of the entire system, and ΔG 11
Up to the shortest shooting distance of the front lens group (G 11 ) in the first lens group
Focusing movement amount, ΔG 12 is the middle group in the first lens group
Focusing movement amount to the shortest shooting distance of (G 12 )
Yes, the reference position for focusing movement is set to the infinity object position.
And take a negative sign when moving to the object side.
It
JP14320994A 1994-06-24 1994-06-24 Zoom lens Expired - Fee Related JP3414499B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14320994A JP3414499B2 (en) 1994-06-24 1994-06-24 Zoom lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14320994A JP3414499B2 (en) 1994-06-24 1994-06-24 Zoom lens

Publications (2)

Publication Number Publication Date
JPH085921A JPH085921A (en) 1996-01-12
JP3414499B2 true JP3414499B2 (en) 2003-06-09

Family

ID=15333430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14320994A Expired - Fee Related JP3414499B2 (en) 1994-06-24 1994-06-24 Zoom lens

Country Status (1)

Country Link
JP (1) JP3414499B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8503102B2 (en) 2011-04-19 2013-08-06 Panavision International, L.P. Wide angle zoom lens

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6122111A (en) * 1997-07-25 2000-09-19 Panavision, Inc. High performance zoom lens system
JP4876510B2 (en) 2005-09-28 2012-02-15 株式会社ニコン Zoom lens
JP2007304268A (en) * 2006-05-10 2007-11-22 Canon Inc Zoom lens and image projection device having the same
JP4642883B2 (en) * 2008-06-23 2011-03-02 株式会社リコー Zoom lens, camera, and portable information terminal device
JP5582918B2 (en) * 2010-08-20 2014-09-03 キヤノン株式会社 Zoom lens and imaging apparatus having the same
DE102012214303B9 (en) 2012-08-10 2022-07-07 Carl Zeiss Ag Optical system for imaging an object and recording unit with an optical system
JP6485302B2 (en) 2015-09-16 2019-03-20 コニカミノルタ株式会社 Projection lens and projector having zoom function
JP7027736B2 (en) 2017-09-04 2022-03-02 セイコーエプソン株式会社 Projection type image display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8503102B2 (en) 2011-04-19 2013-08-06 Panavision International, L.P. Wide angle zoom lens

Also Published As

Publication number Publication date
JPH085921A (en) 1996-01-12

Similar Documents

Publication Publication Date Title
JP3739529B2 (en) Zoom lens
JP3261716B2 (en) Reverse telephoto large aperture wide angle lens
JP4967294B2 (en) 2 group zoom lens
JP3365835B2 (en) Compact 3-group zoom lens
JP4686888B2 (en) Zoom lens and photographing apparatus provided with the lens
JP2000258688A (en) Zoom lens
JPH08313804A (en) Wide angle lens
JP3668365B2 (en) Zoom lens
JPH1020193A (en) Zoom lens
JP3029149B2 (en) Zoom lens
JP3434060B2 (en) Zoom lens
JP3366092B2 (en) High zoom ratio 2-group zoom lens
JP3503911B2 (en) Eyepiece zoom lens system
JP3414499B2 (en) Zoom lens
JP3412908B2 (en) Zoom lens
JP3394624B2 (en) Zoom lens
JP3331011B2 (en) Small two-group zoom lens
JP3476909B2 (en) telescope lens
JP3821330B2 (en) Zoom lens
JPH06175027A (en) Small zoom lens of rear-focusing type
JP3029148B2 (en) Rear focus zoom lens
JPH1048523A (en) Zoom lens
JPH06308386A (en) Lens capable of short-distance photography
JP3268824B2 (en) Small two-group zoom lens
US5589986A (en) Zoom lens

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030305

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090404

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090404

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100404

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees