JP3414207B2 - Sorting method of dielectric porcelain - Google Patents

Sorting method of dielectric porcelain

Info

Publication number
JP3414207B2
JP3414207B2 JP18634397A JP18634397A JP3414207B2 JP 3414207 B2 JP3414207 B2 JP 3414207B2 JP 18634397 A JP18634397 A JP 18634397A JP 18634397 A JP18634397 A JP 18634397A JP 3414207 B2 JP3414207 B2 JP 3414207B2
Authority
JP
Japan
Prior art keywords
dielectric
peak intensity
dielectric ceramic
different phase
main peak
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18634397A
Other languages
Japanese (ja)
Other versions
JPH1130596A (en
Inventor
裕一 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP18634397A priority Critical patent/JP3414207B2/en
Publication of JPH1130596A publication Critical patent/JPH1130596A/en
Application granted granted Critical
Publication of JP3414207B2 publication Critical patent/JP3414207B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、マイクロ波やミリ
波等の高周波領域で使用される誘電体磁器の選別方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of selecting a dielectric ceramic used in a high frequency range such as microwaves and millimeter waves.

【0002】[0002]

【従来の技術】近年、自動車電話、携帯電話、衛星放送
等、マイクロ波領域の電磁波を利用する通信の増加に伴
い、機器や機器を構成する例えばフィルタ素子や共振器
等の誘電体部品の小型化が求められている。このような
誘電体部品を小型化するには、誘電体磁器において、比
誘電率が高く、マイクロ波領域で低損失であること、す
なわち無負荷Q値が高いこと、及び共振周波数の温度変
化が小さいこと、すなわち誘電率の温度変化が小さいこ
とが重要となる。
2. Description of the Related Art In recent years, along with the increase in communication using electromagnetic waves in the microwave region such as car phones, mobile phones, satellite broadcasting, etc., miniaturization of dielectric parts such as filter elements and resonators that compose the equipment Is required. In order to reduce the size of such a dielectric component, in the dielectric ceramic, the relative dielectric constant is high and the loss is low in the microwave region, that is, the no-load Q value is high, and the temperature change of the resonance frequency is small. It is important that it is small, that is, the change in dielectric constant with temperature is small.

【0003】一方、導体と誘電体磁器を積層構造にする
ことによって、共振器等の部品を小型化、高機能化しよ
うとする試みが行われている。しかし、マイクロ波のよ
うな高周波領域で使用する場合、高い導電率を持つ導体
が必要で、Cu,Au,Agあるいはそれらの合金を使
用する必要がある。しかも、積層構造にする場合には、
誘電体磁器材料と導体の金属とを同時に焼成する必要が
あるため、導体金属が融解せず、かつ酸化しない焼成条
件、すなわち1050℃以下の低温で緻密に焼結する誘
電体磁器が必要となる。
On the other hand, attempts have been made to miniaturize and enhance the functions of parts such as a resonator by forming a conductor and a dielectric ceramic in a laminated structure. However, when used in a high frequency region such as microwave, a conductor having high conductivity is required, and Cu, Au, Ag or their alloys must be used. Moreover, when using a laminated structure,
Since it is necessary to simultaneously fire the dielectric ceramic material and the conductor metal, a firing condition that the conductor metal does not melt and does not oxidize, that is, a dielectric ceramic that is densely sintered at a low temperature of 1050 ° C. or lower is required. .

【0004】このような条件を満たすものとして、Bi
3/2−CaO−NbO5/2系が特開平5−225826
号公報に開示されている。この誘電体磁器は比誘電率と
無負荷Q値が共に高く、共振周波数の温度係数が小さ
く、その上低温焼結が可能なものである。
Bi satisfying these conditions
The O3 / 2 -CaO-NbO5 / 2 system is disclosed in JP-A-5-225826.
It is disclosed in the publication. This dielectric ceramic has both a high relative permittivity and a no-load Q value, a small temperature coefficient of resonance frequency, and is capable of low temperature sintering.

【0005】[0005]

【発明が解決しようとする課題】一般に、このような誘
電体磁器に対しては、焼結密度、比誘電率、無負荷Q値
等の特性ばらつきがなく、安定的な性能が得られるよう
に製造することが要求されている。
In general, such a dielectric ceramic is provided with stable characteristics without variations in characteristics such as sintering density, relative permittivity and unloaded Q value. Required to be manufactured.

【0006】そこで本発明は、比誘電率と無負荷Q値が
共に高く、緻密な誘電体磁器を提供することを目的とす
るものである。
Therefore, an object of the present invention is to provide a dense dielectric porcelain having both a high relative permittivity and a no-load Q value.

【0007】[0007]

【課題を解決するための手段】この目的を達成するため
に、本発明の誘電体磁器の選別方法は、酸化ビスマス、
酸化カルシウム及び酸化ニオブを主成分とする誘電体磁
器のX線回折による測定において、前記誘電体磁器のメ
インピーク強度に対する異相のメインピーク強度が10
%未満のものを良品とするものであり、比誘電率と無負
荷Q値が共に高く、緻密な誘電体磁器を得ることができ
る。
In order to achieve this object, a method of selecting a dielectric ceramic according to the present invention is a bismuth oxide,
In the measurement by X-ray diffraction of the dielectric porcelain mainly containing calcium oxide and niobium oxide, the main peak intensity of the different phase is 10 with respect to the main peak intensity of the dielectric porcelain.
%, The dielectric constant and the unloaded Q value are both high, and a dense dielectric ceramic can be obtained.

【0008】[0008]

【発明の実施の形態】本発明の請求項1に記載の発明
は、酸化ビスマス、酸化カルシウム及び酸化ニオブを主
成分とする誘電体磁器のX線回折による測定において、
前記誘電体磁器のメインピーク強度に対する異相のメイ
ンピーク強度が10%未満のものを良品とする誘電体磁
器の選別方法であり、比誘電率と無負荷Q値が共に高
く、緻密な誘電体磁器が得られる。
BEST MODE FOR CARRYING OUT THE INVENTION The invention according to claim 1 of the present invention is the measurement by X-ray diffraction of a dielectric ceramic mainly containing bismuth oxide, calcium oxide and niobium oxide,
This is a method for selecting a dielectric ceramic in which a main peak intensity of a different phase with respect to the main peak intensity of the dielectric ceramic is less than 10%, which is a good product, and has a high relative permittivity and a high no-load Q value, and a dense dielectric ceramic. Is obtained.

【0009】請求項2に記載の発明は、酸化ビスマス、
酸化カルシウム及び酸化ニオブを主成分とする誘電体磁
器の出発原料の仮焼物のX線回折による測定で、前記仮
焼物のメインピーク強度に対する異相のメインピーク強
度が50%未満のものを良品とする誘電体磁器の選別方
法であり、比誘電率と無負荷Q値が共に高く、緻密な誘
電体磁器が得られる。
The invention according to claim 2 is a bismuth oxide,
When the calcined product of the starting material of the dielectric ceramic containing calcium oxide and niobium oxide as the main components is measured by X-ray diffraction, the main peak intensity of the different phase is less than 50% with respect to the main peak intensity of the calcined product, and it is regarded as a good product. This is a method for selecting dielectric porcelain, and it is possible to obtain a dense dielectric porcelain having a high relative permittivity and a high unloaded Q value.

【0010】以下、本発明の実施の形態について、図1
から図4を用いて説明する。 (実施の形態1)図1及び図2は、本実施の形態におけ
る本焼成後の誘電体磁器についてのX線回折の結果を示
すもので、図1では目的とする誘電体磁器のピークのみ
しか見られない場合であり、図2では△印で示すような
異相のピークが見られる場合のものである。
FIG. 1 shows an embodiment of the present invention.
4 to FIG. (Embodiment 1) FIGS. 1 and 2 show the results of X-ray diffraction for a dielectric ceramic after main firing in the present embodiment. In FIG. 1, only the peak of the target dielectric ceramic is shown. This is the case where no peak is observed, and a peak of a different phase as shown by a mark in FIG. 2 is observed.

【0011】まず、出発原料として高純度のBi23
CaCO3,Nb25を用い、xBiO3/2−yCaO−
zNbO5/2と表したとき、x=0.47,y=0.2
1,z=0.32となる組成になるように秤量した。こ
れらの粉末をポリエチレン製のボールミルに入れ、安定
化ジルコニア製の玉石及び純水を加え15時間湿式混合
した。得られた混合粉をアルミナ製の容器に入れ800
℃で2時間仮焼した。仮焼粉を前記ボールミルに入れ安
定化ジルコニア製の玉石及び純水を加え、15時間湿式
で粉砕し原料粉体とした。
First, as a starting material, high-purity Bi 2 O 3 ,
Using CaCO 3 and Nb 2 O 5 , xBiO 3/2 -yCaO-
When expressed as zNbO 5/2 , x = 0.47, y = 0.2
It was weighed so that the composition would be 1, z = 0.32. These powders were placed in a polyethylene ball mill, stabilized zirconia boulders and pure water were added and wet mixed for 15 hours. Put the resulting mixed powder in a container made of alumina. 800
It was calcined at ℃ for 2 hours. The calcined powder was put in the ball mill, and boulders made of stabilized zirconia and pure water were added, and the mixture was wet pulverized for 15 hours to obtain a raw material powder.

【0012】この原料粉体にバインダとしてポリビニル
アルコールの5%水溶液を5wt%加えて造粒し、30
メッシュのふるいを通して整粒した後、100MPaで
直径13mm、厚み5mmの円柱状に成形した。得られ
た成形体をマグネシア製の容器に入れ、650℃で2時
間加熱してバインダを焼却した後、800〜1050℃
で2時間焼成して焼結体を得た。
To this raw material powder, 5 wt% of a 5% aqueous solution of polyvinyl alcohol was added as a binder, and the mixture was granulated.
After the particles were sized through a mesh sieve, they were molded into a columnar shape having a diameter of 13 mm and a thickness of 5 mm at 100 MPa. The obtained molded body is put into a container made of magnesia, heated at 650 ° C. for 2 hours to incinerate the binder, and then 800 to 1050 ° C.
And sintered for 2 hours to obtain a sintered body.

【0013】得られた焼結体の密度はアルキメデス法に
よって測定した。そして、得られた焼結体のうち密度が
最高になる温度で焼成した焼結体について両面を研磨
し、マイクロ波での誘電特性を測定した。測定は誘電体
共振法によって行い、比誘電率(以下、εrと記す)、
無負荷Q値(以下Q値と記す)、共振周波数の温度係数
(以下τfと記す)を算出した。εr及びQ値の測定にお
いて、共振周波数は3〜5GHzであった。τfは−2
5〜85℃の範囲で測定した。測定試料は各々10個作
製して特性評価した。結果を(表1)に示す。
The density of the obtained sintered body was measured by the Archimedes method. Then, both surfaces of the obtained sintered body, which was fired at a temperature at which the density became maximum, were polished, and the dielectric property by microwave was measured. The dielectric resonance method is used for the measurement, and the relative permittivity (hereinafter referred to as ε r ),
An unloaded Q value (hereinafter referred to as Q value) and a temperature coefficient of resonance frequency (hereinafter referred to as τ f ) were calculated. In the measurement of ε r and Q value, the resonance frequency was 3 to 5 GHz. τ f is -2
It measured in the range of 5-85 degreeC. Ten measurement samples were prepared and the characteristics were evaluated. The results are shown in (Table 1).

【0014】[0014]

【表1】 [Table 1]

【0015】(表1)において、*印を付したものは本
発明の請求の範囲外の比較例である。この(表1)から
明らかなように、本実施の形態によれば、異相ピーク強
度が10%未満である試料では焼結密度は6.96g/
cm3以上、εrは50以上、Q値は400以上と安定し
た特性の焼結体が得られている。特に図1のように異相
のピークがみられない場合(試料番号4,5,6)に
は、比誘電率と無負荷Q値がそれぞれ50以上、500
以上と高い値が十分安定に得られる。また、図2のよう
に異相のピークがみられる場合、異相ピーク強度が10
%以上(試料番号1)になると、εrやQ値が急激に低
下しマイクロ波誘電体として十分な性能が得られなくな
る。
In Table 1, those marked with * are comparative examples outside the claims of the present invention. As is clear from this (Table 1), according to the present embodiment, in the sample having the different phase peak intensity of less than 10%, the sintered density is 6.96 g /
A sintered body having stable characteristics such as cm 3 or more, ε r of 50 or more, and Q value of 400 or more is obtained. In particular, when no peaks of different phases are seen as in FIG. 1 (Sample Nos. 4, 5, 6), the relative permittivity and the unloaded Q value are 50 or more and 500, respectively.
The above and high values are sufficiently stable. Moreover, when a peak of a different phase is observed as shown in FIG.
% Or more (Sample No. 1), ε r and Q value sharply decrease and sufficient performance as a microwave dielectric cannot be obtained.

【0016】焼結密度、比誘電率、無負荷Q値は異相の
ピークの大きさに合わせて小さくなり、さらにはそれぞ
れの特性のばらつきが大きくなる。この異相のみの誘電
体磁器を得ることはできていないため、異相固有の密
度、比誘電率、無負荷Q値はわからないが、最終的に得
られた誘電体磁器中にこの異相が存在すると焼結密度、
比誘電率、無負荷Q値が下がり、特性ばらつきが大きく
なる。
The sintered density, relative permittivity, and unloaded Q value become smaller according to the size of the peak of the different phase, and further the dispersion of each characteristic becomes large. Since it is not possible to obtain a dielectric porcelain having only this different phase, the density, relative permittivity and unloaded Q value peculiar to the different phase are not known, but if this different phase exists in the finally obtained dielectric porcelain, it will not burn. Consolidation density,
The relative permittivity and the no-load Q value decrease, and the characteristic variation increases.

【0017】本実施の形態においては、誘電体磁器のX
線回折による測定で、誘電体磁器のメインピーク強度に
対して、焼成後に誘電体磁器中に残存する異相のメイン
ピーク強度が10%未満のものを良品とするもので、こ
れにより比誘電率と無負荷Q値が共に高く、その上緻密
でばらつきが小さい誘電体磁器が安定して得られる。
In the present embodiment, the X of the dielectric porcelain is
When the main peak intensity of the dielectric ceramics measured by line diffraction is less than 10% of the main peak intensity of the different phase remaining in the dielectric ceramics after firing, it is regarded as a good product. It is possible to stably obtain a dielectric ceramic with a high unloaded Q value, a high density, and a small variation.

【0018】もちろん、異相が全く残存しないものがよ
り好ましい。 (実施の形態2)図3及び図4は、本実施の形態の仮焼
後の粉体のX線回折の結果を示すもので、図3では目的
とする誘電体磁器のピークが主となる場合であり、図4
では△印で示すような異相のピークが主となって見られ
る場合のものである。
Of course, it is more preferable that no heterogeneous phase remains. (Embodiment 2) FIGS. 3 and 4 show the results of X-ray diffraction of the powder after calcination according to the present embodiment. In FIG. 3, the peak of the target dielectric ceramic is the main. This is the case and Fig. 4
In this case, the peaks of different phases as indicated by the triangle mark are mainly observed.

【0019】出発原料として高純度のBi23,CaC
3,Nb25を用い、xBiO3/2−yCaO−zNb
5/2と表したとき、x=0.46,y=0.21,z
=0.33となる組成になるように秤量した。これらの
粉末をポリエチレン製のボールミルに入れ、安定化ジル
コニア製の玉石及び純水を加え15時間湿式混合した。
得られた混合粉をアルミナ製の容器に入れ600〜80
0℃で2時間仮焼した。仮焼粉を前記ボールミルに入れ
安定化ジルコニア製の玉石及び純水を加え、15時間湿
式で粉砕し原料粉体とした。
High-purity Bi 2 O 3 , CaC as a starting material
Using O 3 and Nb 2 O 5 , xBiO 3/2 -yCaO-zNb
When expressed as O 5/2 , x = 0.46, y = 0.21, z
The composition was weighed so that the composition was 0.33. These powders were placed in a polyethylene ball mill, stabilized zirconia boulders and pure water were added and wet mixed for 15 hours.
The obtained mixed powder is put in a container made of alumina and 600 to 80
It was calcined at 0 ° C. for 2 hours. The calcined powder was put in the ball mill, and boulders made of stabilized zirconia and pure water were added, and the mixture was wet pulverized for 15 hours to obtain a raw material powder.

【0020】この原料粉体にバインダとしてポリビニル
アルコールの5%水溶液を5wt%加えて造粒し、30
メッシュのふるいを通して整粒した後、100MPaで
直径13mm、厚み5mmの円柱状に成形した。得られ
た成形体をマグネシア製の容器に入れ、650℃で2時
間加熱してバインダを焼却した後、900℃で2時間焼
成して誘電体磁器を得た。
To this raw material powder, 5 wt% of a 5% aqueous solution of polyvinyl alcohol was added as a binder, and the mixture was granulated.
After the particles were sized through a mesh sieve, they were molded into a columnar shape having a diameter of 13 mm and a thickness of 5 mm at 100 MPa. The obtained molded body was placed in a magnesia container, heated at 650 ° C. for 2 hours to incinerate the binder, and then baked at 900 ° C. for 2 hours to obtain a dielectric ceramic.

【0021】得られた誘電体磁器は、実施の形態1と同
様の方法で測定し評価した。その結果を(表2)に示
す。
The obtained dielectric ceramic was measured and evaluated by the same method as in the first embodiment. The results are shown in (Table 2).

【0022】[0022]

【表2】 [Table 2]

【0023】(表2)において、*印を付したものは本
発明の請求の範囲外の比較例である。この(表2)から
明らかなように、本実施の形態によれば、図3のように
異相ピークが小さい、すなわち仮焼粉での異相ピーク強
度が50%未満である試料9,10を用いて、誘電体磁
器を焼成した場合には、得られた誘電体磁器中に異相が
ほとんど残存せず、焼結密度は6.96g/cm3
上、εrは50以上、Q値は400以上と安定した特性
を有する誘電体磁器が得られる。一方図4のように大き
な異相のピークが見られる場合、すなわち異相ピーク強
度が50%以上の場合、得られた誘電体磁器の中に異相
が残存し、εrやQ値が急激に低下しマイクロ波誘電体
として十分な性能が得られなくなる。さらにはそれぞれ
の特性のばらつきが大きくなる。
In Table 2, those marked with * are comparative examples outside the claims of the present invention. As is clear from this (Table 2), according to the present embodiment, as shown in FIG. 3, samples 9 and 10 having small different phase peaks, that is, the different phase peak intensity in the calcined powder are less than 50% are used. When firing the dielectric ceramic, almost no heterogeneous phase remains in the obtained dielectric ceramic, the sintering density is 6.96 g / cm 3 or more, ε r is 50 or more, and the Q value is 400 or more. Thus, a dielectric ceramic having stable characteristics can be obtained. On the other hand, when a large peak of different phase is seen as shown in FIG. 4, that is, when the peak intensity of the different phase is 50% or more, the different phase remains in the obtained dielectric ceramic, and ε r and Q value are rapidly decreased. Sufficient performance cannot be obtained as a microwave dielectric. Furthermore, the variation of each characteristic becomes large.

【0024】なお、本実施の形態においては、仮焼物の
X線回折による測定で、誘電体磁器のメインピーク強度
に対して、異相のメインピーク強度を50%未満とすれ
ば良いが、30%未満とすることにより、比誘電率と無
負荷Q値が共に高く、その上緻密でばらつきが小さい誘
電体磁器が安定して得られる。より好ましくは、誘電体
磁器のメインピーク強度に対して、異相のメインピーク
強度を10%未満とするものである。
In the present embodiment, the main peak intensity of the different phase may be set to less than 50% with respect to the main peak intensity of the dielectric porcelain by measurement by X-ray diffraction of the calcined product, but it is 30%. By setting it to be less than 1, the dielectric constant and the unloaded Q value are both high, and moreover, a dense and stable dielectric ceramic can be stably obtained. More preferably, the main peak intensity of the different phase is less than 10% with respect to the main peak intensity of the dielectric ceramic.

【0025】また、実施の形態1,2においては、原料
配合組成をそれぞれ一例のみ示したが、xBiO3/2
yCaO−zNbO5/2と表したとき0.43≦x≦
0.55,0.16≦y≦0.24,0.28≦z≦
0.36(ただし、x+y+z=1.0)の範囲にある
組成であれば同様の効果が得られる。
In the first and second embodiments, only one example of the raw material composition is shown, but xBiO 3/2
When expressed as yCaO-zNbO 5/2 , 0.43 ≦ x ≦
0.55, 0.16 ≦ y ≦ 0.24, 0.28 ≦ z ≦
The same effect can be obtained if the composition is in the range of 0.36 (however, x + y + z = 1.0).

【0026】さらに、誘電体磁器材料として、焼成後酸
化ビスマス、酸化カルシウム及び酸化ニオブとなる主成
分材料のみを用いたが、低温焼結化を促進させるため
に、副成分として酸化銅などを用いる場合にも同様の効
果が得られる。
Further, as the dielectric porcelain material, only the main component material which becomes bismuth oxide, calcium oxide and niobium oxide after firing was used, but copper oxide or the like is used as an auxiliary component in order to promote low temperature sintering. In this case, the same effect can be obtained.

【0027】さらにまた、焼成温度と仮焼温度を変えた
例で説明したが、混合条件、仮焼時間、粉砕粒径、焼成
時間など他の条件を変えて、異相の残存量を変えたもの
においても同様の効果が得られる。
Further, the example in which the firing temperature and the calcination temperature are changed has been described, but the remaining amount of the different phase is changed by changing other conditions such as mixing conditions, calcination time, crushed particle size, and firing time. Also in, the same effect can be obtained.

【0028】[0028]

【発明の効果】以上本発明によれば、比誘電率が50以
上かつ無負荷Q値が300以上の緻密な誘電体磁器が安
定して得られる。
As described above, according to the present invention, a dense dielectric ceramic having a relative permittivity of 50 or more and an unloaded Q value of 300 or more can be stably obtained.

【0029】また、この誘電体磁器を応用することによ
り、高導電率の導体を用いた高周波領域で使用できる小
型で高性能な積層型誘電体部品が安定に提供できること
となり、特に、小型の共振器系を構成することができる
ので、自動車電話、携帯電話等のマイクロ波領域の電磁
波を利用する通信機器の小型化に寄与するところが大で
ある。
Further, by applying this dielectric ceramic, it is possible to stably provide a small-sized and high-performance laminated dielectric component which can be used in a high frequency region using a conductor having a high conductivity, and particularly a small resonance. Since the system can be configured, it largely contributes to downsizing of communication devices such as car phones and mobile phones that use electromagnetic waves in the microwave range.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態1による本焼成後の誘電体
磁器のX線回折の特性曲線図
FIG. 1 is a characteristic curve diagram of X-ray diffraction of a dielectric ceramic after main firing according to a first embodiment of the present invention.

【図2】本発明の実施の形態1による本焼成後の誘電体
磁器のX線回折の特性曲線図
FIG. 2 is a characteristic curve diagram of X-ray diffraction of the dielectric ceramic after main firing according to the first embodiment of the present invention.

【図3】本発明の実施の形態2による仮焼後の粉体のX
線回折の特性曲線図
FIG. 3 is an X of the powder after calcination according to the second embodiment of the present invention.
Characteristic diagram of line diffraction

【図4】本発明の実施の形態2による仮焼後の粉体のX
線回折の特性曲線図
FIG. 4 is an X of the powder after calcination according to the second embodiment of the present invention.
Characteristic diagram of line diffraction

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 酸化ビスマス、酸化カルシウム及び酸化
ニオブを主成分とする誘電体磁器のX線回折による測定
において、前記誘電体磁器のメインピーク強度に対する
異相のメインピーク強度が10%未満のものを良品とす
る誘電体磁器の選別方法。
1. A measurement of a dielectric porcelain containing bismuth oxide, calcium oxide and niobium oxide as main components by X-ray diffraction, in which the main peak intensity of the different phase is less than 10% of the main peak intensity of the dielectric porcelain. How to select good dielectric ceramics.
【請求項2】 酸化ビスマス、酸化カルシウム及び酸化
ニオブを主成分とする誘電体磁器の出発原料の仮焼物の
X線回折による測定で、前記仮焼物のメインピーク強度
に対する異相のメインピーク強度が50%未満のものを
良品とする誘電体磁器の選別方法。
2. The main peak intensity of the different phase relative to the main peak intensity of the calcined product is 50 when measured by X-ray diffraction of the calcined product of the starting material of the dielectric ceramic mainly containing bismuth oxide, calcium oxide and niobium oxide. A method of selecting dielectric porcelain that is less than% good.
JP18634397A 1997-07-11 1997-07-11 Sorting method of dielectric porcelain Expired - Fee Related JP3414207B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18634397A JP3414207B2 (en) 1997-07-11 1997-07-11 Sorting method of dielectric porcelain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18634397A JP3414207B2 (en) 1997-07-11 1997-07-11 Sorting method of dielectric porcelain

Publications (2)

Publication Number Publication Date
JPH1130596A JPH1130596A (en) 1999-02-02
JP3414207B2 true JP3414207B2 (en) 2003-06-09

Family

ID=16186704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18634397A Expired - Fee Related JP3414207B2 (en) 1997-07-11 1997-07-11 Sorting method of dielectric porcelain

Country Status (1)

Country Link
JP (1) JP3414207B2 (en)

Also Published As

Publication number Publication date
JPH1130596A (en) 1999-02-02

Similar Documents

Publication Publication Date Title
JP2625074B2 (en) Dielectric ceramic composition and dielectric resonator
JP2002080273A (en) Porcelain for high frequency wave, dielectric antenna, supporting base, dielectric resonator, dielrctric filter, dielectric duplexer and communication equipment device
JP2003277130A (en) Dielectric porcelain composition and dielectric resonator
JPH04285046A (en) Dielectric porcelain composition
JP3744660B2 (en) Dielectric ceramic composition and dielectric resonator using the same
JP3414207B2 (en) Sorting method of dielectric porcelain
JPH08295561A (en) Dielectric porcelain composition
JPH0597508A (en) Dielectric porcelain composition for high-frequency
EP0727789A1 (en) Dielectric procelain composition and its manufacture
JP2000095561A (en) Dielectric porcelain composition and dielectric resonator using the same
JPH11130544A (en) Dielectric ceramic composition and its production
JP3376855B2 (en) Dielectric ceramic composition, method of manufacturing the same, dielectric resonator and dielectric filter using the same
JP3278520B2 (en) Dielectric porcelain composition
JP2001072464A (en) Dielectric ceramic composition and dielectric resonator using the same
JPH10330159A (en) Microwave dielectric ceramic composition
JPH0729415A (en) Dielectric porcelain serving also as antenna
JPH0520925A (en) Dielectric porcelain composition
JP2002187771A (en) Dielectric porcelain and dielectric resonator using the same
JP4614485B2 (en) Dielectric resonator
JPH0850813A (en) Dielectric ceramic composition
JP3098763B2 (en) Dielectric resonator
JP2003238241A (en) Method of producing glass ceramics
JP2917476B2 (en) Dielectric porcelain composition
JPH0877828A (en) Dielectric ceramic composition and its manufacture
JPH0574222A (en) Manufacture of dielectric porcelain

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080404

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090404

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100404

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees