JP3410591B2 - Hydrocarbon steam reforming method - Google Patents

Hydrocarbon steam reforming method

Info

Publication number
JP3410591B2
JP3410591B2 JP27384395A JP27384395A JP3410591B2 JP 3410591 B2 JP3410591 B2 JP 3410591B2 JP 27384395 A JP27384395 A JP 27384395A JP 27384395 A JP27384395 A JP 27384395A JP 3410591 B2 JP3410591 B2 JP 3410591B2
Authority
JP
Japan
Prior art keywords
amount
reforming
steam
heat
burner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27384395A
Other languages
Japanese (ja)
Other versions
JPH09111268A (en
Inventor
正伸 富田
隆広 神戸
正彦 平城
栄一 明智
敏明 長谷川
賢治 川手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP27384395A priority Critical patent/JP3410591B2/en
Publication of JPH09111268A publication Critical patent/JPH09111268A/en
Application granted granted Critical
Publication of JP3410591B2 publication Critical patent/JP3410591B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Hydrogen, Water And Hydrids (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、炭化水素の水蒸気
改質方法に関し、詳しくは熱効率が一般と向上した炭化
水素の水蒸気改質方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steam reforming method for hydrocarbons, and more particularly to a steam reforming method for hydrocarbons having generally improved thermal efficiency.

【0002】[0002]

【従来の技術】炭化水素の水蒸気改質は、次式で示され
る水蒸気改質反応工程を主とし、必要に応じて炭化水素
中の硫黄分を除去する前工程としての脱硫工程、さら
に、COを水蒸気と反応させH2 とCO2 へ転換する変
成工程、圧力スイング吸着法(PSA)、膜分離法等に
よる水素精製工程、CO2 を除去するCO2 洗浄工程、
COとCO2 をメタンに転換するメターネーション工程
が付加される。 Cmn+oH2O→pCO+qCO2+rH2+sCH4+zC 従来、水蒸気改質反応工程で用いられる水蒸気改質炉
は、触媒を充填した改質管と燃焼バーナを有するもの
で、改質反応はラジエーション部で行われ、ラジエーシ
ョン部での熱効率は40〜60%程度と低い。このた
め、改質炉の熱効率の向上を図る目的で改質炉のコンベ
クション部に原料を予熱する予熱管及び水蒸気の発生管
等を設け、さらに大型改質炉にあっては改質炉外部にユ
ングストローム等の空気予熱システムを設ける等の方法
を採用している。
2. Description of the Related Art The steam reforming of hydrocarbons mainly comprises a steam reforming reaction step represented by the following formula, a desulfurization step as a pre-step for removing the sulfur content in the hydrocarbon, and a CO metamorphic step of converting the H 2 and CO 2 is reacted with steam, pressure swing adsorption (PSA), membrane hydrogen purification step by separation methods such as, CO 2 cleaning process for removing CO 2,
A methanation step is added to convert CO and CO 2 to methane. C m H n + oH 2 O → pCO + qCO 2 + rH 2 + sCH 4 + zC Conventionally, the steam reforming furnace used in the steam reforming reaction step has a reforming tube filled with a catalyst and a combustion burner. It is performed in the radiation section, and the thermal efficiency in the radiation section is as low as 40 to 60%. For this reason, in order to improve the thermal efficiency of the reforming furnace, a preheating pipe for preheating the raw material and a steam generation pipe are provided in the convection section of the reforming furnace. A method of installing an air preheating system such as Jungstrom is adopted.

【0003】そして、原料の一部である水蒸気は、上記
コンベクション部の熱源を回収して得た水蒸気の他、改
質ガスの熱源を回収して得た水蒸気を利用し供給してい
る(図3)。
The steam, which is a part of the raw material, is supplied by utilizing not only the steam obtained by recovering the heat source of the convection section but also the steam obtained by recovering the heat source of the reformed gas (Fig. 3).

【0004】しかしながら、従来の水蒸気改質方法で
は、(1)前述のようなコンベクション部に水蒸気発生
管を配置する必要があり建設費が増加する。(2)近
年、改質触媒の活性向上に伴うS/C(水蒸気/炭化水
素)比の低下が可能になり、系内発生の余剰水蒸気が増
加傾向にあり、必要水蒸気量を基準にした場合、プロセ
ス全体の熱回収の効率が低下している。(3)改質に必
要なラジエーション部の熱効率は40〜50%であり、
これ以上の熱効率の向上及び制御はできない。(4)ラ
ジエーション部の熱効率が40〜50%と低いため、燃
料としてオフガスのみでは足りず不足分の燃料を別途多
量に供給している等諸問題がある。
However, in the conventional steam reforming method, (1) it is necessary to dispose the steam generating tube in the convection section as described above, which increases the construction cost. (2) In recent years, it has become possible to lower the S / C (steam / hydrocarbon) ratio as the activity of the reforming catalyst improves, and the excess steam generated in the system tends to increase. , The heat recovery efficiency of the whole process is reduced. (3) The thermal efficiency of the radiation part required for reforming is 40 to 50%,
No further improvement or control of thermal efficiency is possible. (4) Since the thermal efficiency of the radiation portion is as low as 40 to 50%, there are various problems such as the fact that offgas alone is not sufficient as the fuel and a large amount of insufficient fuel is separately supplied.

【0005】[0005]

【発明が解決しようとする課題】従って、本発明の目的
は、水蒸気改質炉のラジエーション部の熱効率を高め、
かつ、目的に応じ可変とすることができ、原料となる水
蒸気量を必要量だけ、効率的に賄うことができる水蒸気
改質方法を提供するものである。
Therefore, an object of the present invention is to improve the thermal efficiency of the radiation section of a steam reforming furnace,
Further, the present invention provides a steam reforming method that can be varied according to the purpose and can efficiently cover the required amount of steam as a raw material.

【0006】[0006]

【課題を解決するための手段】かかる実情において、本
発明者らは、鋭意研究を行った結果、炭化水素の水蒸気
改質方法において、水蒸気改質炉に高速切替式蓄熱燃焼
バーナシステムを採用すれば、改質反応に必要なラジエ
ーション部の熱効率を向上させることができ、さらに、
改質ガス又はブロー燃焼排ガスを利用し、熱効率を目的
に応じて可変とすれば、プロセス全体の効率が向上する
ことを見出し本発明を完成するに至った。
Under such circumstances, the inventors of the present invention have conducted earnest research and as a result, in a steam reforming method for hydrocarbons, a rapid switching heat storage combustion burner system was adopted in a steam reforming furnace. If so, it is possible to improve the thermal efficiency of the radiation part necessary for the reforming reaction, and further,
The inventors have found that the efficiency of the entire process is improved if the reformed gas or blow combustion exhaust gas is used and the thermal efficiency is made variable according to the purpose, and the present invention has been completed.

【0007】すなわち、本発明は、炭化水素の水蒸気改
質方法において、前記改質反応を行う改質炉に蓄熱体を
通してバーナへの燃焼用空気の供給及び当該バーナから
の燃焼ガスの排出を交互に行う高速切替式蓄熱バーナシ
ステムを配し、かつ前記原料の予熱量及び水蒸気量を発
生するに必要な熱量を改質ガス又はブロー燃焼排ガスか
らの熱回収により賄い、さらに前記ブロー燃焼排ガス量
の調整により、ラジエーション部の熱効率を目的に応じ
て可変とする炭化水素の水蒸気改質方法を提供するもの
である。
That is, in the steam reforming method for hydrocarbons according to the present invention, the combustion air is supplied to the burner through the heat storage body in the reforming furnace for carrying out the reforming reaction and the combustion gas is discharged from the burner alternately. A heat switching burner system with a high-speed switching to be carried out is provided, and the amount of heat necessary to generate the amount of preheat and steam of the raw material is covered by the heat recovery from the reformed gas or the blow combustion exhaust gas. It is intended to provide a method for steam reforming of hydrocarbons in which the thermal efficiency of the radiation section can be varied depending on the purpose by adjustment.

【0008】[0008]

【発明の実施の形態】本発明の炭化水素の水蒸気改質方
法は特に制限されず公知の方法にて行うことができる。
原料の炭化水素としては、プロパン、ブタン、天然ガ
ス、ナフサ等が挙げられる。当該炭化水素と水蒸気の混
合物を予熱器にて400〜600℃の温度に加熱し、必
要ならば脱硫工程を経た後、例えばニッケル系触媒が充
填された数本〜数百本の改質管に導入され、約650〜
900℃、圧力ATM〜30kg/cm2、S/C 0.7〜
5の条件下で炭化水素の水蒸気改質反応を行えばよい。
また、水素製造を目的とした場合を例にあげると、炭化
水素の水蒸気改質反応工程の後工程として、COを水蒸
気と反応させH2 とCO2 へ転換する変成工程、PSA
法を用いた水素精製工程を組み合わせることが系全体の
水素生成効率の向上等から好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The method for steam reforming a hydrocarbon of the present invention is not particularly limited and can be carried out by a known method.
Examples of the raw material hydrocarbon include propane, butane, natural gas, naphtha and the like. After heating the mixture of the hydrocarbon and steam to a temperature of 400 to 600 ° C. in a preheater and, if necessary, a desulfurization step, for example, to several to several hundred reforming tubes filled with a nickel-based catalyst. Introduced, about 650
900 ° C, pressure ATM ~ 30 kg / cm 2 , S / C 0.7 ~
The steam reforming reaction of hydrocarbon may be performed under the condition of 5.
Taking the case of producing hydrogen as an example, as a post-step of the steam reforming reaction step of hydrocarbon, a conversion step of reacting CO with steam to convert it into H 2 and CO 2 , PSA
It is preferable to combine the hydrogen purification step using the method from the viewpoint of improving the hydrogen production efficiency of the entire system.

【0009】本発明方法において使用する前記水蒸気改
質反応を行う改質炉としては、前記改質管及び蓄熱体を
通してバーナへの燃焼用空気の供給及び当該バーナから
の燃焼ガスの排出を交互に行う高速切替式蓄熱燃焼バー
ナシステムを配していることが必要である。
As the reforming furnace for carrying out the steam reforming reaction used in the method of the present invention, the supply of combustion air to the burner through the reforming tube and the heat storage body and the discharge of combustion gas from the burner are alternately performed. It is necessary to have a fast switching heat storage combustion burner system.

【0010】本発明で用いられる高速切替式蓄熱燃焼バ
ーナシステムは、一対のバーナ、一対の蓄熱体及び切替
装置から構成されていればよく、多量の熱が必要な場合
は複数組の燃焼システムを改質炉内に設置するのが好ま
しい。当該蓄熱体は特に制限されないが、例えばセラミ
ックのハニカム構造体を用いることができる。また、炉
内への高速切替式蓄熱燃焼バーナシステムの設置場所は
特に制限されず、炉壁面の同一面、相い対面する炉壁面
(サイドウオール)に設置してもよいが、高さの異なる
位置に複数の配列で相い対面して配列させたものが好ま
しい。また、燃焼の火炎は、改質管方向になるよう燃焼
バーナを設置するのが好ましい。これにより、ラジエー
ション部の熱効率が著しく向上し、コンベクション部の
水蒸気発生管等の設置を省略することができる。
The high speed switching type regenerative combustion burner system used in the present invention may be composed of a pair of burners, a pair of regenerators and a switching device. When a large amount of heat is required, a plurality of sets of combustion systems are used. It is preferably installed in the reforming furnace. The heat storage body is not particularly limited, but a ceramic honeycomb structure can be used, for example. Further, the installation location of the high-speed switching type regenerative combustion burner system in the furnace is not particularly limited, and it may be installed on the same surface of the furnace wall surface or on the opposing furnace wall surfaces (sidewalls), but at different heights. It is preferable that a plurality of sequences are arranged facing each other at a position. Further, it is preferable to install the combustion burner so that the combustion flame is directed to the reforming tube. As a result, the thermal efficiency of the radiation section is significantly improved, and the installation of the steam generation tube or the like in the convection section can be omitted.

【0011】また、改質炉には、原料の予熱管及びブロ
ー燃焼排ガス出口管がコンベクション部に設置している
ことが必要である。予熱管を通す原料としては、前記炭
化水素又は水蒸気又はこれらの混合物のいずれでもよい
が、特に、炭化水素と水蒸気の混合物を通すことが好ま
しい。
In the reforming furnace, it is necessary to install a preheating pipe for the raw material and a blow combustion exhaust gas outlet pipe in the convection section. The raw material to be passed through the preheating pipe may be any of the above-mentioned hydrocarbons, steam or a mixture thereof, but it is particularly preferable to pass a mixture of hydrocarbon and steam.

【0012】本発明において、原料の予熱量及び水蒸気
量を発生するに必要な熱量は、当該高速切替式蓄熱燃焼
バーナを採用したことにより、改質ガス又は必要ならブ
ロー燃焼排ガスの熱回収により賄うことができ、余剰の
水蒸気は、脱CO2 工程へ供給することができる。この
うち、原料の水蒸気量を発生するに必要な熱量は、改質
ガスからの熱回収量とブロー燃焼排ガスからの熱回収量
の比が10:0〜6:4、好ましくは9:1〜6:4、
さらに好ましくは、9:1〜7:3の範囲で賄うことが
効率的である。また、原料の予熱量は特に制限されない
が、例えば約200℃の原料を改質炉入口温度の約40
0〜600℃まで加熱するのに必要な熱量が好ましい。
In the present invention, the amount of heat required to generate the preheat amount of the raw material and the amount of water vapor is covered by the heat recovery of the reformed gas or the blow combustion exhaust gas if necessary by adopting the high speed switching type regenerative combustion burner. The excess steam can be supplied to the CO 2 removal step. Of these, the amount of heat required to generate the amount of water vapor of the raw material is such that the ratio of the amount of heat recovered from the reformed gas to the amount of heat recovered from the blow combustion exhaust gas is from 10: 0 to 6: 4, preferably from 9: 1. 6: 4,
More preferably, it is efficient to cover in the range of 9: 1 to 7: 3. Further, the amount of preheating of the raw material is not particularly limited, but for example, a raw material of about 200 ° C. is heated to about 40 at the reforming furnace inlet temperature.
The amount of heat required to heat to 0 to 600 ° C. is preferable.

【0013】本発明においては、前記改質炉のコンベク
ション部に設置されたブロー燃焼排ガス出口管を流れる
ブロー燃焼排ガス量を調整し、ラジエーション部の熱効
率を目的に応じて可変とする。例えば、ブロー燃焼排ガ
ス量を開度調節弁により開度を大きくすれば、燃料の消
費が増え、熱効率は低下するが水蒸気量を多量に発生さ
せることができ、原料以外への水蒸気の供給又はS/C
比率を高めることもできる。また、上記開度調節弁によ
り流出するブロー燃焼排ガス量を少なくすれば熱効率は
向上する。上記ブロー燃焼排ガスは、蒸気缶の缶水との
熱交換を行った後は、大気へ放出することが好ましい。
In the present invention, the amount of blow combustion exhaust gas flowing through the blow combustion exhaust gas outlet pipe installed in the convection portion of the reforming furnace is adjusted to make the thermal efficiency of the radiation portion variable according to the purpose. For example, if the opening of the blow combustion exhaust gas is increased by the opening control valve, the fuel consumption increases and the thermal efficiency decreases, but a large amount of water vapor can be generated. / C
The ratio can be increased. Further, the thermal efficiency is improved by reducing the amount of blown combustion exhaust gas flowing out by the opening degree control valve. The above-mentioned blow combustion exhaust gas is preferably released to the atmosphere after heat exchange with the can water of the steam can.

【0014】本発明で使用する前記バーナに供給する燃
料については、定常運転時、前記水蒸気改質の下流の水
素精製工程から発生するオフガスを燃料中、熱量換算
(Kcal/Nm3)で80〜100%、好ましくは9
0〜100%、特に好ましくは、100%とし使用する
ことが別途燃料の供給が不要となり好ましい。上記オフ
ガスは、例えばPSAからのガス中、水素を分離した残
りの可燃性ガスであり、その組成は特に制限されない
が、CO、H2 、CO2 含有の1000〜2000Kc
al/Nm3 のような低カロリーのものであってもよ
い。さらに、改質炉には、炉内温度調節器、炉内温度検
出器、炉圧調節器等、ファン、スタック等有しているこ
とが好ましい。
Regarding the fuel supplied to the burner used in the present invention, during steady operation, the off gas generated from the hydrogen purification step downstream of the steam reforming in the fuel is 80 to 80 in terms of calorific value (Kcal / Nm 3 ). 100%, preferably 9
It is preferable to use 0 to 100%, particularly preferably 100%, because it is not necessary to separately supply fuel. The off-gas is, for example, the remaining combustible gas obtained by separating hydrogen in the gas from PSA, and the composition thereof is not particularly limited, but CO, H 2 , and CO 2 -containing 1000 to 2000 Kc.
It may be of low calorie such as al / Nm 3 . Further, the reforming furnace preferably has a furnace temperature controller, a furnace temperature detector, a furnace pressure controller, a fan, a stack, and the like.

【0015】[0015]

【実施例】以下、本発明を図面に示す実施例によりさら
に説明するが、これは単に例示であって本発明を制限す
るものではない。
The present invention will be further described below with reference to the examples shown in the drawings, which are merely illustrative and do not limit the present invention.

【0016】図1に本発明の改質炉及び水蒸気の発生、
利用経路を示す。この改質炉1は改質炉内に触媒充填さ
れた複数の改質管13、コンベクション部に原料の予熱
管(図では省略)を配し、原料の炭化水素(LPG、メ
タン、オフガス)と水蒸気の混合物が改質管13内をダ
ウンフローで流れる。また、一対のバーナ4,4′、一
対の蓄熱体3,3′及び切替装置5からなる高速切替式
蓄熱燃焼バーナシステム2を同一面に配している。ここ
で高速切替式蓄熱燃焼バーナシスナム2の構造及び燃焼
方式は特に制限されないが、本実施例では蓄熱体3,
3′ならびに予熱空気と燃焼排ガスの流路としての機能
を持つバーナ4,4′が一体化した2基1組のものを組
合わせて交互に燃焼させ、燃焼させていない方のバーナ
及び蓄熱体を通して排ガスを排出し得るように設けたも
のが使用されている。例えば、図1において、燃焼用空
気は蓄熱体3を通り例えば800℃以上に予熱されてバ
ーナ4を通過し燃焼する。燃焼は高温の予熱空気を使用
するので低カロリーの燃料ガスでも燃焼が安定して行な
われ、また過剰空気比も従来法に比べて小さくできる。
改質反応用に熱を供給した後の燃焼排ガスはバーナ4′
を通り蓄熱体3で熱を回収され排出される。バーナ4と
バーナ4′の燃焼の切替えは切替装置5で行ない、切替
時間は短く例えば5〜60秒毎が好ましく、ここでは3
0秒毎である。切替え毎に空気、燃焼排ガスの流れは逆
となる。燃料の供給は切替装置5と同期して作動する開
閉弁6,7で行ない、燃焼しているバーナへ燃料を供給
する。燃料の流量は調節弁8で制御する。燃焼排ガスの
排出温度は高カロリーの燃料を使用すれば200℃以下
も可能であり、この場合の改質炉のラジエーション部の
熱効率は90%前後となる。ブロー燃焼排ガスライン1
2は低カロリーの燃料ガスを使用した場合、燃焼用空気
量に比べて燃焼排ガス量が多く燃焼排ガスの熱を充分に
回収できない。この時、ブロー燃焼排ガスライン12で
高温の燃焼排ガスを一部抜き出すことにより蓄熱体4,
4′を出る燃焼排ガス量を減少でき、200℃以下の温
度が可能となる。ブロー燃焼排ガスライン12からの高
温の燃焼排ガスは、高温熱源としてその熱を水蒸気の発
生に用い、装置全体の熱効率の向上に寄与した後に蓄熱
体4,4′を出た燃焼排ガスと合流して系外に排出され
る。
FIG. 1 shows the reforming furnace of the present invention and the generation of steam.
Indicates the usage route. This reforming furnace 1 has a plurality of reforming tubes 13 filled with catalyst in the reforming furnace, and a preheating tube (not shown in the figure) for the raw material in the convection section, and is used as a hydrocarbon for the raw material (LPG, methane, off gas). The mixture of steam flows in the reforming pipe 13 in a downflow manner. Further, a high speed switching type heat storage combustion burner system 2 including a pair of burners 4, 4 ', a pair of heat storage bodies 3, 3', and a switching device 5 is arranged on the same surface. Here, the structure and combustion method of the fast switching heat storage combustion burner cisnum 2 are not particularly limited, but in the present embodiment, the heat storage body 3,
3'and a burner and a heat storage body which are not burned by alternately burning two sets of 2 units each having integrated burners 4, 4'having a function as a flow path for preheated air and combustion exhaust gas. What is provided so that exhaust gas can be discharged through is used. For example, in FIG. 1, the combustion air passes through the heat storage body 3, is preheated to, for example, 800 ° C. or higher, passes through the burner 4, and burns. Since high-temperature preheated air is used for combustion, combustion can be performed stably even with low-calorie fuel gas, and the excess air ratio can be made smaller than in the conventional method.
The combustion exhaust gas after supplying heat for the reforming reaction is burner 4 '.
The heat is recovered by the heat storage body 3 and discharged. Switching of combustion between the burner 4 and the burner 4'is performed by the switching device 5, and the switching time is short, for example, preferably every 5 to 60 seconds.
Every 0 seconds. The flow of air and flue gas is reversed at each switching. The fuel is supplied by the on-off valves 6 and 7 which operate in synchronization with the switching device 5, and supplies the fuel to the burning burner. The flow rate of fuel is controlled by the control valve 8. The discharge temperature of the combustion exhaust gas can be 200 ° C. or lower if high-calorie fuel is used, and the thermal efficiency of the radiating portion of the reforming furnace in this case is about 90%. Blow combustion exhaust gas line 1
In No. 2, when a low-calorie fuel gas is used, the amount of combustion exhaust gas is large compared to the amount of combustion air, and the heat of combustion exhaust gas cannot be sufficiently recovered. At this time, a part of the high-temperature combustion exhaust gas is extracted in the blow combustion exhaust gas line 12 so that the heat storage body 4,
The amount of flue gas leaving 4'can be reduced and temperatures below 200 ° C are possible. The high temperature combustion exhaust gas from the blow combustion exhaust gas line 12 is used as a high temperature heat source for generating steam, and contributes to the improvement of the thermal efficiency of the entire apparatus, and then joins with the combustion exhaust gas discharged from the heat storage bodies 4 and 4 '. It is discharged outside the system.

【0017】一方、原料のひとつである水蒸気は、当該
高速切替式蓄熱燃焼システムの採用に伴い、コンベクシ
ョン部の熱を利用することなく改質ガスの熱及び開度調
節器9により排出量を制御されたブロー燃焼排ガスの熱
を熱交換器10′,10で利用し発生させた水蒸気で賄
うことができる。例えば、CO+H2 ガス1000Nm
3/Hのオキソガス製造プラントにおいて、改質炉50
3、改質管8本、高速切替式蓄熱燃焼システム2組、
改質炉入口温度510℃、入口圧力21.7kg/cm2
改質炉出口温度843℃、出口圧力20.4kg/cm2
場合、原料の水蒸気量は、改質ガスからの熱回収による
もの70%、ブロー燃焼排ガスからの熱回収が30%
(熱回収比率7:3)であり、コンベクション部の熱を
利用しなくてもよい。
On the other hand, steam, which is one of the raw materials, is controlled by the heat of the reforming gas and the opening degree controller 9 without utilizing the heat of the convection section with the adoption of the high-speed switching heat storage combustion system. The heat of the generated blow combustion exhaust gas can be used by the heat exchangers 10 'and 10 to generate steam. For example, CO + H 2 gas 1000 Nm
In a 3 / H oxo gas production plant, a reforming furnace 50
m 3 , 8 reforming tubes, 2 sets of fast switching heat storage combustion system,
Reforming furnace inlet temperature 510 ° C, inlet pressure 21.7 kg / cm 2 ,
When the reforming furnace outlet temperature is 843 ° C. and the outlet pressure is 20.4 kg / cm 2 , the steam amount of the raw material is 70% due to heat recovery from the reformed gas and 30% due to heat recovery from blow combustion exhaust gas.
(The heat recovery ratio is 7: 3), and it is not necessary to use the heat of the convection section.

【0018】また、前記と同様規模のガス製造プラント
及び同条件において、当該高速切替蓄熱燃焼システムを
用いた改質炉のバーナに水蒸気改質工程の次に設けたP
SA(水素精製工程)から発生するオフガスを水蒸気改
質炉の全燃料として使用した場合、安定な燃焼で炉の設
定温度を維持した。また、当該高速切替燃焼システムを
用いない通常バーナを用いた従来の改質炉の場合(比較
例)との比較を表1に示した。
Further, in a gas production plant of the same scale as above and under the same conditions, P provided next to the steam reforming step in the burner of the reforming furnace using the high speed switching heat storage combustion system.
When the off gas generated from SA (hydrogen refining process) was used as all the fuel of the steam reforming furnace, the set temperature of the furnace was maintained by stable combustion. Further, Table 1 shows a comparison with the case of a conventional reforming furnace using a normal burner that does not use the high-speed switching combustion system (comparative example).

【0019】[0019]

【表1】 [Table 1]

【0020】図2は通常の燃焼バーナを用いた従来の改
質炉と本発明の高速切替式蓄熱燃焼システムを用いた改
質炉のラジエーション部における炉内温度を比較したも
のである。従来の改質炉においては、炉入口から炉中央
に近いところで最高温度Aが示すように炉内温度分布は
不均一で、改質管材料は、最高温度Aを材料の許容温度
として決定される。しかし、本発明によれば、炉内温度
は、均一分布とすることができ、改質管の許容温度の範
囲内で炉内温度を制御でき、かつ平均炉内温度を従来よ
り高く設定できる。このため、改質管の本数の減少、改
質炉のコンパクト化等省資原が図れる。
FIG. 2 compares the temperature inside the conventional reforming furnace using a normal combustion burner with the temperature inside the radiating portion of the reforming furnace using the fast switching heat storage combustion system of the present invention. In the conventional reforming furnace, the temperature distribution in the furnace is uneven as shown by the maximum temperature A near the furnace center from the furnace inlet, and the reforming tube material is determined to have the maximum temperature A as the allowable temperature of the material. . However, according to the present invention, the in-furnace temperature can be made to have a uniform distribution, the in-furnace temperature can be controlled within the allowable temperature range of the reforming tube, and the average in-furnace temperature can be set higher than before. Therefore, the number of reforming tubes can be reduced, and the reforming furnace can be made compact.

【0021】[0021]

【発明の効果】水蒸気改質炉に高速切替式蓄熱燃焼バー
ナシステムを採用したためラジエーション部のみで熱効
率を向上させることができる。このため従来のように炉
効率を上げるため、改質炉のコンベクション部に水蒸気
発生管を設ける必要がなく、建設費の低減を図ることが
できる。また、ラジエーション部の熱効率を調整するこ
とにより原料の水蒸気量は改質ガスとブロー燃焼排ガス
からの熱回収による水蒸気量で賄え、余剰の水蒸気を発
生させることがなく、効率的である。また、定常運転時
においては、熱効率の向上により、系内より発生するオ
フガスのみでも改質炉の必要熱量が賄える。
EFFECTS OF THE INVENTION Since the steam reforming furnace employs the high speed switching type regenerative combustion burner system, it is possible to improve the thermal efficiency only with the radiator. For this reason, it is not necessary to provide a steam generating tube in the convection section of the reforming furnace in order to improve the furnace efficiency as in the conventional case, and the construction cost can be reduced. Further, by adjusting the thermal efficiency of the radiation part, the amount of water vapor of the raw material can be covered by the amount of water vapor by heat recovery from the reformed gas and blow combustion exhaust gas, and it is efficient without generating excess water vapor. Further, during steady operation, the required heat quantity of the reforming furnace can be covered by only the off gas generated from the system by improving the thermal efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法で用いる水蒸気改質炉の一実施例及
び水蒸気の発生と利用を示す概略図である。
FIG. 1 is a schematic diagram showing an example of a steam reforming furnace used in the method of the present invention and the generation and utilization of steam.

【図2】改質炉内の温度分布を示す図である。FIG. 2 is a diagram showing a temperature distribution in a reforming furnace.

【図3】従来の水蒸気改質方法における水蒸気の発生と
利用を示す概略図である。
FIG. 3 is a schematic diagram showing generation and utilization of steam in a conventional steam reforming method.

【符号の説明】[Explanation of symbols]

1,101 改質炉 2 1組の高速切替式蓄熱燃焼バーナシス
テム 3,3′ 蓄熱体 4,4′ バーナ 11,111 蒸気缶 12 ブロー燃焼排ガス出口管 13,113 改質管 102 コンベクション部 A 従来の改質炉における炉内最高温度 B 本発明の改質炉における炉内最高温度
1,101 reforming furnace 2 1 set of high-speed switching type regenerative combustion burner system 3,3 'regenerator 4,4' burner 11,111 steam can 12 blow combustion exhaust gas outlet pipe 13,113 reforming pipe 102 convection section A conventional Maximum temperature B in the reforming furnace of No. 1 in the reforming furnace of the present invention

───────────────────────────────────────────────────── フロントページの続き (72)発明者 神戸 隆広 東京都千代田区麹町6丁目6番 コスモ エンジニアリング株式会社内 (72)発明者 平城 正彦 東京都千代田区麹町6丁目6番 コスモ エンジニアリング株式会社内 (72)発明者 明智 栄一 神奈川県横浜市鶴見区尻手2丁目1番53 号 日本ファーネス工業株式会社内 (72)発明者 長谷川 敏明 神奈川県横浜市鶴見区尻手2丁目1番53 号 日本ファーネス工業株式会社内 (72)発明者 川手 賢治 愛知県犬山市大字前原字向屋敷95番地 264 (56)参考文献 特開 平9−255305(JP,A) 特開 平9−79568(JP,A) 特開 平6−211502(JP,A) 特開 昭59−199502(JP,A) 国際公開94/02784(WO,A1) 工業加熱,1999年,第36巻,第4号, 第39−47頁 燃焼研究,1996年,第104号,第17− 18頁 省エネルギー,1993年,第45巻,第5 号,第58−62頁 (58)調査した分野(Int.Cl.7,DB名) C10L 3/00 特許ファイル(PATOLIS) JICSTファイル(JOIS)─────────────────────────────────────────────────── ─── Continued Front Page (72) Takahiro Kobe Kobe 6-6 Kojimachi, Chiyoda-ku, Tokyo Cosmo Engineering Co., Ltd. (72) Masahiko Hirashiro 6-6 Kojimachi, Chiyoda-ku, Tokyo Cosmo Engineering Co., Ltd. ( 72) Inventor Eiichi Aichi 2-2-153, Shirute, Tsurumi-ku, Yokohama-shi, Kanagawa Japan Furnace Industry Co., Ltd. (72) Inventor Kenji Kawate 95, Mukayashiki, Maehara, Inuyama, Aichi Prefecture 264 (56) References JP-A-9-255305 (JP, A) JP-A-9-79568 (JP, A) JP-A 6-211502 (JP, A) JP 59-199502 (JP, A) International publication 94/02784 (WO, A1) Industrial heating 1999, Vol. 36, No. 4, pp. 39-47 Combustion research, 1996, No. 104, pp. 17-18 Energy saving, 1993, Vol. 45, No. 5, pp. 58-62 ( 58) Fields investigated (Int.Cl. 7 , DB name) C10L 3/00 Patent file (PATOLIS) JISST file (JOIS)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 炭化水素の水蒸気改質方法において、前
記改質反応を行う改質炉に蓄熱体を通してバーナへの燃
焼用空気の供給及び当該バーナからの燃焼ガスの排出を
交互に行う高速切替式蓄熱バーナシステムを配し、かつ
前記原料の予熱量及び水蒸気量を発生するに必要な熱量
を改質ガス又はブロー燃焼排ガスからの熱回収により賄
い、さらに前記ブロー燃焼排ガス量の調整により、ラジ
エーション部の熱効率を目的に応じて可変とすることを
特徴とする炭化水素の水蒸気改質方法。
1. A method for steam reforming of hydrocarbons, wherein high-speed switching is performed by alternately supplying combustion air to a burner and discharging combustion gas from the burner through a heat storage body in a reforming furnace that performs the reforming reaction. A heat storage burner system is provided, and the amount of heat required to generate the preheat amount and the steam amount of the raw material is covered by heat recovery from the reformed gas or the blow combustion exhaust gas, and the radiation amount is adjusted by adjusting the blow combustion exhaust gas amount. A steam reforming method for hydrocarbons, characterized in that the thermal efficiency of the section is variable according to the purpose.
【請求項2】 原料の予熱量及び水蒸気量を発生するに
必要な熱量を改質ガスからの熱回収量とブロー燃焼排ガ
スからの熱回収量の比が10:0〜6:4の範囲で賄う
ことを特徴とする請求項1記載の炭化水素の水蒸気改質
方法。
2. The amount of heat required to generate the amount of preheat of the raw material and the amount of water vapor is set so that the ratio of the amount of heat recovered from the reformed gas to the amount of heat recovered from the blow combustion exhaust gas is in the range of 10: 0 to 6: 4. The method for steam reforming of hydrocarbons according to claim 1, wherein the method is provided.
【請求項3】 水蒸気改質工程の下流の水素精製工程か
ら発生するオフガスを燃料中、熱量換算で80〜100
%とし、前記バーナへ供給することを特徴とする請求項
1又は2記載の炭化水素の水蒸気改質方法。
3. Off gas generated from a hydrogen refining process downstream of the steam reforming process in a fuel is converted into a heat quantity of 80 to 100.
%, And supplies the burner to the burner.
JP27384395A 1995-10-23 1995-10-23 Hydrocarbon steam reforming method Expired - Lifetime JP3410591B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27384395A JP3410591B2 (en) 1995-10-23 1995-10-23 Hydrocarbon steam reforming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27384395A JP3410591B2 (en) 1995-10-23 1995-10-23 Hydrocarbon steam reforming method

Publications (2)

Publication Number Publication Date
JPH09111268A JPH09111268A (en) 1997-04-28
JP3410591B2 true JP3410591B2 (en) 2003-05-26

Family

ID=17533326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27384395A Expired - Lifetime JP3410591B2 (en) 1995-10-23 1995-10-23 Hydrocarbon steam reforming method

Country Status (1)

Country Link
JP (1) JP3410591B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3165707A1 (en) * 2020-01-24 2021-07-29 Jonathan Jay Feinstein Methanol production method

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
工業加熱,1999年,第36巻,第4号,第39−47頁
燃焼研究,1996年,第104号,第17−18頁
省エネルギー,1993年,第45巻,第5号,第58−62頁

Also Published As

Publication number Publication date
JPH09111268A (en) 1997-04-28

Similar Documents

Publication Publication Date Title
JP2008512336A (en) Method for producing hydrogen and / or carbon monoxide
US6981994B2 (en) Production enhancement for a reactor
US4642272A (en) Integrated fuel cell and fuel conversion apparatus
CA1286354C (en) Integrated fuel cell and fuel conversion apparatus
US6767530B2 (en) Method for producing hydrogen
US11654414B2 (en) Hydrogen reforming system
US7043923B2 (en) Fluid heating and gas turbine integration method
JP6980795B2 (en) Enhanced waste heat recovery using a pre-reformer in combination with oxygen and fuel preheating for combustion
JP2007527837A (en) Supply of steam and hydrogen to a synthesis gas production process or synthesis gas production plant
JPH0132283B2 (en)
US20030110694A1 (en) Method for oxygen enhanced syngas production
JP5963848B2 (en) Non-catalytic recuperation reformer
JP3771357B2 (en) Hydrogen production method
TW202408660A (en) Process
JP3410591B2 (en) Hydrocarbon steam reforming method
CN208135895U (en) Steam reformer flue gas heat recycling system
JP4256013B2 (en) Environmentally friendly hydrogen production method
JP5348938B2 (en) Carbon monoxide gas generator and method
JP2017113746A (en) Radiant non-catalytic recuperative reformer
JP4196249B2 (en) Hydrogen generator
JP2000281308A (en) Hydrogen generating device and its operation
JP4172740B2 (en) Hydrogen generator and operation method thereof
JP5285952B2 (en) Carbon monoxide gas generator and method
JP2733308B2 (en) Apparatus and method for producing reformed gas containing hydrogen as a main component
JPH11111321A (en) Partial combustion reformer and high-pressure fuel cell equipment provided with the same

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080320

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090320

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090320

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090320

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100320

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100320

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110320

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110320

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110320

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130320

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130320

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140320

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term