JP3412243B2 - Manufacturing method of steel sheet for deep drawing with excellent formability - Google Patents

Manufacturing method of steel sheet for deep drawing with excellent formability

Info

Publication number
JP3412243B2
JP3412243B2 JP6200794A JP6200794A JP3412243B2 JP 3412243 B2 JP3412243 B2 JP 3412243B2 JP 6200794 A JP6200794 A JP 6200794A JP 6200794 A JP6200794 A JP 6200794A JP 3412243 B2 JP3412243 B2 JP 3412243B2
Authority
JP
Japan
Prior art keywords
less
steel sheet
rolling
temperature
elongation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6200794A
Other languages
Japanese (ja)
Other versions
JPH07242996A (en
Inventor
啓達 小嶋
直光 水井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP6200794A priority Critical patent/JP3412243B2/en
Publication of JPH07242996A publication Critical patent/JPH07242996A/en
Application granted granted Critical
Publication of JP3412243B2 publication Critical patent/JP3412243B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】この発明は、種々の形状にプレス加工して
利用される成形性の優れた深絞り用薄鋼板の製造方法に
関するものである。
[0001] This invention relates to a manufacturing method for molding having excellent deep drawing for thin steel plate to be used by pressing into various shapes.

【0002】[0002]

【従来技術とその課題】現在、深絞り用の薄鋼板は、連
続鋳造で製造されたスラブを熱間圧延し、更に酸洗,冷
間圧延,焼鈍という過程を経て製造されるのが一般的で
ある。ただ、このように連続鋳造スラブを圧延素材とし
て鋼板を製造する場合、従来は、連続鋳造されたスラブ
を一旦室温まで冷却し、その後にこれを加熱炉に挿入し
て1050〜1250℃の温度に再加熱してから熱間圧
延を施すのが普通であった。ところが、二度の石油危機
を境に、省エネルギ−を目的とした「熱片挿入」あるい
は「ホット・チャ−ジ」と呼ばれる技術が主流を占める
ようになった。これは、連続鋳造されたスラブを室温ま
で冷却してしまうのではなく、連続鋳造後の熱スラブが
800℃近傍まで冷却された時点で加熱炉に挿入する方
法である。更に、加熱炉を使用せず、必要に応じてエッ
ジヒ−タ−等で補助的な加熱を行うのみで熱間圧延を行
う「直送圧延」と呼ばれる技術も実用化されるようにな
った。
2. Description of the Related Art At present, thin steel sheets for deep drawing are generally manufactured through hot rolling of a slab manufactured by continuous casting, and further, pickling, cold rolling and annealing. It is. However, when a steel sheet is manufactured using a continuously cast slab as a rolled material in this manner, conventionally, the continuously cast slab is once cooled to room temperature and then inserted into a heating furnace to reach a temperature of 1050 to 1250 ° C. It was usual to perform hot rolling after reheating. However, after the two oil crises, a technique called "hot piece insertion" or "hot charge" for energy saving has become mainstream. This is a method in which a continuously cast slab is not cooled to room temperature, but is inserted into a heating furnace when the continuously cast hot slab is cooled to around 800 ° C. Further, a technique called "direct-feed rolling", in which hot rolling is performed only by supplementary heating using an edge heater or the like as necessary without using a heating furnace, has come into practical use.

【0003】しかし、直送圧延プロセスでは、従来プロ
セスとは異なってスラブがAr3変態点を一度も下回るこ
となく熱間圧延されるため、析出物の形態の相違に起因
する機械的特性の劣化が見られた。即ち、直送圧延プロ
セスによると、熱間圧延前にγ域で保持される時間がス
ラブ再加熱法より短いため、析出物が十分に析出できな
かったり粗大化できなかったりして、例えば直送圧延を
経て製造された薄鋼板ではその特性(特に伸び,r値)
が再加熱法によって製造された薄鋼板に比べて劣る結果
となっていた。
However, in the direct rolling process, unlike the conventional process, the slab is hot-rolled without falling below the Ar 3 transformation point at all. Was seen. That is, according to the direct rolling process, since the time held in the γ region before hot rolling is shorter than the slab reheating method, precipitates cannot be sufficiently precipitated or coarsened, and for example, direct rolling is performed. Properties (especially elongation and r-value) of thin steel sheet
Was inferior to a thin steel plate manufactured by the reheating method.

【0004】そこで、直送圧延を経て製造される薄鋼板
の特性が再加熱法を適用した場合よりも劣化するのを防
止すべく、幾つかの提案がなされている。特開昭59−
89723号公報にもそれらの提案の1つが掲載されて
おり、これによると、素材鋼に希土類元素(REM),
Ca,Ti並びにMgより選ばれる1種又は2種以上を添加す
ることで鋼板材質の面内異方性が小さくなり加工性が改
善されるとしている。特に、Ti,Mgは単独添加よりもR
EM,Caと複合添加するのが良く、これにより整粒組織
が得られて機械的性質の面内異方性が小さくなると述べ
られている。しかしながら、このようなREM,Caの添
加はコスト増につながる上、この提案になる方法によっ
ても伸びとr値の絶対値をそれほど著しく向上すること
はできなかった。
[0004] Therefore, several proposals have been made to prevent the properties of a thin steel sheet manufactured through direct-feed rolling from deteriorating as compared with a case where a reheating method is applied. JP-A-59-
JP-A-89723 also discloses one of those proposals. According to this, a rare-earth element (REM),
It is stated that by adding one or more selected from Ca, Ti and Mg, the in-plane anisotropy of the steel sheet material is reduced and the workability is improved. In particular, Ti and Mg are more R
It is described that it is better to add EM and Ca in combination, thereby obtaining a sized structure and reducing in-plane anisotropy of mechanical properties. However, such addition of REM and Ca leads to an increase in cost, and the proposed method cannot remarkably improve the elongation and the absolute value of the r value.

【0005】また、特開昭61−281824号公報に
は、素材鋼にC及びN含有量から決定される範囲でTiを
添加することと直送圧延法とを組み合わせることによ
り、スラブ再加熱法よりも少ないTi添加量で非時効化を
可能とした薄鋼板の製造方法が提案されている。しか
し、この方法によっても、伸びやr値を格別に向上させ
ることはできなかった。
Japanese Patent Application Laid-Open No. Sho 61-281824 discloses that the addition of Ti to a material steel in a range determined from the C and N contents and the direct rolling method provide a slab reheating method. There has been proposed a method for producing a thin steel sheet which enables non-aging with a small addition amount of Ti. However, even with this method, the elongation and the r value could not be particularly improved.

【0006】一方、特開昭62−287017号公報に
は、連続鋳造後の直送圧延に際し、熱間圧延の開始まで
に所定の定められた時間が経過するようにスラブ搬送を
制御する方法が提案されている。そして、このように熱
延前の熱スラブを所定時間以上保持することにより、直
送圧延法であってもスラブ再加熱法と同様に良好な機械
的特性が得られるとしている。しかしながら、この方法
によると、連続鋳造機と熱間圧延機との間でスラブを一
時的に停滞させる設備が必要となって“直送圧延による
加熱炉の省略”という設備メリットが減少してしまう
上、製品鋼板に比較的高い伸びとr値が得られるものの
その値は未だ十分に満足できるものとは言えず、しかも
その特性が安定しないとの問題も解消されなかった。
On the other hand, Japanese Patent Application Laid-Open No. 62-287017 proposes a method of controlling slab conveyance such that a predetermined time elapses before hot rolling is started in direct rolling after continuous casting. Have been. By holding the hot slab before hot rolling for a predetermined time or more in this way, it is described that good mechanical properties can be obtained even in the direct rolling method as in the slab reheating method. However, according to this method, equipment for temporarily stagnation of the slab between the continuous casting machine and the hot rolling mill is required, and the merit of equipment such as "elimination of a heating furnace by direct-feed rolling" is reduced. Although a relatively high elongation and r-value are obtained in the product steel sheet, the value is still not sufficiently satisfactory, and the problem that the characteristics are not stable has not been solved.

【0007】このように、直送圧延を経て製造される薄
鋼板の特性改善に関するこれまでの提案によっても、得
られる薄鋼板は伸びやr値の点でスラブ再加熱プロセス
によるものより劣るという問題が依然として未解決であ
った。そこで、本発明が目的としたのは、直送圧延を経
て製造された場合でも従来プロセス(再加熱プロセス)
材なみの良好な加工性(伸び,r値)を有する深絞り用
薄鋼板を安定して提供できる手段を確立することであ
る。
[0007] As described above, even with the proposals regarding the improvement of the properties of the thin steel sheet manufactured through the direct-feed rolling, the problem that the obtained thin steel sheet is inferior in elongation and r value to that obtained by the slab reheating process. It was still unresolved. Therefore, an object of the present invention is to provide a conventional process (reheating process) even when manufactured through direct-feed rolling.
An object of the present invention is to establish a means capable of stably providing a deep-drawing thin steel sheet having good workability (elongation, r value) comparable to a material.

【0008】[0008]

【課題を解決するための手段】本発明者等は、上記目的
を達成すべく鋼板の化学組成や製造条件に関して詳細な
検討を行った結果、以下a)〜d)に示す如き新たな知見を
得ることができた。 a) 直送圧延法を取り入れたプロセスによって深絞り用
薄鋼板を製造する場合には、特に鋼中へ不可避的に侵入
するSの含有量が得られる製品の伸びに大きな影響を及
ぼしており、製品鋼板に51%を超える優れた伸びを確
保するためにはそのS含有量を 0.005%以下(以降、 成
分割合を表わす%は重量%とする)に低減することが必
須の要件となること。
Means for Solving the Problems The present inventors have conducted detailed studies on the chemical composition and manufacturing conditions of steel sheets in order to achieve the above object, and have obtained the following new findings as shown in a) to d) below. I got it. a) In the case of manufacturing a steel sheet for deep drawing by a process that adopts a direct rolling method, the content of S that inevitably penetrates into the steel has a great effect on the elongation of a product that can be obtained. In order to secure an excellent elongation of more than 51% in steel sheets, it is essential to reduce the S content to 0.005% or less (hereinafter,% representing component ratio is referred to as% by weight).

【0009】なお、図1は、“直送圧延に相当するプロ
セスを経て製造された冷延鋼板”と“再加熱プロセスを
経て製造された冷延鋼板”とについて調査した「S含有
量と延性との関係」を整理して示したグラフである。こ
こで、上記の調査は次の要領で実施された。即ち、まず
表1に示す鋼を実験炉で溶解して割型の鋳型に鋳込んで
スラブとした後、直送圧延シュミレ−ションとしては鋳
型を外して1050℃まで冷えるのを待って熱間圧延を
開始し、スラブ再加熱圧延シュミレ−ションとしては、
鋳型を外して取り出したスラブを室温まで冷却した後に
再び1200℃の炉で60分加熱して取り出し、105
0℃まで冷却してから熱間圧延を開始した。そして、仕
上げ温度:920℃,仕上げ板厚:5mmで熱間圧延を終
了した後、450℃で巻取って得られた熱延板の表面を
研削してスケ−ルを除去し、圧下率82%の冷間圧延を
施して板厚を 0.8mmとした。更に、赤外線加熱炉を用い
て昇温速度:10℃/sec,均熱温度:860℃,均熱時
間:30sec ,冷却速度:10℃/secの連続焼鈍に相当
する熱処理を施し、これに続いて伸び率: 0.3%の調質
圧延を実施してから、このようにして得られた冷延鋼板
からJIS5号試験片を採取して引張試験を行い伸び(E
L)を調査した。
[0009] Fig. 1 is a graph showing "S content, ductility and ductility" obtained by examining "cold rolled steel sheet manufactured through a process corresponding to direct-feed rolling" and "cold rolled steel sheet manufactured through a reheating process". Are arranged and shown. Here, the above survey was conducted as follows. That is, first, the steel shown in Table 1 was melted in an experimental furnace and cast into a split mold to form a slab. Then, as a direct rolling simulation, the mold was removed and cooled to 1050 ° C., followed by hot rolling. And the slab reheating rolling simulation
The slab removed from the mold was taken out, cooled to room temperature, heated again in a furnace at 1200 ° C. for 60 minutes, and taken out.
After cooling to 0 ° C., hot rolling was started. After the hot rolling is completed at a finishing temperature of 920 ° C. and a finished plate thickness of 5 mm, the surface of the hot rolled plate obtained by winding at 450 ° C. is ground to remove the scale, and the rolling reduction is 82%. % Cold rolling to a sheet thickness of 0.8 mm. Further, heat treatment corresponding to continuous annealing was performed using an infrared heating furnace at a heating rate of 10 ° C./sec, a soaking temperature of 860 ° C., a soaking time of 30 sec, and a cooling rate of 10 ° C./sec. Temper rolling at an elongation of 0.3%, a JIS No. 5 test piece was sampled from the cold-rolled steel sheet thus obtained, and a tensile test was performed.
L) was investigated.

【0010】[0010]

【表1】 [Table 1]

【0011】前記図1に示される調査結果からも、鋼板
のS含有量の上昇に伴い伸び(EL)が低下し、特にS含有
量が 0.005%を超えると、直送圧延プロセス相当材はス
ラブ再加熱プロセス相当材に比べて伸びの劣化が極端に
著しくなることが分かる。
From the results of the investigation shown in FIG. 1, the elongation (EL) decreases with an increase in the S content of the steel sheet. In particular, when the S content exceeds 0.005%, the material equivalent to the direct-rolling process does It can be seen that the elongation is extremely deteriorated as compared with the material corresponding to the heating process.

【0012】b) 一方、Tiには鋼板のr値を高めて成形
性を向上させる作用があるので、直送圧延法を取り入れ
たプロセスによって優れた成形性を示す深絞り用薄鋼板
を製造するには是非とも含有させる必要のある成分であ
る。しかし、その含有量が過剰になると鋼中に存在する
PとFeTiPを形成して析出し伸びを劣化させるので、厳
密に制御された条件に従ってTiを含有させる必要がある
こと。
B) On the other hand, since Ti has the effect of increasing the r-value of the steel sheet to improve the formability, it is necessary to produce a deep-drawing thin steel sheet exhibiting excellent formability by a process incorporating a direct rolling method. Is a component that must be contained by all means. However, if the content is excessive, P and FeTiP present in the steel are formed and precipitate to deteriorate the elongation, so that Ti must be contained according to strictly controlled conditions.

【0013】c) 上述のように、Ti添加鋼では鋼中のP
がFeTiPとして析出することに起因して鋼板の伸びが劣
化するため、良好な伸びを示す薄鋼板を製造するにはP
含有量の絶対値を特定値以下に低減しなければならない
上、Ti含有量と関連付けたP含有量の規制も不可欠であ
ること。
C) As described above, in Ti-added steel, P
Precipitates as FeTiP, the elongation of the steel sheet deteriorates. Therefore, in order to produce a thin steel sheet exhibiting good elongation, P
The absolute value of the content must be reduced to a specific value or less, and the regulation of the P content in relation to the Ti content is indispensable.

【0014】d) しかるに、上記の如くに成分調整され
た鋼を所定の条件に従って処理すると、直送圧延法を取
り入れたプロセスによっても伸び及びr値が高い成形性
の優れた深絞り用薄鋼板を安定して製造できるようにな
ること。
D) However, when the steel whose composition is adjusted as described above is treated according to predetermined conditions, a deep drawing thin steel sheet having high elongation and high r value and excellent formability can be obtained even by a process employing a direct rolling method. Being able to manufacture stably.

【0015】本発明は、上記知見事項等に基づいてなさ
れたものであり、「C :0.01%以下,Si:0.1 %以下,Mn:0.01〜2%, P:0.01%以下,S:0.005 %以下,Ti:0.1 %以下, 酸可溶Al:0.005 〜0.1 %,N:0.005 %以下 を含むか、 あるいは更に Nb: 0.003〜0.05%,B:0.0003〜0.0030% のうちの1種以上をも含有するかし、 かつ P+S < 0.012%, Ti* > 0.01%, Ti* (%) ×P(%) ≦ 0.0002 〔但し、 Ti* =Ti− 48(C/12 +N/14 +S/32)〕 なる3つの式で表される関係を満足していて、 残部がFe
及び不可避的不純物より成る成分組成の鋼を連続鋳造に
よってスラブとした後、 熱間圧延を850℃以上で完了
するか、 あるいはスラブ表面の温度が950℃を下回ら
ないようにして熱間圧延を開始すると共に熱間圧延を8
50℃以上で完了し、 更に400〜700℃(650℃
以上を除く)の温度域で巻取ってから、 圧下率60〜95
%で冷間圧延を行い、 その後再結晶温度以上Ac3点の温
度以下の温度域で焼鈍することにより、 成形性の優れた
深絞り用薄鋼板を安定して製造し得るようにした点」
徴とするものである。
The present invention has been made based on the above findings and the like. "C : 0.01% or less, Si: 0.1% or less, Mn: 0.01 to 2%, P: 0.01% or less, S: 0.005% In the following, Ti: 0.1% or less, acid-soluble Al: 0.005 to 0.1%, N: 0.005% or less, or Nb: 0.003 to 0.05%, B: 0.0003 to 0.0030% It contains, and P + S <0.012%, Ti * > 0.01%, Ti * (%) × P (%) ≦ 0.0002 [However, Ti * = Ti−48 (C / 12 + N / 14 + S / 32)] Satisfies the relationship expressed by the following three equations, and the balance is Fe
And after the slab component couples formed of steel consisting of unavoidable impurities by continuous casting, to complete the hot rolling at 850 ° C. or higher, or the temperature of the slab surface so as not to fall below 950 ° C. The hot rolling Started and hot rolled 8
Completed at 50 ° C or higher, and 400-700 ° C (650 ° C
(Except for the above) , after winding in the temperature range
%, And then annealed in the temperature range between the recrystallization temperature and the Ac three- point temperature to ensure stable production of deep-drawing thin steel sheets with excellent formability. " To
It is an feature.

【0016】以下、本発明において、鋼板の成分組成並
びにその製造条件を前記のように限定した理由をその作
用と共に説明する。
Hereinafter, the reason why the composition of the steel sheet and the production conditions thereof are limited as described above in the present invention will be described together with the operation thereof.

【作用】[Action]

A) 成分割合 〈C〉Cは鋼中へ不可避的に混入する不純物元素である
が、鋼板の成形性に悪影響を及ぼすのでその含有量は少
ないほど好ましい。ただ、このように混入が不可避であ
るCの悪影響を回避する手段として「Ti添加によりCを
炭化物として固定すること」が有効であるが、C含有量
が多くなるに伴ってこれを固定するのに必要なTiの添加
量が増大し、そのため鋼が硬質化すると共に製造コスト
の上昇を招くことから、その許容限度である0.01%をC
含有量の上限と定めた。
A) Ingredient ratio <C> C is an impurity element inevitably mixed into steel, but it has a bad influence on the formability of the steel sheet, so the smaller the content, the better. However, as a means of avoiding the adverse effects of C, which is inevitable to be mixed, "fixing C as a carbide by adding Ti" is effective. However, as the C content increases, this is fixed. Increases the required amount of Ti, which increases the hardening of the steel and increases the production cost.
The upper limit of the content was determined.

【0017】〈Si〉Siも鋼中へ不可避的に混入する不純
物元素であり、やはりその含有量は低いほど好ましい。
即ち、Si含有量が高くなると特有の酸洗不良を起こした
り、めっき性の劣化を招いたりすることから、その許容
限度である 0.1%をSi含有量の上限と定めた。
<Si> Si is also an impurity element unavoidably mixed into steel, and the lower the content, the better.
That is, when the Si content is high, a specific pickling failure occurs or the plating property is deteriorated. Therefore, the allowable limit of 0.1% is set as the upper limit of the Si content.

【0018】〈Mn〉Mnには鋼板を強化する作用があり、
この目的のためには適宜添加しても差支えのない成分で
ある。しかし、その含有量が2%を超えると変態点の低
下が著しくなり、TiCが微細化して伸びの劣化を招くの
で好ましくない。ただ、溶鉄には通常0.01〜0.05%程度
のMnが含まれており、それより低Mn化することはコスト
増につながることから好ましくない。そこで、Mn含有量
は0.01〜2%と定めた。
<Mn> Mn has the effect of strengthening the steel sheet.
It is a component that can be appropriately added for this purpose. However, when the content exceeds 2%, the transformation point is remarkably lowered, and TiC is refined to cause deterioration of elongation, which is not preferable. However, molten iron usually contains about 0.01 to 0.05% of Mn, and it is not preferable to lower the Mn because it leads to an increase in cost. Therefore, the Mn content is determined to be 0.01 to 2%.

【0019】〈P〉Pは鋼中へ不可避的に混入する不純
物元素である。そして、前述したように、このPはFeTi
Pとして析出し鋼板の伸びを劣化させるので、良好な伸
びを確保しようとの観点からはP含有量は低いほど好ま
しいが、一方でPは鋼板のr値を高める作用も有してい
るので、本発明では伸びへの悪影響が許容される0.01%
未満の範囲でPを含有していても良いと定めた。但し、
FeTiPの析出を十分に抑制して伸びへの悪影響を抑える
ためには、後述する有効Ti量(Ti* )との関係が「Ti*
(%) ×P(%) ≦0.0002」なる条件を満足していなければ
ならない。更に、P含有量は、伸びに対する悪影響の著
しいS量と関連付けて制限する必要があり、所望の伸び
値を確保するためには式「P+S< 0.012%」で表され
る条件を満たしている必要がある。
<P> P is an impurity element inevitably mixed into steel. And, as described above, this P is FeTi
Since it precipitates as P and deteriorates the elongation of the steel sheet, the lower the P content, the better from the viewpoint of securing good elongation. However, since P also has the effect of increasing the r value of the steel sheet, In the present invention, the adverse effect on elongation is allowed 0.01%
It was determined that P may be contained in a range of less than. However,
In order to sufficiently suppress the precipitation of FeTiP and suppress the adverse effect on elongation, the relationship with the effective Ti amount (Ti * ) described later is “Ti *
(%) × P (%) ≦ 0.0002 ”. Further, the P content needs to be limited in relation to the S content, which has a significant adverse effect on elongation, and in order to secure a desired elongation value, it is necessary to satisfy a condition represented by the expression “P + S <0.012%”. There is.

【0020】〈S〉本発明においては、Sは従来の認識
を超えた重要な意味を持つ元素である。つまり、前述の
通り、本発明者等の研究によって「S含有量が高い鋼を
直送圧延した時には得られる冷延鋼板の伸びが低下し、
逆にS含有量が少ない鋼では伸びの低下が少ない」こと
が明らかとなった。そのメカニズムについては未だ十分
に解明できていないが、次のように推定される。即ち、
Sは硫化物を形成しやすい元素であるが、直送圧延のよ
うなγ域での保持時間が短い熱間圧延方法では硫化物の
析出が十分になされず、S含有量が高い鋼(S含有量が
0.005%を超える鋼)ではTiCの析出時に固溶Sが残っ
た状態となる。そして、Sは硫化物を形成しやすいTiと
互いに引き合う相互作用を発揮するので、残存した固溶
SのためにTiの活量が低下しTiCの析出が低温側にずれ
ることになる。従って、析出物(TiC)が粗大化するこ
とができず、熱延板中に微細なTiCとして分散した状態
となるため、伸びが劣化する。一方、低S鋼(S含有量
が 0.005%以下の鋼)では固溶S量が元々少ないのでTi
Cの析出は高S材よりも高温で開始し、そのため析出物
は十分に粗大化するので伸びは劣化しない。このよう
に、S含有量が 0.005%を超えると得られる冷延鋼板の
伸びの劣化が著しくなることから、S含有量を 0.005%
以下と定めた。但し、S含有量は、伸びに対する悪影響
の著しいP量と関連付けて制限する必要があり、所望の
伸び値を確保するためには式「P+S< 0.012%」で表
される条件を満たしている必要があることは前述した通
りである。
<S> In the present invention, S is an element having an important meaning beyond conventional recognition. That is, as described above, according to the study by the present inventors, "the elongation of the cold-rolled steel sheet obtained when direct-rolling steel having a high S content is reduced,
Conversely, steel with a low S content has a small decrease in elongation. " The mechanism has not been fully elucidated yet, but is presumed as follows. That is,
S is an element that easily forms sulfides. However, in a hot rolling method in which the holding time in the γ region is short, such as direct rolling, precipitation of sulfides is not sufficient and steel having a high S content (S content Quantity
In the case of steel exceeding 0.005%), solid solution S remains when TiC is precipitated. Since S exerts an interaction attracting each other to Ti which easily forms a sulfide, the activity of Ti is reduced due to the remaining solid solution S, and the precipitation of TiC shifts to a lower temperature side. Therefore, the precipitates (TiC) cannot be coarsened and are dispersed as fine TiC in the hot-rolled sheet, so that the elongation is deteriorated. On the other hand, in low S steels (steel with S content of 0.005% or less), the amount of solid solution S is originally small, so Ti
The precipitation of C starts at a higher temperature than that of the high S material, so that the precipitate is sufficiently coarsened so that the elongation does not deteriorate. As described above, when the S content exceeds 0.005%, the elongation of the obtained cold-rolled steel sheet significantly deteriorates.
It is determined as follows. However, the S content needs to be limited in relation to the P amount which has a significant adverse effect on elongation, and in order to secure a desired elongation value, it is necessary to satisfy a condition represented by the expression “P + S <0.012%”. Is as described above.

【0021】〈Ti〉冷延鋼板のr値の向上と歪時効を抑
制するためには熱延板中に固溶C,Nが存在しないこと
が重要であり、Tiは、侵入型固溶元素であるC,Nを固
定する目的で添加される成分である。そして、十分なr
値の向上と歪時効の抑制には、次式で与えられる有効Ti
量(Ti* )が0.01%超でなければならない。 Ti* =Ti− 48(C/12 +N/14 +S/32) しかし、Tiを過剰に添加すると鋼が硬質化するのでTi含
有量の上限は 0.1%とする必要があり、また有効Ti量
(Ti* )が過剰の場合にもFeTiPが析出して伸びを劣化
させるので、良好な伸びを確保するためには前述したよ
うに式「Ti* (%)×P(%) ≦0.0002」で表される条件を
満足している必要がある。
<Ti> In order to improve the r-value of a cold-rolled steel sheet and to suppress strain aging, it is important that C and N do not exist in the hot-rolled sheet, and Ti is an interstitial solid solution element. Is a component added for the purpose of fixing C and N. And enough r
To increase the value and suppress the strain aging, the effective Ti given by
The amount (Ti * ) must be greater than 0.01%. Ti * = Ti−48 (C / 12 + N / 14 + S / 32) However, if Ti is added excessively, the steel becomes hard, so the upper limit of the Ti content needs to be 0.1%, and the effective Ti content ( Even when the amount of Ti * is excessive, FeTiP precipitates and deteriorates elongation. Therefore, in order to secure good elongation, as described above, the expression “Ti * (%) × P (%) ≦ 0.0002” is used. Requirements must be satisfied.

【0022】〈酸可溶Al〉鋼の脱酸が十分であるために
は酸可溶Alの含有量が 0.005%以上である必要がある。
ただ、その含有量が 0.1%を超えると鋼が硬質化すると
共に伸びが低下するので好ましくない。
<Acid-soluble Al> The content of acid-soluble Al must be 0.005% or more in order to sufficiently deoxidize steel.
However, if the content exceeds 0.1%, the steel becomes hard and the elongation decreases, which is not preferable.

【0023】〈N〉Nも鋼中に不可避的に含有される不
純物元素であり、延性改善の面からはその含有量は低い
ほど好ましい。N含有量が 0.005%を超えると、これを
固定するために必要なTiの添加量が多くなり、このため
にコストアップを招くだけでなく、TiNの析出量が増え
て延性の劣化を招くことから、N含有量は0.005 %以下
と定めた。
<N> N is also an unavoidable impurity element in steel, and the lower the content, the better from the viewpoint of improving ductility. If the N content exceeds 0.005%, the amount of Ti added to fix the N content increases, which not only causes an increase in cost, but also increases the amount of TiN deposited and deteriorates ductility. Therefore, the N content was determined to be 0.005% or less.

【0024】〈Nb,及びB〉これらの成分には何れも冷
延鋼板の加工性を改善する作用があるので、必要により
単独又は2種の複合添加がなされる。ただ、それぞれの
含有量は次の理由によって定められた。 Nb:熱延板の結晶粒径を細かくして深絞り性に好ましい
再結晶集合組織の発達を促進する。しかし、その含有量
が 0.003%未満ではこのような効果が現れず、一方、0.
05%を超えて含有させると再結晶温度が上昇して焼鈍が
困難になる。
<Nb and B> Each of these components has an effect of improving the workability of the cold-rolled steel sheet, and therefore, if necessary, a single or two or more kinds of additives are added. However, each content was determined for the following reasons. Nb: Refines the crystal grain size of the hot-rolled sheet to promote the development of a recrystallized texture preferable for deep drawability. However, if the content is less than 0.003%, such effects do not appear, while
If the content exceeds 05%, the recrystallization temperature rises and annealing becomes difficult.

【0025】B:厳しい成形が施される部位では2次加
工脆性が発生するおそれがある。Bは結晶粒界に偏析し
て粒界を強化するため、2次加工脆性を防止する働きが
ある。しかし、B含有量が0.0003%未満ではこの効果を
期待できず、一方、0.0030%超えてBを含有させると前
記効果が飽和する。
B: Secondary processing embrittlement may occur in a part where severe molding is performed. B segregates at the crystal grain boundaries to strengthen the grain boundaries, and thus has the function of preventing secondary working embrittlement. However, if the B content is less than 0.0003%, this effect cannot be expected. On the other hand, if the B content exceeds 0.0030%, the effect is saturated.

【0026】B) 製造条件 本発明法では、まず上述した所定の成分組成に溶製され
た鋼を連続鋳造によってスラブとなし、これを熱間圧延
(例えば直送圧延する。なお、前記の如くに成分調整
がなされた鋼は直送圧延に適した鋼であるが、スラブ再
加熱法によって熱間圧延を行っても同等の性能が発揮さ
れることは勿論である。熱間圧延はγ域で行うことが好
ましく、仕上げ温度が850℃を下回ると巻取り時に異
常粒成長を起こして表面性状が劣化する。従って、85
0℃以上の仕上げ温度を確保すべく、連続鋳造されたス
ラブは、スラブ表面の温度が950℃を下回らないよう
にして熱間圧延を開始する必要がある。
B) Manufacturing Conditions In the method of the present invention, first, a steel smelted to the above-mentioned predetermined composition is formed into a slab by continuous casting, which is then hot-rolled.
(For example, direct rolling ) . The steel whose composition has been adjusted as described above is a steel suitable for direct rolling, but it is a matter of course that the same performance is exhibited even if hot rolling is performed by the slab reheating method. Hot rolling is preferably performed in the γ region. If the finishing temperature is lower than 850 ° C., abnormal grain growth occurs during winding and the surface properties deteriorate. Therefore, 85
In order to ensure a finishing temperature of 0 ° C. or higher, it is necessary to start hot rolling of a continuously cast slab such that the temperature of the slab surface does not fall below 950 ° C.

【0027】本発明に係る成分組成の鋼では、巻取り温
度が機械的特性に与える影響は小さい。しかし、巻取り
温度が高いと巻き姿が崩れたりスケ−ルロスが増加した
りするため、巻取り温度の上限を700℃と定めた(但
650℃以上の範囲は請求項から除く)。一方、巻
取り温度が低くなり過ぎるとダウンコイラ−の負荷が増
大するため、巻取り温度の下限は400℃と定めた。な
お、FeTiPの析出を完全に抑制してより高い成形性を求
める場合には、巻取り温度を400〜500℃とするこ
とが好ましい。
In the steel having the composition according to the present invention, the influence of the winding temperature on the mechanical properties is small. However, if the winding temperature is high, the winding shape will be lost or the scale loss will increase, so the upper limit of the winding temperature is set to 700 ° C (however,
And, a range of more than 650 ° C. Except claims). On the other hand, if the winding temperature becomes too low, the load on the down coiler increases, so the lower limit of the winding temperature is set to 400 ° C. When higher formability is required by completely suppressing the precipitation of FeTiP, the winding temperature is preferably set to 400 to 500 ° C.

【0028】巻取り後に酸洗等を施してスケ−ル除去を
行ってから実施する冷延圧延では、圧下率が60%未満
であると得られる冷延鋼板のr値が低くなるので好まし
くなく、一方、圧下率が95%を超えると言うことは熱
延板の板厚が相応に厚くなることを意味し、そのような
熱延板は製造が困難であることから、冷間圧延の圧下率
を60〜95%と定めた。
In cold rolling, which is performed after removing the scale by performing pickling or the like after the winding, if the rolling reduction is less than 60%, the r value of the obtained cold rolled steel sheet becomes low, which is not preferable. On the other hand, the fact that the rolling reduction exceeds 95% means that the thickness of the hot-rolled sheet is correspondingly large, and since such a hot-rolled sheet is difficult to manufacture, the rolling reduction of the cold rolling is difficult. The rate was defined as 60-95%.

【0029】冷延圧延後の焼鈍は、焼鈍温度が再結晶温
度を下回っていると鋼板が硬質のまま軟化されないので
伸びが期待できず、一方、Ac3点以上の温度で焼鈍を行
うと高いr値を発現する集合組織がα→γ変態によって
破壊されるためにr値が低くなってしまう。従って、焼
鈍温度は再結晶温度以上Ac3点の温度以下と定めた。な
お、本発明に係る成分組成の鋼板に施す上記焼鈍では昇
温速度は機械的性質に影響することがないので、焼鈍方
法は連続焼鈍,箱焼鈍の何れであっても構わない。ま
た、溶融連続亜鉛めっきラインを用い、焼鈍後に溶融亜
鉛めっきを行うこともできる。
If the annealing temperature is lower than the recrystallization temperature, elongation cannot be expected because the steel sheet is hard and not softened if the annealing temperature is lower than the recrystallization temperature. On the other hand, if the annealing is performed at a temperature of three or more Ac, it is high. Since the texture exhibiting the r value is destroyed by the α → γ transformation, the r value decreases. Therefore, the annealing temperature was determined to be equal to or higher than the recrystallization temperature and equal to or lower than the temperature at the three Ac points. In addition, in the above-mentioned annealing applied to the steel sheet having the component composition according to the present invention, since the rate of temperature rise does not affect the mechanical properties, the annealing method may be either continuous annealing or box annealing. Alternatively, hot-dip galvanizing can be performed after annealing using a continuous hot-dip galvanizing line.

【0030】続いて、本発明を実施例によって説明す
る。
Next, the present invention will be described with reference to examples.

【実施例】【Example】

〔実施例1〕まず、連続鋳造を模して、表2に示した組
成の鋼を実験炉で溶製し割型の鋳型に鋳込んでスラブと
してから鋳型を外し、1050℃まで冷えるのを待って
熱間圧延を開始した。そして、920℃で熱間圧延を仕
上げて板厚:5mmの熱延板とし、450℃で巻取った。
Example 1 First, simulating continuous casting, steel having the composition shown in Table 2 was melted in an experimental furnace, cast into a split mold, formed into a slab, removed from the mold, and cooled to 1050 ° C. After waiting, hot rolling was started. Then, hot rolling was completed at 920 ° C. to form a hot-rolled sheet having a thickness of 5 mm, and the sheet was wound at 450 ° C.

【0031】[0031]

【表2】 [Table 2]

【0032】次に、得られた熱延板の表面を研削してス
ケ−ルを除去し、圧下率:82%の冷間圧延を行って板
厚を 0.8mmとした。更に、赤外線加熱炉を用いて昇温速
度:10℃/sec,均熱温度:840℃,均熱時間:30
sec 及び冷却速度:10℃/secの連続焼鈍に相当する熱
処理を施した後、引き続いて 0.3%の調質圧延を実施し
た。
Next, the surface of the obtained hot-rolled sheet was ground to remove the scale, and cold-rolled at a rolling reduction of 82% to a sheet thickness of 0.8 mm. Furthermore, using an infrared heating furnace, the heating rate: 10 ° C./sec, soaking temperature: 840 ° C., soaking time: 30
After performing a heat treatment corresponding to continuous annealing at 10 sec / sec and a cooling rate of 10 ° C./sec, 0.3% temper rolling was subsequently performed.

【0033】このようにして得られた各冷延鋼板からJ
IS5号試験片を採取し、引張試験を行ってその伸び(E
L)を調査した。この伸び(EL)の調査結果を、冷延鋼板の
S量及びP量との関係で整理し図2に示した。図2に示
される結果からも明らかなように、本発明で規定した条
件を満足する冷延鋼板は何れも良好な伸びを示し、優れ
た成形性を発揮するであろうことが分かる。
From each of the cold-rolled steel sheets thus obtained,
IS5 test pieces were sampled and subjected to a tensile test to determine their elongation (E
L) was investigated. The results of the elongation (EL) survey are shown in FIG. 2 in relation to the S content and the P content of the cold-rolled steel sheet. As is clear from the results shown in FIG. 2, it is understood that any cold-rolled steel sheet satisfying the conditions specified in the present invention shows good elongation and will exhibit excellent formability.

【0034】〔実施例2〕表3に示した組成の鋼を溶製
し、実施例1におけるのと同様の条件で冷延鋼板を製造
した。
Example 2 A steel having the composition shown in Table 3 was melted, and a cold-rolled steel sheet was manufactured under the same conditions as in Example 1.

【0035】[0035]

【表3】 [Table 3]

【0036】このようにして得られた各冷延鋼板からJ
IS5号試験片を採取し、引張試験を行ってその伸び(E
L)を調査した。この伸び(EL)の調査結果を、冷延鋼板の
P量及び有効Ti量(Ti* )との関係で整理し図3に示し
た。図3に示される結果からも明らかなように、本発明
で規定した条件を満足する冷延鋼板は何れも良好な伸び
を示し、優れた成形性を発揮するであろうことが分か
る。
From each of the cold-rolled steel sheets thus obtained,
IS5 test pieces were sampled and subjected to a tensile test to determine their elongation (E
L) was investigated. The results of the elongation (EL) investigation are shown in FIG. 3 in relation to the P content and the effective Ti content (Ti * ) of the cold-rolled steel sheet. As is clear from the results shown in FIG. 3, it is understood that any cold-rolled steel sheet satisfying the conditions specified in the present invention shows good elongation and will exhibit excellent formability.

【0037】〔実施例3〕表4に示した組成の鋼を溶製
し、実施例1におけるのと同様の条件で冷延鋼板を製造
した。
Example 3 A steel having the composition shown in Table 4 was melted, and a cold-rolled steel sheet was manufactured under the same conditions as in Example 1.

【0038】[0038]

【表4】 [Table 4]

【0039】このようにして得られた各冷延鋼板からJ
IS5号試験片を採取し、引張試験を行って引張強さ,
伸び及びr値を調べると共に、別に採取した試験片を絞
り比:1.8のカップに成形してから落重試験を行って脆性
遷移温度を求め、耐2次加工脆性の指標とした。これら
の結果を表5に示す。
From each of the cold-rolled steel sheets thus obtained,
IS5 specimens were collected and subjected to a tensile test to determine the tensile strength,
In addition to examining the elongation and the r value, a separately sampled test piece was formed into a cup having a drawing ratio of 1.8, and then subjected to a drop weight test to determine a brittle transition temperature, which was used as an index of secondary work brittle resistance. Table 5 shows the results.

【0040】[0040]

【表5】 [Table 5]

【0041】図5に示される結果からは次のことが分か
る。即ち、本発明で規定する条件通りに得られた冷延鋼
板(試験種別A,D,I,K,L,N及びOで得られた
鋼板)は伸びとr値が共に高く、優れた成形性を有して
いる。これに対して、試験種別B,C,E,F,G及び
Hで得られた冷延鋼板は、C,Si,Mn,sol.Al,Nある
いはTiの含有量が本発明で規定する範囲を超えて高いた
め引張強度が高く、また伸びとr値が小さくて成形性に
劣っている。
The following can be seen from the results shown in FIG. That is, the cold-rolled steel sheets obtained under the conditions specified in the present invention (the steel sheets obtained by the test types A, D, I, K, L, N and O) have high elongation and high r-value, and have excellent forming properties. It has nature. On the other hand, in the cold-rolled steel sheets obtained in the test types B, C, E, F, G and H, the content of C, Si, Mn, sol. Al, N or Ti is within the range specified in the present invention. , The tensile strength is high and the elongation and r-value are small, resulting in poor moldability.

【0042】また、B含有量の高い鋼を素材とする試験
種別Jで得られた冷延鋼板は遷移温度が−100℃より
も低くなっているが、試験種別Iの結果から分かるよう
に本発明の規定範囲内でBを含有しておれば実際的に十
分満足できる遷移温度(−90℃)が達成されており、試
験種別Jに係るものはB添加が過剰でコスト高につなが
っていくと言える。更に、試験種別Mはで得られた冷延
鋼板では、Nb含有量が本発明で規定する範囲を超えて高
いために再結晶温度が高くなって粒成長が不十分とな
り、伸びとr値が低くなっている。
The transition temperature of the cold-rolled steel sheet obtained from the test type J using steel having a high B content as a material is lower than -100 ° C. If B is contained within the specified range of the invention, a sufficiently satisfactory transition temperature (−90 ° C.) is practically achieved, and the test type J is excessively added with B, leading to a high cost. It can be said. Further, in the cold-rolled steel sheet obtained in the test type M, since the Nb content is higher than the range specified in the present invention, the recrystallization temperature becomes higher, the grain growth becomes insufficient, and the elongation and the r value become lower. It is lower.

【0043】[0043]

【効果の総括】以上に説明した如く、この発明によれ
ば、伸びとr値が高くて優れた成形性を発揮する冷延鋼
板を低いエネルギ−コストや設備コストの下で安定かつ
容易に提供することが可能となり、自動車部品の一体成
形材等の製造に大きく貢献できるなど、産業上有用な効
果がもたらされる。
As described above, according to the present invention, a cold-rolled steel sheet having high elongation and r-value and exhibiting excellent formability can be provided stably and easily at low energy cost and equipment cost. In addition, industrially useful effects such as a significant contribution to the production of an integrally molded material of an automobile part can be brought about.

【図面の簡単な説明】[Brief description of the drawings]

【図1】直送圧延とスラブ再加熱を行った時の冷延鋼板
の伸びに及ぼすS量の影響を示したグラフである。
FIG. 1 is a graph showing the influence of the amount of S on the elongation of a cold-rolled steel sheet when direct rolling and slab reheating are performed.

【図2】実施例の結果としての、直送圧延を行った時の
冷延鋼板の伸びに及ぼすS量とP量の影響を示したグラ
フである。
FIG. 2 is a graph showing the effect of S and P amounts on the elongation of a cold-rolled steel sheet when direct rolling is performed, as a result of an example.

【図3】実施例の結果としての、直送圧延を行った時の
冷延鋼板の伸びに及ぼすP量と有効Ti量の影響を示した
グラフである。
FIG. 3 is a graph showing the effect of the P content and the effective Ti content on the elongation of a cold-rolled steel sheet when direct rolling is performed, as a result of an example.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平1−177322(JP,A) 特開 平1−191748(JP,A) 特開 昭63−86819(JP,A) 特開 平2−30719(JP,A) (58)調査した分野(Int.Cl.7,DB名) C21D 9/48 C22C 38/00 - 38/60 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-1-177322 (JP, A) JP-A-1-191748 (JP, A) JP-A-63-86819 (JP, A) JP-A-2- 30719 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) C21D 9/48 C22C 38/00-38/60

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量割合にて、 C:0.01%以下,Si:0.1 %以下,Mn:0.01〜2%, P:0.01%未満,S:0.005 %以下,Ti:0.1 %以下, 酸可溶Al:0.005 〜0.1 %,N:0.005 %以下 を含むか、又は更に Nb: 0.003〜0.05%,B:0.0003〜0.0030% のうちの1種以上をも含有し、かつ P+S < 0.012%, Ti * > 0.01%, Ti * (%) ×P(%) ≦ 0.0002 〔但し Ti * =Ti− 48(C/12 +N/14 +S/32)〕 なる3つの式で表される関係を満足していて、残部がFe
及び不可避的不純物より成る 組成の鋼を連続鋳造によっ
てスラブとした後、熱間圧延を850℃以上で完了し、
更に400〜700℃(650℃以上を除く)の温度域
で巻取ってから、圧下率60〜95%で冷間圧延を行
い、その後再結晶温度以上Ac3点の温度以下の温度域で
焼鈍することを特徴とする、成形性の優れた深絞り用薄
鋼板の製造法。
At 1. A weight ratio, C: 0.01% or less, Si: 0.1% or less, Mn: 0.01~2%, P: less than 0.01%, S: 0.005% or less, Ti: 0.1% or less, acid soluble Al: 0.005 to 0.1%, N: 0.005% or less , or Nb: 0.003 to 0.05%, B: 0.0003 to 0.0030% , and P + S <0.012%, Ti * > 0.01%, Ti * (% ) × P (%) ≦ 0.0002 [However, Ti * = Ti- 48 (C / 12 + N / 14 + S / 32) ] satisfied the following relationship represented by the three formulas And the rest is Fe
After the steel of the composition consisting of and unavoidable impurities is made into a slab by continuous casting, hot rolling is completed at 850 ° C. or more,
Further, after winding in a temperature range of 400 to 700 ° C. (excluding 650 ° C. or more) , cold rolling is performed at a rolling reduction of 60 to 95%, and thereafter, annealing is performed in a temperature range of a recrystallization temperature or higher and a temperature of three points Ac or lower. A method for producing a deep-drawing thin steel sheet having excellent formability, characterized in that:
【請求項2】 重量割合にて、 C:0.01%以下,Si:0.1 %以下,Mn:0.01〜2%, P:0.01%未満,S:0.005 %以下,Ti:0.1 %以下, 酸可溶Al:0.005 〜0.1 %,N:0.005 %以下 を含むか、あるいは更に Nb: 0.003〜0.05%,B:0.0003〜0.0030% のうちの1種以上をも含有し、かつ P+S < 0.012%, Ti * > 0.01%, Ti * (%) ×P(%) ≦ 0.0002 〔但し Ti * =Ti− 48(C/12 +N/14 +S/32)〕 なる3つの式で表される関係を満足していて、残部がFe
及び不可避的不純物より成る 組成の鋼を連続鋳造によっ
てスラブとした後、スラブ表面の温度が950℃を下回
らないようにして熱間圧延を開始すると共に該熱間圧延
を850℃以上で完了し、更に400〜700℃(65
0℃以上を除く)の温度域で巻取ってから、圧下率60
〜95%で冷間圧延を行い、その後再結晶温度以上Ac3
点の温度以下の温度域で焼鈍することを特徴とする、成
形性の優れた深絞り用薄鋼板の製造法。
2. In a weight ratio, C: 0.01% or less, Si: 0.1% or less, Mn : 0.01 to 2%, P: less than 0.01%, S: 0.005% or less, Ti: 0.1% or less, acid soluble Al: 0.005 to 0.1%, N: 0.005% or less , or Nb: 0.003 to 0.05%, B: 0.0003 to 0.0030% , and P + S <0.012%, Ti * > 0.01%, Ti * (% ) × P (%) ≦ 0.0002 [However, Ti * = Ti- 48 (C / 12 + N / 14 + S / 32) ] satisfied the following relationship represented by the three formulas And the rest is Fe
And after making a steel having a composition consisting of unavoidable impurities into a slab by continuous casting, hot rolling is started so that the temperature of the slab surface does not fall below 950 ° C., and the hot rolling is completed at 850 ° C. or more; 400-700 ° C (65
(Excluding 0 ° C or higher)) , and then the rolling reduction is 60
Perform cold rolling at 95%, then recrystallization temperature or higher Ac 3
A method for producing a steel sheet for deep drawing having excellent formability, characterized by annealing in a temperature range not higher than a point temperature.
JP6200794A 1994-03-07 1994-03-07 Manufacturing method of steel sheet for deep drawing with excellent formability Expired - Lifetime JP3412243B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6200794A JP3412243B2 (en) 1994-03-07 1994-03-07 Manufacturing method of steel sheet for deep drawing with excellent formability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6200794A JP3412243B2 (en) 1994-03-07 1994-03-07 Manufacturing method of steel sheet for deep drawing with excellent formability

Publications (2)

Publication Number Publication Date
JPH07242996A JPH07242996A (en) 1995-09-19
JP3412243B2 true JP3412243B2 (en) 2003-06-03

Family

ID=13187675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6200794A Expired - Lifetime JP3412243B2 (en) 1994-03-07 1994-03-07 Manufacturing method of steel sheet for deep drawing with excellent formability

Country Status (1)

Country Link
JP (1) JP3412243B2 (en)

Also Published As

Publication number Publication date
JPH07242996A (en) 1995-09-19

Similar Documents

Publication Publication Date Title
JPS5849627B2 (en) Method for producing non-temporal cold-rolled steel sheet
JP2503224B2 (en) Method for manufacturing thick cold-rolled steel sheet with excellent deep drawability
JP3280692B2 (en) Manufacturing method of high strength cold rolled steel sheet for deep drawing
JP3412243B2 (en) Manufacturing method of steel sheet for deep drawing with excellent formability
JP3404798B2 (en) Method for producing high-strength steel sheet having bake hardenability
JP2581887B2 (en) High strength cold rolled steel sheet excellent in cold workability and method for producing the same
JP3466298B2 (en) Manufacturing method of cold rolled steel sheet with excellent workability
JPH0559970B2 (en)
JPH0144771B2 (en)
JP4094498B2 (en) Deep drawing high strength cold-rolled steel sheet and method for producing the same
JP3109388B2 (en) Manufacturing method of high workability cold rolled steel sheet with small in-plane anisotropy
JP3735142B2 (en) Manufacturing method of hot-rolled steel sheet with excellent formability
JP2755014B2 (en) Method for producing high-strength cold-rolled steel sheet for deep drawing with excellent secondary work brittleness resistance
JP3593728B2 (en) Manufacturing method of ultra low carbon cold rolled steel sheet with excellent formability
JP3288514B2 (en) Manufacturing method of high-strength cold-rolled steel sheet for deep drawing
JP2669188B2 (en) Manufacturing method of high strength cold rolled steel sheet for deep drawing
JP3043901B2 (en) Method for producing high-strength cold-rolled steel sheet and galvanized steel sheet with excellent deep drawability
JP3506023B2 (en) Method for producing high-strength hot-rolled steel sheet with excellent formability
JP3718987B2 (en) Paint bake-hardening cold-rolled steel sheet excellent in aging resistance and method for producing the same
JP3446001B2 (en) Method for producing cold-rolled steel sheet and hot-dip galvanized steel sheet with excellent workability
JP3300639B2 (en) Cold rolled steel sheet excellent in workability and method for producing the same
JP3309396B2 (en) High-strength cold-rolled steel sheet for deep drawing having age hardening property excellent in secondary work brittleness resistance and method for producing the same
JP3257281B2 (en) Cold rolled steel sheet excellent in workability and method for producing the same
JP3471407B2 (en) Manufacturing method of hot rolled steel sheet with excellent workability
JPH06256901A (en) High tensile strength cold rolled steel sheet for deep drawing and its production

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080328

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090328

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100328

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100328

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140328

Year of fee payment: 11

EXPY Cancellation because of completion of term