JP3414100B2 - Tappet roller bearing - Google Patents

Tappet roller bearing

Info

Publication number
JP3414100B2
JP3414100B2 JP00685396A JP685396A JP3414100B2 JP 3414100 B2 JP3414100 B2 JP 3414100B2 JP 00685396 A JP00685396 A JP 00685396A JP 685396 A JP685396 A JP 685396A JP 3414100 B2 JP3414100 B2 JP 3414100B2
Authority
JP
Japan
Prior art keywords
roller
peripheral surface
shaft
outer peripheral
inner peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP00685396A
Other languages
Japanese (ja)
Other versions
JPH09195724A (en
Inventor
聡 角川
大 金野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP00685396A priority Critical patent/JP3414100B2/en
Publication of JPH09195724A publication Critical patent/JPH09195724A/en
Application granted granted Critical
Publication of JP3414100B2 publication Critical patent/JP3414100B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Valve-Gear Or Valve Arrangements (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】この発明に係るタペットローラ軸
受は、エンジンの動弁機構中に組み込み、動弁機構部分
の摩擦を少なくして、エンジン運転時に於ける燃料消費
率の低減を図るものである。 【0002】 【従来の技術】エンジン内部での摩擦低減を図り、燃
消費率を低減する事を目的として、クランクシャフトと
同期したカムシャフトの回転を給気弁及び排気弁の往復
運動に変換する部分に、タペットローラ軸受を組み込む
事が一般的に行なわれている。図1〜2は、実開平3−
108806号公報に記載されたタペットローラ軸受を
示している。 【0003】エンジンのクランクシャフトと同期して回
転するカムシャフト1に固定された(一般的には一体に
形成された)カム2に対向して、このカム2の動きを受
けるロッカーアーム3が設けられている。このロッカー
アーム3の端部(図1〜2の左端部)には1対の支持壁
部4、4が、互いに間隔をあけて設けられている。この
1対の支持壁部4、4の間には、鋼製で中空又は中実の
軸5を掛け渡している。この軸5の両端は焼き入れする
事なく、生のままとしており、軸5を固定する際には、
この未焼き入れ部分を、上記1対の支持壁部4、4に形
成した通孔7、7の内周面に向けてかしめ付ける。上述
の様にして、1対の支持壁部4、4の間に掛け渡された
軸5の周囲にはローラ6を、回転自在に支承しており、
このローラ6の外周面を、上記カム2の外周面に当接さ
せている。 【0004】上述の様に構成されるタペットローラ軸受
によれば、ロッカーアーム3とカム2との間に働く摩擦
力を低減し、エンジン運転時に於ける燃料消費率の低減
を図れる。この様なタペットローラ軸受の設置部分には
エンジン運転時に、エンジンオイルが供給される。そし
て、このエンジンオイルによって、カム2の外周面とロ
ーラ6の外周面との間、及び軸5の外周面5aとローラ
6の内周面6aとの間が潤滑される。 【0005】尚、タペットローラ軸受の構成各部材の材
質としては、カム2を含むカムシャフト1は鋳鉄若しく
は軸受鋼により、ローラ6及び軸5は高炭素クロム軸受
鋼により、それぞれ造る事が、必要な強度を確保しつつ
材料費、加工費を抑える面から、一般的に行なわれてい
る。そして、各部材の周面の表面粗さを工夫する事によ
り、エンジン運転時に於ける各部材同士の摺接部の潤滑
性を確保する様にしている。この様な潤滑性確保をより
確実に行なう為、軸5を燐青銅により、ローラ6を高炭
素クロム軸受鋼により、それぞれ造る事も、一部で行な
われている。又、ロッカーアーム3及び軸5にエンジン
オイル供給用の給油孔を開設する事も、例えば実開平4
−32210号公報に記載されている様に、従来から提
案されている。更に、ローラ6を窒化珪素等のセラミッ
クにより造る事も、例えば特開平4−15296号公
報、実開昭62−203911号公報、実開平3−10
8806号公報等に記載されている様に、従来から提案
されている。 【0006】 【発明が解決しようとする課題】ところが、上述の様な
従来から知られたタペットローラ軸受の場合には、次に
述べる様な解決すべき点がある。軸5及びローラ6を高
炭素クロム軸受鋼により造った場合には、運転条件によ
っては、軸5の外周面5aとローラ6の内周面6aとの
双方に、スミアと呼ばれる表面損傷が発生する。この様
な表面損傷は、組立作業に伴って、上記両部材5、6の
周面5a、6a同士の接触部が無潤滑状態となる事に起
因して発生する。即ち、これら両部材5、6の表面に
は、軸受加工時に付着する切削油等の加工用の油、更に
は搬送の間に腐食するのを防止する為の防錆油が付着し
ている。これらの油がそのまま残っていれば、エンジン
の運転開始直後から上記両周面5a、6a同士の潤滑が
或る程度図られる。ところが、近年に於けるエンジンの
組立工程では、これらの油は、軸受とロッカーアーム3
との組み立て工程で発生する切粉等が付着し、運転時に
異物として悪影響を及ぼす事を防止する為、洗浄作業に
より必要最小限のオイルを残し、洗い流している。この
為、組立直後のエンジンでは、上記両周面5a、6a同
士の接触部は無潤滑に近い状態となる。この状態からエ
ンジンを始動すると、エンジンオイルが供給されるまで
の短時間の間、上記両周面5a、6a同士が、一時的に
無潤滑状態のまま強く擦れ合う。この結果これら両周面
5a、6aに、上記表面損傷が発生する。 【0007】この様にして発生する表面損傷が著しい場
合には、カム2の外周面とローラ6の外周面との接触部
が焼き付く可能性がある。又、表面損傷が軽微である場
合にも、上記両周面5a、6aに微小な突起が形成さ
れ、この突起により、エンジンオイルの供給が行なわれ
る様になった後でも、これら各周面5a、6a同士の摺
動部の潤滑状態が完全な流体潤滑になりにくくなる。こ
の結果、経時的に各周面5a、6a部分の表面疲労が増
加した場合や、エンジンの急加減速時等、急激な速度変
動に油膜形成が追従できない場合に、局部的に著しい表
面損傷が発生する可能性がある。又、両部材5、6の各
周面5a、6aの表面粗さを工夫する事自体、供給され
たエンジンオイルの有効利用を意図したもので、無潤滑
状態での表面損傷防止には役立たない。 【0008】又、燐青銅製の軸5の外周面5aと高炭素
クロム軸受鋼製のローラ6の内周面6aとを接触させれ
ば、異種金属同士の接触になる為、接触部の摩擦が或る
程度低減するが、無潤滑状態での表面損傷防止効果は不
十分である。 【0009】更に、ローラ6を窒化珪素等のセラミック
により造ると、ローラ6の材料費及び加工費が嵩む。
又、セラミック製のローラ6は金属製のものに比べて割
れ易いだけでなく、金属製のカム2に対する攻撃性が強
く、このカム2の外周面を著しく摩耗させ易い。更に、
セラミック製のローラ6は金属製の軸5に比べて熱膨張
量が少ない為、エンジンの運転、停止に伴う、軸5の外
周面5aとローラ6の内周面6aとの間の隙間寸法変化
が大きくなる。この為、エンジンの温度が低い場合に、
ローラ6の支持部で振動が発生する等の問題を発生し易
い。 【0010】軸5の外周面5aとローラ6の内周面6a
との間にニードルを設ければ、組立後のエンジンを始動
してからタペットローラ軸受部分にエンジンオイルが供
給されるまでの短時間の間に焼き付き等の損傷が発生す
る事を防止する事は可能である。但し、ニードルを組み
込んだ転がり軸受の場合、経時的なエンジンオイルの劣
化に伴う清浄剤の減少によりスラッジが増加すると、ニ
ードルを構成する金属表面の摩耗が進み、上記タペット
ローラ軸受部分の耐久性が損なわれる。 【0011】この為、軸5の周囲に転がり軸受を使用す
る事なく(滑り軸受により)ローラ6を回転自在に支承
する構造で、上記短時間の間に焼き付き等の損傷の発生
を防止できる構造の実現が望まれている。本発明のタペ
ットローラ軸受は、この様な事情に鑑みて発明したもの
である。 【0012】 【課題を解決するための手段】本発明のタペットローラ
軸受は、前述した従来のタペットローラ軸受と同様、例
えば図1〜2に示す様に、エンジンのクランクシャフト
と同期して回転するカムシャフト1に固定されたカム2
と、このカム2に対向して設けられ、このカム2の動き
を受ける部材(ロッカーアーム3)に間隔をあけて形成
した1対の支持壁部4、4と、この1対の支持壁部4、
4の間に掛け渡された鋼製の軸5と、この軸5の周囲に
回転自在に支承された鋼製のローラ6とから成る。 【0013】特に、本発明のタペットローラ軸受に於い
ては、上記軸5の外周面5aと上記ローラ6の内周面6
aとの間に、この軸5の外径に対する割合が0.04〜
1.0%である隙間8を介在させる事により、上記ロー
ラ6を上記軸5の周囲に、上記外周面5aと上記内周面
6aとの滑り接触に基づく回転自在に支持している。
尚、上記隙間8の大きさを上述の様に限定する理由は、
それぞれがSUJ2等の鋼により造られた軸5とローラ
6とを組み合わせる場合、上記両周面5a、6aの表面
損傷を防止すべく、次述する様な表面処理層を形成する
為、並びにオイルスターブド(潤滑油枯渇状態)になっ
ても上記両周面5a、6aにスミアを起こしにくい接触
状態を保つ為である。 【0014】更に、上記ローラ6の内周面6aと軸5の
外周面5aとのうちの少なくとも一方の周面5a(又は
6a)に、摩擦を低減する表面処理層を形成する。そし
て、この表面処理層の厚さを、上記隙間8の5〜95%
とする。尚、この様な摩擦を低減する表面処理層として
は、次の〜に属するものの何れかを使用する。 硫黄と鉄との化合物の反応層。 窒素を含有した、硫黄と鉄との化合物の反応層。 燐と鉄との燐酸塩化合物の反応層。 二硫化モリブデン(MoS2 )とポリ四弗化エチレ
ン(PTFE)との単体若しくは混合物を熱硬化性合成
樹脂と共に焼成する事により得られる処理層。 上記
〜の何れかの反応層の表面に、MoS2 とPTFE
との単体若しくは混合物を熱硬化性合成樹脂と共に焼成
する事により得られる処理層を重ねたもの。 【0015】 【作用】上述の様に構成される本発明のタペットローラ
軸受の場合には、軸5の外周面5aとローラ6の内周面
6aとの間の隙間8を規制する事により、これら両周面
5a、6a同士の接触部分に加わる面圧を適正値にでき
る。この為、エンジンの運転開始直後、タペットローラ
軸受部分にエンジンオイルが行き渡るまでの間の短時
間、無潤滑に近い状態で運転されても、上記両周面5
a、6aが重大な損傷を受ける事がなくなり、耐焼き付
き性及び耐久性が向上する。 【0016】更に、上記両周面5a、6aの一方又は双
方に摩擦を低減する表面処理層を形成している為、この
表面処理層により、上記両周面5a、6a同士の間の潤
滑を確保できる。この為、これら両周面5a、6aに表
面損傷が発生する事をより有効に防止できる。この結
果、これら両周面5a、6aに有害な凹凸が形成される
事がなく、上記軸5の外周面5a及びローラ6の内周面
6aの潤滑状態を良好にできて、これら軸5及びローラ
6の耐久性向上を図れる。 【0017】 【実施例】本発明の効果を確認する為に行なった実験に
就いて説明する。実験は、実際の使用条件を想定した台
上表面損傷再現試験として、図3に示す様な表面損傷試
験機を使用して行なった。プーリ9により回転駆動され
るシャフト10の中間部にはリング11を圧入してい
る。このリング11がカム2(図1〜2)に相当する。
このリング11の外周面に押圧するローラ6を、軸5の
周囲に回転自在に支承した。ローラ6としては、内径が
8.002〜8.160mmの範囲ものを6種類、20.
004〜20.400mmのものを6種類、合計12種類
用意した。又、内径が8.002〜8.160mmである
ローラ6に対応する軸5として、外径が8.000mmの
ものを、内径が20.004〜20.400mmのローラ
6に対応する軸5として、外径が20.000mmのもの
を、それぞれ用意した。この様な軸5とローラ6とを組
み合わせて、軸5の外周面5aとローラ6の内周面6a
との間の隙間8(図1〜2)が軸5の外径に占める割合
を、それぞれ0.02%、0.04%、0.5%、1.
0%、1.2%、2.0%の6段階に変化させた。これ
ら寸法及び割合(%)は、何れも常温での値である。
尚、ローラ6の材質はSUJ2で表面硬度はHRc61
とし、軸5の材質としては、SUJ2で表面硬度がHR
c61のものと、燐青銅との2種類を使用した。 【0018】試験時には、上記ローラ6を2750r.p.
m で回転させつつ上記ローラ6を、負荷用レバー12に
より上記リング11の外周面に、鋼球13を介して、1
25kgf の荷重で押圧した。又、ローラ6の内周面6a
と軸5の外周面5aとの間に潤滑油(エンジンオイル)
を供給し、ローラ6の外周面5aに潤滑油を滴下した状
態で上記シャフト10を起動させ、回転が定常状態に達
した状態で潤滑油の供給を停止して、上記シャフト10
の運転を継続した。そして、上記シャフト10を駆動す
る為の電動モータの電流値が過電流値になるまでの時間
を耐久時間として求めた。その結果を次の表1、2及び
図4に示す。尚、表1及び図4の○印は、軸5及びロー
ラ6の両方をSUJ2により造った場合の実験結果を、
表2及び図4の△印は、ローラ6をSUJ2により造
り、軸5を燐青銅により造った場合の実験結果を、それ
ぞれ表している。 【0019】 【表1】 【表2】 【0020】これら表1、2及び図4から明らかな通
り、軸5の内周面5aとローラ6の内周面6aとの間の
隙間8の寸法は、これら両周面5a、6aにより構成さ
れる滑り軸受部分の耐久性に大きな影響を及ぼす。即
ち、これら両周面5a、6a同士の摺接面には潤滑油の
膜が形成されてこれら両周面5a、6a同士の接触部分
で金属接触が発生する事を防止しているが、潤滑油が極
端に不足した場合には、上記隙間8の寸法は上記耐久性
に大きな影響を及ぼす。 【0021】先ず、上記隙間8の寸法が軸5の外径の
0.04%未満の場合には、上記両周面5a、6a同士
の接触面積が大きくなり過ぎて、これら両周面5a、6
aの接触部分に潤滑油の油膜が保持されにくくなり、こ
の接触部分で金属接触が発生し易くなって、上記耐久性
が低下する。逆に、上記隙間8の寸法が軸5の外径の
1.0%を越えた場合には、上記接触面積が小さくなり
過ぎて、上記接触部分の面圧が過大となり、やはり上記
耐久性が低下する。更に、上記軸5の材質とローラ6の
材質とが異なった場合には、運転に伴う温度上昇により
上記隙間8の寸法が変化する為、常温時に於けるこの隙
間8の寸法が、上記耐久性に影響を及ぼすものと考えら
れる。これに対して、表1、2の比較及び図4の○印と
△印との比較から明らかな通り、軸5の材質とローラ6
の材質とが同じ場合でも異なった場合でも、上記隙間8
の寸法と耐久性との関係には、ほぼ同様の傾向が見られ
た。即ち、上記軸5の外周面5aと上記ローラ6の内周
面6aとの間の隙間8の寸法を、この軸5の外径の0.
04〜1.0%の範囲に規制すれば、軸5によるローラ
6の滑り支持部の耐久性を確保できる。尚、上記ローラ
6の内径を5〜30mmの範囲で変えて同様の実験を行な
ったが、この傾向は同じであった。 【0022】次に、この滑り支持部の耐久性をより一層
向上させるべく、上記外周面5a又は内周面6aに摩擦
を低減する表面処理層を形成する事の効果を確認する為
に行なった実験に就いて説明する。即ち、前述した通り
エンジンの運転開始初期には、上記外周面5aと内周面
6aとが、殆ど潤滑油を介在させない状態で摺接する。
そこで、この運転開始初期にこれら両周面5a、6aに
損傷が発生するのを防止する為には、これら両周面5
a、6aの一方又は双方に上記表面処理層を形成する事
が有効である。以下に述べる実験は、この表面処理層の
有効性を確認する為に行なったものである。 【0023】この実験は、上述した隙間8の寸法を規制
する事の有効性を確認する為に行なった実験と同様に、
図3に示す様な表面損傷試験機を使用して行なった。ロ
ーラ6及び軸5の材質は何れもSUJ2、表面硬度はH
Rc62とした。又、摩擦低減用の表面処理層は、ロー
ラ6の内周面6aに形成した。このローラ6の内径は
8.82mm、外径は20mm、幅は8mmである。又、軸5
の外周面5aとローラ6の内周面6aとの間の隙間8の
寸法は0.020mm(20μm)にした。この隙間8の
寸法は、上記軸5の外径8.80mmの0.23%に相当
する。尚、同様の実験を、燐青銅製の軸5を用い、隙間
8の寸法を0.050mm(50μm)又は0.160mm
(160μm)にし、この寸法を軸5の外径の0.58
%としたものでも行なった。 【0024】上記表面処理層は、前記に対応するもの
を形成した。即ち、先ず上記ローラ6の内周面6aに燐
酸亜鉛処理による下地を形成した後、更にこの下地の表
面に低摩擦材層を形成した。この低摩擦材層を形成する
為に、MoS2 とPTFEと熱硬化性合成樹脂とを有機
溶剤に分散させて皮膜液を調整した。そして、この皮膜
液を上記内周面6aに塗布した後、上記ローラ6を加熱
炉中で180℃で60分間加熱して、上記低摩擦材層を
焼成した。表面処理層の膜厚制御は、上記下地と低摩擦
材層との両方で行なった。下地の膜厚調整は、燐酸及び
亜鉛の濃度を調整する事により、0.3〜5μmの範囲
で行なった。又、上記低摩擦材層の膜厚調整は、上記皮
膜液の粘度を調整する事により行なった。 【0025】尚、上記皮膜液を上記内周面6aに塗布す
る方法としては、(1) スプレーによる噴霧方式、(2) 皮
膜液中にローラ6を浸漬する浸漬方式、(3) ローラ6を
動かしながら塗装する、所謂ガラ塗装方式等を、ローラ
6の形状及び大きさ、形成すべき表面処理層の厚さ等に
応じて選択採用する。例えば、軸5の外径が小さく、こ
の軸5の外周面5aとローラ6の内周面6aとの間の隙
間8の寸法が小さくなる場合には、上記表面処理層の厚
さを必要最小限に抑える必要がある。この様な場合に
は、上記(3) の方法が有効である。これに対して、軸5
の外径が10mm以上と大きく、上記隙間8の寸法が大き
い為、上記表面処理層の厚さを大きくできる場合には、
上記(1) の方法が有効である。何れにしても、表面処理
層の膜厚の制御は、予め厚めに形成した表面処理膜の表
面に、#1200のエメリー紙によるラッピング処理を
施し、更にヘキサン中で超音波洗浄を行なって、次述す
る表3に示す比率を有する膜厚に調整した。 【0026】上述の様にして得られた複数の試料の耐久
性を測定する試験時には、ローラ6を3000r.p.m で
回転させつつ上記ローラ6を、負荷用レバー12により
上記リング11の外周面に、鋼球13を介して、100
kgf の荷重で押圧した。又、ローラ6の内周面6aと軸
5の外周面5aとの間は無潤滑とし、ローラ6の外周面
とリング11の外周面との間は、これら両外周面同士が
焼き付かない程度の最小限(0.1cc/min)の潤滑油
(劣化したエンジンオイル)を滴下した。そして、上記
シャフト10を駆動する為の電動モータの電流値が過電
流値になるまでの時間を耐久時間として求めた。尚、同
様の試験を、隙間が8μmの場合と160μmの場合と
に就いても、一部実施した。その結果を次の表3、4及
び図5に示す。尚、表3、4中で「−」を付した欄に就
いては、対応する組み合わせによる実験を行なわなかっ
た。 【0027】 【表3】 【表4】【0028】これら表3、4及び図5から明らかな通
り、隙間8に対する表面処理層の膜厚比が5%未満の場
合には、この表面処理層による潤滑作用を十分に得られ
ない為に十分な耐久性を得られない。反対に、上記膜厚
比が95%を越えると、表面処理層と軸5の外周面5a
との間に潤滑油が入りづらくなって、やはり十分な耐久
性を得られなくなる。上記表面処理層をローラ6の内周
面6aに代えて軸5の外周面5aに形成した場合でも、
当然に同様の結果を得られる。これらにより、軸5の外
周面5aとローラ6の内周面6aとの一方又は双方に摩
擦を低減する表面処理層を、上記隙間8に対して5〜9
5%の膜厚比で形成すれば、上記両周面5a、6a同士
の間の潤滑性を確保できる事が分る。特に、上記膜厚比
を10〜50%の範囲に規制すれば、上記潤滑性がより
良好になる。尚、上記ローラ6の内径を5〜30mmの範
囲で変えて同様の実験を行なったが、この傾向は同じで
あった。 【0029】 【発明の効果】本発明のタペットローラ軸受は、以上に
述べた通り構成され作用するので、エンジンの運転開始
初期状態での表面損傷を防止して、焼き付き防止を図る
だけでなく、その後の潤滑状態を良好にして、十分な耐
久性確保を図れる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention A tappet roller bearing according to the present invention is incorporated in a valve train of an engine to reduce the friction of the valve train so that the tappet roller can be used during engine operation. To reduce the fuel consumption rate. [0002] aims to friction reduction in the BACKGROUND ART Engine internal, with the aim of reducing fuel <br/> consumption rate, the rotation of the camshaft in synchronism with the crankshaft of the air supply and exhaust valves It is common practice to incorporate a tappet roller bearing into the portion that converts to reciprocating motion. Figs.
10 shows a tappet roller bearing described in Japanese Patent Publication No. 108806. A rocker arm 3 is provided opposite to a cam 2 fixed (generally, integrally formed) to a camshaft 1 which rotates in synchronization with the crankshaft of the engine and which receives the movement of the cam 2. Have been. A pair of support walls 4, 4 are provided at an end of the rocker arm 3 (left end in FIGS. 1 and 2) at intervals. A hollow or solid shaft 5 made of steel is bridged between the pair of support walls 4. Both ends of the shaft 5 are not quenched, but are left raw. When fixing the shaft 5,
The unquenched portion is caulked toward the inner peripheral surfaces of the through holes 7 formed in the pair of support walls 4. As described above, the roller 6 is rotatably supported around the shaft 5 spanned between the pair of support walls 4, 4.
The outer peripheral surface of the roller 6 is in contact with the outer peripheral surface of the cam 2. According to the tappet roller bearing configured as described above, the frictional force acting between the rocker arm 3 and the cam 2 can be reduced, and the fuel consumption rate during engine operation can be reduced. Engine oil is supplied to the installation portion of such a tappet roller bearing during operation of the engine. The engine oil lubricates between the outer peripheral surface of the cam 2 and the outer peripheral surface of the roller 6, and between the outer peripheral surface 5a of the shaft 5 and the inner peripheral surface 6a of the roller 6. It is necessary that the camshaft 1 including the cam 2 be made of cast iron or bearing steel, and the roller 6 and the shaft 5 be made of high carbon chromium bearing steel. It is generally used from the viewpoint of reducing material costs and processing costs while ensuring high strength. And, by devising the surface roughness of the peripheral surface of each member, lubrication of a sliding contact portion between the members during operation of the engine is ensured. In order to ensure such lubrication, the shaft 5 is made of phosphor bronze and the roller 6 is made of high carbon chromium bearing steel. In addition, it is also possible to open an oil supply hole for supplying engine oil to the rocker arm 3 and the shaft 5, for example.
As described in -32210, it has been conventionally proposed. Further, the roller 6 may be made of a ceramic such as silicon nitride, for example, as disclosed in JP-A-4-15296, JP-A-62-203911, and JP-A-3-10.
As described in, for example, Japanese Patent Publication No. 8806, it has been conventionally proposed. [0006] However, in the case of the above-described tappet roller bearing known in the related art, there are the following points to be solved. When the shaft 5 and the roller 6 are made of high carbon chromium bearing steel, surface damage called smear occurs on both the outer peripheral surface 5a of the shaft 5 and the inner peripheral surface 6a of the roller 6 depending on operating conditions. . Such surface damage occurs due to the fact that the contact portions between the peripheral surfaces 5a and 6a of the two members 5 and 6 become non-lubricated during the assembly operation. That is, a processing oil such as a cutting oil that adheres at the time of bearing processing, and a rust-preventive oil for preventing corrosion during transportation are attached to the surfaces of the two members 5 and 6. If these oils remain, lubrication between the two peripheral surfaces 5a and 6a can be achieved to some extent immediately after the start of operation of the engine. However, in the engine assembly process in recent years, these oils are supplied to the bearing and the rocker arm 3.
In order to prevent chips and the like generated during the assembling process from adhering and adversely affecting as foreign matter during operation, a minimum amount of necessary oil is left by a washing operation to wash away. For this reason, in the engine immediately after assembly, the contact portion between the two peripheral surfaces 5a and 6a is in a state close to non-lubrication. When the engine is started from this state, the two peripheral surfaces 5a and 6a rub strongly against each other in a temporary non-lubricated state for a short time until the engine oil is supplied. As a result, the above-mentioned surface damage occurs on both of the peripheral surfaces 5a and 6a. If the surface damage generated in this way is remarkable, there is a possibility that the contact portion between the outer peripheral surface of the cam 2 and the outer peripheral surface of the roller 6 is seized. Even when the surface damage is slight, minute projections are formed on both of the peripheral surfaces 5a and 6a, and even after the engine oil is supplied by the projections, these peripheral surfaces 5a , 6a are not completely lubricated in the lubricating state of the sliding portion. As a result, when the surface fatigue of each of the peripheral surfaces 5a and 6a increases with time, or when the oil film formation cannot follow a rapid speed fluctuation such as when the engine is rapidly accelerated or decelerated, significant surface damage locally occurs. Can occur. In addition, devising the surface roughness of each of the peripheral surfaces 5a, 6a of both members 5, 6 is intended for effective use of the supplied engine oil, and does not contribute to preventing surface damage in a non-lubricated state. . Further, if the outer peripheral surface 5a of the phosphor bronze shaft 5 and the inner peripheral surface 6a of the roller 6 made of high carbon chromium bearing steel are brought into contact with each other, dissimilar metals come into contact with each other. However, the effect of preventing surface damage in an unlubricated state is insufficient. Further, if the roller 6 is made of a ceramic such as silicon nitride, the material cost and processing cost of the roller 6 increase.
Further, the ceramic roller 6 is not only easily broken than a metal roller, but also has a strong aggressiveness to the metal cam 2 and easily wears the outer peripheral surface of the cam 2 significantly. Furthermore,
Since the amount of thermal expansion of the ceramic roller 6 is smaller than that of the metal shaft 5, a change in the gap size between the outer peripheral surface 5a of the shaft 5 and the inner peripheral surface 6a of the roller 6 due to the operation and stop of the engine. Becomes larger. Therefore, when the engine temperature is low,
Problems such as generation of vibration at the support portion of the roller 6 are likely to occur. The outer peripheral surface 5a of the shaft 5 and the inner peripheral surface 6a of the roller 6
If a needle is provided between the tappet roller bearing and the tappet roller bearing, it is possible to prevent the occurrence of damage such as seizure in a short time from the start of the assembled engine to the supply of engine oil. It is possible. However, in the case of a rolling bearing incorporating a needle, if the sludge increases due to a decrease in detergent due to the deterioration of the engine oil over time, the wear of the metal surface constituting the needle progresses, and the durability of the tappet roller bearing portion increases. Be impaired. For this reason, the structure in which the roller 6 is rotatably supported without using a rolling bearing around the shaft 5 (by means of a sliding bearing) can prevent the occurrence of damage such as seizure in the short time. The realization of is desired. The tappet roller bearing of the present invention has been made in view of such circumstances. The tappet roller bearing of the present invention rotates in synchronization with the crankshaft of the engine, for example, as shown in FIGS. Cam 2 fixed to camshaft 1
And a pair of support walls 4, 4 provided opposite to the cam 2 and formed at intervals on a member (rocker arm 3) which receives the movement of the cam 2, and a pair of support wall portions 4,
4 comprises a steel shaft 5 suspended between them and a steel roller 6 rotatably supported around the shaft 5. In particular, in the tappet roller bearing of the present invention, the outer peripheral surface 5a of the shaft 5 and the inner peripheral surface 6 of the roller 6 are provided.
a with respect to the outer diameter of the shaft 5 is 0.04 to
By interposing a gap 8 of 1.0%, the roller 6 is rotatably supported around the shaft 5 based on sliding contact between the outer peripheral surface 5a and the inner peripheral surface 6a.
The reason for limiting the size of the gap 8 as described above is as follows.
When the shaft 5 and the roller 6 each made of steel such as SUJ2 are combined , in order to prevent the surface damage of the both peripheral surfaces 5a, 6a, a surface treatment layer as described below is formed, and an oil is formed. This is to maintain a contact state in which smear does not easily occur on both of the peripheral surfaces 5a and 6a even when starved (lubricating oil depleted state). Further, a surface treatment layer for reducing friction is formed on at least one of the inner peripheral surface 6a of the roller 6 and the outer peripheral surface 5a of the shaft 5 (or 6a). Then, the thickness of the surface treatment layer is set to 5 to 95% of the gap 8.
And In addition, as a surface treatment layer that reduces such friction
Uses any of the following . Reaction layer of compound of sulfur and iron. A reaction layer of a compound of sulfur and iron containing nitrogen. Reaction layer of phosphate compound of phosphorus and iron. A treatment layer obtained by baking a simple substance or a mixture of molybdenum disulfide (MoS 2 ) and polytetrafluoroethylene (PTFE) together with a thermosetting synthetic resin. MoS 2 and PTFE are formed on the surface of any one of the above reaction layers.
And a treatment layer obtained by firing a simple substance or a mixture thereof with a thermosetting synthetic resin. In the case of the tappet roller bearing of the present invention configured as described above, by regulating the gap 8 between the outer peripheral surface 5a of the shaft 5 and the inner peripheral surface 6a of the roller 6, The surface pressure applied to the contact portion between these two peripheral surfaces 5a and 6a can be set to an appropriate value. For this reason, even if the engine is operated in an almost non-lubricated state for a short period of time immediately after the start of the operation of the engine until the engine oil spreads to the tappet roller bearing portion, even if the both peripheral surfaces 5 are not lubricated.
a and 6a are not seriously damaged, and seizure resistance and durability are improved. Further, since a surface treatment layer for reducing friction is formed on one or both of the peripheral surfaces 5a and 6a, lubrication between the peripheral surfaces 5a and 6a is prevented by this surface treatment layer. Can be secured. Therefore, it is possible to more effectively prevent the surface damage on both of the peripheral surfaces 5a and 6a. As a result, no harmful irregularities are formed on both the peripheral surfaces 5a and 6a, and the outer peripheral surface 5a of the shaft 5 and the inner peripheral surface 6a of the roller 6 can be lubricated well. The durability of the roller 6 can be improved. EXAMPLES Experiments performed to confirm the effects of the present invention will be described. The experiment was performed using a surface damage testing machine as shown in FIG. 3 as a bench surface surface damage reproduction test assuming actual use conditions. A ring 11 is pressed into an intermediate portion of a shaft 10 driven to rotate by a pulley 9. This ring 11 corresponds to the cam 2 (FIGS. 1 and 2).
A roller 6 that presses against the outer peripheral surface of the ring 11 is rotatably supported around the shaft 5. Six types of rollers 6 having an inner diameter in the range of 8.000 to 8.160 mm are used.
Six types of 004 to 20.400 mm were prepared, for a total of 12 types. As the shaft 5 corresponding to the roller 6 having an inner diameter of 8.000 to 8.160 mm, the shaft 5 having an outer diameter of 8.000 mm is used as the shaft 5 corresponding to the roller 6 having an inner diameter of 20.004 to 20.400 mm. , Each having an outer diameter of 20.000 mm. By combining such a shaft 5 and the roller 6, the outer peripheral surface 5a of the shaft 5 and the inner peripheral surface 6a of the roller 6 are combined.
The ratio of the gap 8 (FIGS. 1-2) to the outer diameter of the shaft 5 is 0.02%, 0.04%, 0.5%, and 1.
It was changed in six steps of 0%, 1.2% and 2.0%. These dimensions and ratios (%) are values at room temperature.
The roller 6 is made of SUJ2 and has a surface hardness of HRc61.
The material of the shaft 5 is SUJ2 and the surface hardness is HR
Two types, c61 and phosphor bronze, were used. At the time of the test, the roller 6 was set at 2750 rpm.
The roller 6 is rotated on the outer peripheral surface of the ring 11 by a load lever 12 through a steel ball 13 while rotating at 1 m.
It was pressed with a load of 25 kgf. Also, the inner peripheral surface 6a of the roller 6
Lubricating oil (engine oil) between the shaft and the outer peripheral surface 5a of the shaft 5
Is supplied, lubricating oil is dropped on the outer peripheral surface 5a of the roller 6, the shaft 10 is started, and when the rotation reaches a steady state, the supply of lubricating oil is stopped.
Operation was continued. Then, the time until the current value of the electric motor for driving the shaft 10 became an overcurrent value was determined as the endurance time. The results are shown in the following Tables 1 and 2 and FIG. The circles in Table 1 and FIG. 4 indicate the experimental results when both the shaft 5 and the roller 6 were made of SUJ2.
4 indicate the experimental results when the roller 6 was made of SUJ2 and the shaft 5 was made of phosphor bronze. [Table 1] [Table 2] As is clear from Tables 1 and 2 and FIG. 4, the size of the gap 8 between the inner peripheral surface 5a of the shaft 5 and the inner peripheral surface 6a of the roller 6 is constituted by these two peripheral surfaces 5a, 6a. Greatly affects the durability of the sliding bearing portion. That is, a film of lubricating oil is formed on the sliding contact surface between the two peripheral surfaces 5a and 6a to prevent metal contact at the contact portion between the two peripheral surfaces 5a and 6a. When the oil is extremely short, the size of the gap 8 has a great influence on the durability. First, when the size of the gap 8 is less than 0.04% of the outer diameter of the shaft 5, the contact area between the two peripheral surfaces 5a and 6a becomes too large, and these two peripheral surfaces 5a, 6
The oil film of the lubricating oil is less likely to be held at the contact portion a, and metal contact is more likely to occur at this contact portion, and the durability is reduced. Conversely, if the size of the gap 8 exceeds 1.0% of the outer diameter of the shaft 5, the contact area becomes too small, the surface pressure of the contact portion becomes excessive, and the durability is also lowered. descend. Further, when the material of the shaft 5 and the material of the roller 6 are different, the size of the gap 8 changes due to a temperature rise during operation. It is thought that it will affect. On the other hand, as is clear from the comparison between Tables 1 and 2 and the comparison between the circles and the triangles in FIG.
Even if the material is the same or different,
Almost the same tendency was observed in the relationship between the size of the steel and the durability. That is, the size of the gap 8 between the outer peripheral surface 5a of the shaft 5 and the inner peripheral surface 6a of the roller 6 is set to be equal to 0.
If it is restricted to the range of 04 to 1.0%, the durability of the sliding support portion of the roller 6 by the shaft 5 can be ensured. A similar experiment was conducted by changing the inner diameter of the roller 6 in the range of 5 to 30 mm, but this tendency was the same. Next, in order to further improve the durability of the sliding support portion, the effect of forming a surface treatment layer for reducing friction on the outer peripheral surface 5a or the inner peripheral surface 6a was confirmed. I will explain about the experiment. That is, as described above, at the beginning of the operation start of the engine, the outer peripheral surface 5a and the inner peripheral surface 6a are in sliding contact with almost no lubricating oil.
Therefore, in order to prevent the peripheral surfaces 5a, 6a from being damaged at the beginning of the operation, the peripheral surfaces 5a, 6a are required.
It is effective to form the surface treatment layer on one or both of a and 6a. The experiments described below were performed to confirm the effectiveness of the surface treatment layer. This experiment is similar to the experiment conducted to confirm the effectiveness of restricting the size of the gap 8 described above.
This was performed using a surface damage tester as shown in FIG. The material of the roller 6 and the shaft 5 is SUJ2, and the surface hardness is H.
Rc62. Further, a surface treatment layer for reducing friction was formed on the inner peripheral surface 6 a of the roller 6. The roller 6 has an inner diameter of 8.82 mm, an outer diameter of 20 mm, and a width of 8 mm. Also, shaft 5
The dimension of the gap 8 between the outer peripheral surface 5a and the inner peripheral surface 6a of the roller 6 was 0.020 mm (20 μm). The size of the gap 8 corresponds to 0.23% of the outer diameter of the shaft 5 of 8.80 mm. The same experiment was conducted using the phosphor bronze shaft 5 and the dimension of the gap 8 was adjusted to 0.050 mm (50 μm) or 0.160 mm.
(160 μm), and this dimension is 0.58 of the outer diameter of the shaft 5.
%. The above-mentioned surface treatment layer was formed corresponding to the above. That is, first, a base was formed on the inner peripheral surface 6a of the roller 6 by zinc phosphate treatment, and then a low friction material layer was formed on the surface of the base. In order to form this low friction material layer, MoS 2 , PTFE, and a thermosetting synthetic resin were dispersed in an organic solvent to prepare a coating solution. Then, after applying the coating liquid to the inner peripheral surface 6a, the roller 6 was heated in a heating furnace at 180 ° C. for 60 minutes to fire the low friction material layer. The thickness control of the surface treatment layer was performed on both the base and the low friction material layer. The thickness of the underlayer was adjusted in the range of 0.3 to 5 μm by adjusting the concentrations of phosphoric acid and zinc. The thickness of the low friction material layer was adjusted by adjusting the viscosity of the coating liquid. The coating liquid is applied to the inner peripheral surface 6a by (1) a spray method using a spray, (2) a dipping method in which the roller 6 is dipped in the coating liquid, and (3) a roller 6 A so-called glass coating method or the like, in which coating is performed while moving, is selected and adopted according to the shape and size of the roller 6, the thickness of the surface treatment layer to be formed, and the like. For example, when the outer diameter of the shaft 5 is small and the dimension of the gap 8 between the outer peripheral surface 5a of the shaft 5 and the inner peripheral surface 6a of the roller 6 is small, the thickness of the surface treatment layer is set to a necessary minimum. Need to be kept to a minimum. In such a case, the method (3) is effective. On the other hand, axis 5
Since the outer diameter is as large as 10 mm or more and the size of the gap 8 is large, when the thickness of the surface treatment layer can be increased,
The method (1) is effective. In any case, the thickness of the surface treatment layer is controlled by performing a lapping process using # 1200 emery paper on the surface of the surface treatment film formed in advance and performing ultrasonic cleaning in hexane. The film thickness was adjusted to have the ratio shown in Table 3 described below. In a test for measuring the durability of a plurality of samples obtained as described above, the roller 6 is rotated by the load lever 12 on the outer peripheral surface of the ring 11 while rotating the roller 6 at 3000 rpm. , 100 through the steel ball 13
It was pressed with a load of kgf. Further, the inner peripheral surface 6a of the roller 6 and the outer peripheral surface 5a of the shaft 5 are not lubricated, and the outer peripheral surface of the roller 6 and the outer peripheral surface of the ring 11 are such that these two outer peripheral surfaces are not seized. (0.1 cc / min) of lubricating oil (deteriorated engine oil) was dropped. Then, the time until the current value of the electric motor for driving the shaft 10 became an overcurrent value was determined as the endurance time. The same test was partially performed for the case where the gap was 8 μm and the case where the gap was 160 μm. The results are shown in the following Tables 3, 4 and FIG. In addition, in the columns with “-” in Tables 3 and 4, the experiments using the corresponding combinations were not performed. [Table 3] [Table 4] As is clear from Tables 3 and 4 and FIG. 5, when the thickness ratio of the surface treatment layer to the gap 8 is less than 5%, the lubricating action of the surface treatment layer cannot be sufficiently obtained. Sufficient durability cannot be obtained. On the other hand, if the film thickness ratio exceeds 95%, the surface treatment layer and the outer peripheral surface 5a of the shaft 5 are formed.
And lubricating oil hardly enters between them, so that sufficient durability cannot be obtained. Even when the surface treatment layer is formed on the outer peripheral surface 5a of the shaft 5 instead of the inner peripheral surface 6a of the roller 6,
Naturally, similar results can be obtained. Thus, a surface treatment layer for reducing friction is provided on one or both of the outer peripheral surface 5a of the shaft 5 and the inner peripheral surface 6a of the roller 6 by 5 to 9
It can be seen that if the film is formed at a film thickness ratio of 5%, the lubricating property between the two peripheral surfaces 5a and 6a can be ensured. In particular, when the film thickness ratio is regulated in the range of 10 to 50%, the lubricity becomes more favorable. A similar experiment was conducted by changing the inner diameter of the roller 6 in the range of 5 to 30 mm, but this tendency was the same. Since the tappet roller bearing of the present invention is constructed and operates as described above, the tappet roller bearing not only prevents surface damage in the initial state of engine operation but also prevents seizure. The lubricating state thereafter is improved, and sufficient durability can be ensured.

【図面の簡単な説明】 【図1】タペットローラ軸受の部分切断平面図。 【図2】図1のA−A断面図。 【図3】表面損傷試験機の縦断側面図。 【図4】隙間の大きさが耐久性に及ぼす影響を示す線
図。 【図5】表面処理層の隙間に対する膜厚比が耐久性に及
ぼす影響を示す線図。 【符号の説明】 1 カムシャフト 2 カム 3 ロッカーアーム 4 支持壁部 5 軸 5a 外周面 6 ローラ 6a 内周面 7 通孔 8 隙間 9 プーリ 10 シャフト 11 リング 12 負荷用レバー 13 鋼球
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a partially cut plan view of a tappet roller bearing. FIG. 2 is a sectional view taken along line AA of FIG. FIG. 3 is a vertical side view of the surface damage tester. FIG. 4 is a diagram showing the effect of the size of a gap on durability. FIG. 5 is a diagram showing the effect of the thickness ratio of the surface treatment layer to the gap on the durability. [Description of Signs] 1 camshaft 2 cam 3 rocker arm 4 support wall 5 shaft 5a outer peripheral surface 6 roller 6a inner peripheral surface 7 through hole 8 gap 9 pulley 10 shaft 11 ring 12 load lever 13 steel ball

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭59−183007(JP,A) 特開 昭59−180115(JP,A) 特開 昭59−180114(JP,A) 実開 平2−19805(JP,U) 曾田範囲宗、外4名,「機械設計シリ ーズ 軸受の設計」,日本,株式会社オ ーム社書店,1969年 1月20日,第1版 第3刷,p80−82 (58)調査した分野(Int.Cl.7,DB名) F01L 1/18 F01L 1/14 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-59-183007 (JP, A) JP-A-59-180115 (JP, A) JP-A-59-180114 (JP, A) 19805 (JP, U) Munemune Soda and four others, “Mechanical Design Series, Design of Bearings”, Japan, Ohm Publishing Co., Ltd., January 20, 1969, 1st edition, 3rd edition, p80 −82 (58) Field surveyed (Int.Cl. 7 , DB name) F01L 1/18 F01L 1/14

Claims (1)

(57)【特許請求の範囲】 【請求項1】 エンジンのクランクシャフトと同期して
回転するカムシャフトに固定されたカムと、このカムに
対向して設けられ、このカムの動きを受ける部材に間隔
をあけて形成した1対の支持壁部と、この1対の支持壁
部の間に掛け渡された鋼製の軸と、この軸の周囲に回転
自在に支承された鋼製のローラとから成るタペットロー
ラ軸受に於いて、上記軸の外周面と上記ローラの内周面
との間に、この軸の外径に対する割合が0.04〜1.
0%である隙間を介在させ、更に上記軸の外周面と上記
ローラの内周面との少なくとも一方の周面に、下記の
〜のうちから選択される、摩擦を低減する表面処理層
、上記隙間の厚さに対する厚さの比である膜厚比を5
〜50%として形成する事により、上記ローラを上記軸
の周囲に、上記外周面と上記内周面との滑り接触に基づ
く回転自在に支持した事を特徴とするタペットローラ軸
受。 硫黄と鉄との化合物の反応層。 窒素を含有した、硫黄と鉄との化合物の反応層。 燐と鉄との燐酸塩化合物の反応層。 二硫化モリブデン(MoS 2 )とポリ四弗化エチレ
ン(PTFE)との単体若しくは混合物を熱硬化性合成
樹脂と共に焼成する事により得られる処理層。 上記〜の何れかの反応層の表面に、MoS 2
PTFEとの単体若しくは混合物を熱硬化性合成樹脂と
共に焼成する事により得られる処理層を重ねたもの。
(57) [Claim 1] A cam fixed to a camshaft rotating in synchronization with a crankshaft of an engine, and a member provided opposite to the cam and receiving the movement of the cam. A pair of support walls formed at intervals, a steel shaft spanned between the pair of support walls, and a steel roller rotatably supported around the shaft. In the tappet roller bearing, the ratio between the outer peripheral surface of the shaft and the inner peripheral surface of the roller is 0.04-1.
A gap of 0% is interposed, and at least one of the outer peripheral surface of the shaft and the inner peripheral surface of the roller is
The surface treatment layer for reducing friction, which is selected from the following, has a film thickness ratio of 5 to the thickness of the gap.
A tappet roller bearing, wherein the roller is rotatably supported around the shaft by a sliding contact between the outer peripheral surface and the inner peripheral surface by forming the roller at about 50% . Reaction layer of compound of sulfur and iron. A reaction layer of a compound of sulfur and iron containing nitrogen. Reaction layer of phosphate compound of phosphorus and iron. Molybdenum disulfide (MoS 2 ) and polytetrafluoroethylene
Thermosetting synthesis of simple substance or mixture with PTFE
A treated layer obtained by baking with resin. On the surface of any of the reaction layer of the ~, and MoS 2
A simple substance or mixture of PTFE and thermosetting synthetic resin
A stack of treatment layers obtained by firing together.
JP00685396A 1996-01-18 1996-01-18 Tappet roller bearing Expired - Lifetime JP3414100B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00685396A JP3414100B2 (en) 1996-01-18 1996-01-18 Tappet roller bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00685396A JP3414100B2 (en) 1996-01-18 1996-01-18 Tappet roller bearing

Publications (2)

Publication Number Publication Date
JPH09195724A JPH09195724A (en) 1997-07-29
JP3414100B2 true JP3414100B2 (en) 2003-06-09

Family

ID=11649800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00685396A Expired - Lifetime JP3414100B2 (en) 1996-01-18 1996-01-18 Tappet roller bearing

Country Status (1)

Country Link
JP (1) JP3414100B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6210503B1 (en) 1997-11-13 2001-04-03 Cummins Engine Company, Inc. Roller pin materials for enhanced cam durability
JP2008008182A (en) * 2006-06-28 2008-01-17 Ntn Corp Tappet roller bearing structure
US7836861B2 (en) 2007-02-22 2010-11-23 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Variable valve mechanism for internal combustion engine
DE102014206660A1 (en) * 2014-04-07 2015-10-08 Schaeffler Technologies AG & Co. KG stroke-transmission component

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
曾田範囲宗、外4名,「機械設計シリーズ 軸受の設計」,日本,株式会社オーム社書店,1969年 1月20日,第1版第3刷,p80−82

Also Published As

Publication number Publication date
JPH09195724A (en) 1997-07-29

Similar Documents

Publication Publication Date Title
JP3869192B2 (en) Rolling and sliding parts
CN1985100B (en) Rolling device
JP4007440B2 (en) Hard carbon film sliding member
US5239955A (en) Low friction reciprocating piston assembly
JP3869138B2 (en) Rolling and sliding parts
JP3817590B2 (en) Machine parts
JP3827245B2 (en) Machine parts
JPH081184B2 (en) Compressor
JP3496286B2 (en) Tappet roller bearing
CN101779048A (en) Coated bearing
JP3640140B2 (en) Engine tappet roller support bearing
JP3414100B2 (en) Tappet roller bearing
US6095013A (en) Cam follower apparatus
JP2009030467A (en) Structure for tappet roller bearing
JP2000257697A (en) High surface pressure resisting gear and manufacture therefor
JP2004278322A (en) Cam-follower device
JP2004003627A (en) Shaft, planetary gear device and cam follower
JP2002147456A (en) Sliding bearing
JP3146696B2 (en) Outer ring of cam follower device for engine valve train
JP2003314561A (en) Ball bearing
JP4114422B2 (en) Rolling bearing for belt type continuously variable transmission
JPH03277823A (en) Constant velocity universal joint
KR20050052999A (en) Bearing material
KR20100138618A (en) Compressor and method of parts coating thereof
Asai et al. Anti-Peeling Rolling Bearing with Manganase Phosphate Coating

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080404

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090404

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100404

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100404

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140404

Year of fee payment: 11

EXPY Cancellation because of completion of term