JP3407421B2 - Lens that can be used for close-up photography - Google Patents

Lens that can be used for close-up photography

Info

Publication number
JP3407421B2
JP3407421B2 JP21106694A JP21106694A JP3407421B2 JP 3407421 B2 JP3407421 B2 JP 3407421B2 JP 21106694 A JP21106694 A JP 21106694A JP 21106694 A JP21106694 A JP 21106694A JP 3407421 B2 JP3407421 B2 JP 3407421B2
Authority
JP
Japan
Prior art keywords
lens
lens group
group
negative
short
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21106694A
Other languages
Japanese (ja)
Other versions
JPH0876012A (en
Inventor
小林祐子
山梨隆則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optic Co Ltd filed Critical Olympus Optic Co Ltd
Priority to JP21106694A priority Critical patent/JP3407421B2/en
Publication of JPH0876012A publication Critical patent/JPH0876012A/en
Application granted granted Critical
Publication of JP3407421B2 publication Critical patent/JP3407421B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/02Telephoto objectives, i.e. systems of the type + - in which the distance from the front vertex to the image plane is less than the equivalent focal length

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、近距離撮影可能なレン
ズに関し、特に、無限遠から約1/2倍程度の近距離ま
で撮影可能な大口径望遠マクロレンズに関し、主にカメ
ラレンズ等に利用されるものに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lens capable of shooting a short distance, and more particularly to a large-diameter telephoto macro lens capable of shooting from infinity to a short distance of about 1/2 times, mainly used as a camera lens or the like. It is about what is done.

【0002】[0002]

【従来の技術】フォーカシング方式の基本としては、先
ず全体繰り出し方式がある。この方式の欠点としては、
特に望遠レンズの場合、その繰り出し量が非常に大きく
なり、操作性が非常に悪いことがあげられる。そこで、
望遠レンズのフォーカシングとしては、主にレンズ径の
小さな後群を移動させる、いわゆるインナーフォーカシ
ング方式が多く採用されている。しかし、この方式の場
合、撮影距離変化による収差変動量が大きくなるという
欠点があり、至近撮影倍率を大きくすることは非常に難
しくなる。特に移動群が1つの場合は、至近距離での収
差を十分に補正しきれない。
2. Description of the Related Art As a basic focusing system, there is an entire feeding system. The disadvantage of this method is that
In particular, in the case of a telephoto lens, the amount of extension is very large, and the operability is very poor. Therefore,
As the focusing of a telephoto lens, a so-called inner focusing method, which mainly moves a rear group having a small lens diameter, is often used. However, this method has a drawback that the amount of aberration variation due to a change in the shooting distance becomes large, and it becomes very difficult to increase the close-up shooting magnification. In particular, when the number of moving groups is one, it is not possible to sufficiently correct aberrations at a close range.

【0003】近年、大口径望遠レンズのフォーカシング
方式として、正、負、正、負の4群構成を採用し、正、
負の各群間隔を広げることによりフォーカシングを行う
方式が提案されてきた。このフォーカシング方式では、
正、負の群間隔を広げることにより像面をより物体側に
移動させるため、至近撮影倍率を拡大するには大きな効
果がある。
In recent years, as a focusing method for a large-aperture telephoto lens, a positive, negative, positive, and negative four-group configuration has been adopted.
Focusing methods have been proposed by widening the negative group spacing. With this focusing method,
Since the image plane is moved toward the object side by widening the positive and negative group intervals, there is a great effect in enlarging the close-up photographing magnification.

【0004】特に、正、負、正、負の4群構成で、負の
第2群を像面側に、正の第3群を物体側に移動させるフ
ォーカシング方式の場合、レンズ群の移動量を小さくで
き、かつ、至近撮影時の収差変動をそれぞれの群の動き
により比較的小さく抑えることが可能となる。
In particular, in the case of the focusing system in which the negative second lens unit is moved to the image plane side and the positive third lens unit is moved to the object side in the positive, negative, positive, and negative four-unit construction, the amount of movement of the lens unit It is possible to reduce the value of [1], and it is possible to suppress the aberration variation during close-up photography relatively small by the movement of each group.

【0005】このフォーカシング方式としては、特開平
3−278012号、特開平4−110811号、特開
平1−237611号等で提案されている。
This focusing method has been proposed in Japanese Patent Laid-Open Nos. 3-278012, 4-110811 and 1-237611.

【0006】[0006]

【発明が解決しようとする課題】しかし、特開平3−2
78012号の場合、大口径化及び撮影倍率の拡大を図
っているが、第1群と第2群とでほぼアフォーカル系と
なり、中間群のレンズ外径が大きくなる欠点がある。ま
た、レンズ全長も比較的大きく、サイズの大型化、及
び、重量上の問題が残されている。
However, Japanese Unexamined Patent Publication No. 3-2.
In the case of No. 78012, the aperture is increased and the photographing magnification is enlarged, but there is a drawback that the first group and the second group are almost afocal and the lens outer diameter of the intermediate group becomes large. In addition, the total length of the lens is relatively large, and there are problems in that the size is increased and the weight is reduced.

【0007】また、特開平4−110811号の場合、
フォーカシングの際の群移動量も小さく、サイズも小型
化が可能であるが、各群内での収差補正が十分でない。
特に球面収差補正が十分でなく、撮影距離変化による球
面収差の変動が大きく、大口径化は困難である。
Further, in the case of JP-A-4-110811,
The amount of movement of the lens unit during focusing is small and the size can be reduced, but aberration correction within each lens unit is not sufficient.
In particular, the spherical aberration correction is not sufficient, the spherical aberration fluctuates greatly due to changes in the shooting distance, and it is difficult to increase the aperture.

【0008】さらに、特開平1−237611号の場
合、大口径でレンズ全長は短いが、各レンズ群内での収
差補正が十分でなく、フォーカシングによる収差変動が
比較的大きく、至近撮影倍率の拡大は困難である。
Further, in the case of Japanese Patent Laid-Open No. 1-237611, although the lens diameter is large and the total lens length is short, the aberration correction in each lens group is not sufficient, and the aberration variation due to focusing is relatively large, and the close-up magnification is increased. It is difficult.

【0009】本発明はこのような従来技術の問題点に鑑
みてなされたものであり、その目的は、撮影距離の変化
による収差変動を良好に補正して、無限遠から1/2倍
程度の高倍率な至近距離に至る全ての状態において、非
常に良好に収差補正がされた大口径望遠マクロレンズで
あって、かつ、比較的コンパクトで操作性の良い近距離
撮影可能なレンズを提供することにある。
The present invention has been made in view of the above-mentioned problems of the prior art, and an object thereof is to satisfactorily correct the aberration variation due to the change of the photographing distance, and to increase the aberration from infinity to about 1/2 times. To provide a large-aperture telephoto macro lens in which aberrations are corrected very well in all conditions up to a close-up magnification, and which is relatively compact and capable of close-range shooting with good operability. is there.

【0010】[0010]

【課題を解決するための手段】上記目的を達成する本発
明の近距離撮影可能なレンズは、物体側より順に、正屈
折力の第1レンズ群(G1)、負屈折力の第2レンズ群
(G2)、正屈折力の第3レンズ群(G3)、負屈折力
の第4レンズ群(G4)を有し、無限遠物体から近距離
物体にフォーカシングする際に、前記第2レンズ群(G
2)は像面側に移動し、前記第3レンズ群(G3)は物
体側に移動するように構成され、前記移動群である第2
レンズ群(G2)は、物体側より順に、物体側に凸面を
向けた負メニスカスレンズと、その接合面が正の屈折力
を有する正レンズと負レンズとの接合負レンズを少なく
とも1つ含む構成であり、前記第4レンズ群(G4)の
無限遠物体にフォーカシングした状態での横倍率をβ4
とする時、下記の条件式を満足することを特徴とするも
のである。
A lens capable of short-distance photographing of the present invention which achieves the above object is, in order from the object side, a first lens group (G1) having a positive refractive power and a second lens group having a negative refractive power. (G2), a third lens group (G3) having a positive refracting power, and a fourth lens group (G4) having a negative refracting power, and when focusing from an object at infinity to a near object, the second lens group ( G
2) is configured to move to the image side, and the third lens group (G3) is configured to move to the object side.
The lens group (G2) includes, in order from the object side, a negative meniscus lens having a convex surface directed toward the object side, and at least one cemented negative lens having a cemented surface having a positive refractive power and a negative lens. And the lateral magnification of the fourth lens group (G4) when focused on an object at infinity is β 4
In this case, the following conditional expression is satisfied.

【0011】 1.1<β4 <1.4 ・・・(1) この場合、第2レンズ群(G2)の移動量をΔG2、第
3レンズ群(G3)の移動量をΔG3、第2レンズ群
(G2)の最も物体側の面の曲率半径をr2F、無限遠物
体にフォーカシングした状態での全系の焦点距離をfと
する時、下記の条件式を満足することが望ましい。
1.1 <β 4 <1.4 (1) In this case, the movement amount of the second lens group (G2) is ΔG2, the movement amount of the third lens group (G3) is ΔG3, and the second amount is When the radius of curvature of the most object-side surface of the lens group (G2) is r 2F and the focal length of the entire system in a state of focusing on an object at infinity is f, it is desirable to satisfy the following conditional expressions.

【0012】 −5<ΔG3/ΔG2<−1 ・・・(2) 0.2<r2F/f<1.1 ・・・(3) また、無限遠物体から近距離物体にフォーカシングする
際に、第2レンズ群(G2)は像面側に移動し、第3レ
ンズ群(G3)は物体側に移動し、第4レンズ群(G
4)は像面側に移動し、第3レンズ群(G3)の移動量
をΔG3、第4レンズ群(G4)の移動量をΔG4とす
る時、下記の条件式を満足することが望ましい。
-5 <ΔG3 / ΔG2 <-1 (2) 0.2 <r 2F /f<1.1 (3) Further, when focusing from an infinitely distant object to a near object, , The second lens group (G2) moves to the image side, the third lens group (G3) moves to the object side, and the fourth lens group (G3)
4) moves to the image side, and when the moving amount of the third lens group (G3) is ΔG3 and the moving amount of the fourth lens group (G4) is ΔG4, it is desirable to satisfy the following conditional expressions.

【0013】 −0.75<ΔG4/ΔG3<−0.06 ・・・(4)[0013]     −0.75 <ΔG4 / ΔG3 <−0.06 (4)

【0014】[0014]

【作用】以下、本発明において上記構成をとった理由と
作用について説明する。
The reason why the above construction is adopted and the operation thereof will be described below.

【0015】本発明では、フォーカシング方式として、
正、負、正、負の4群構成で、負の第2群(G2)を像
面側に、正の第3群(G3)を物体側に移動させてフォ
ーカシングを行っているが、このフォーカシング方式の
場合、負屈折力の第2群が像面側に移動することによ
り、正の第1群と負の第2群との間隔が増大し、像面が
物体側に移動する。また、正の屈折力の第3群が物体側
に移動することにより、正の第3群と負の第4群との間
隔が増大し、同様に像面が物体側に移動することとな
る。この二重のフォーカシングは、像面をより物体側に
移動させることが可能となるため、特に至近距離の撮影
倍率を高くとる必要がある望遠マクロレンズとしては最
適なフォーカシング方式と言える。前述のように、この
フォーカシング方式としては、先行技術がいくつか提案
されている。これらの提案においては、移動群である負
屈折力の第2群内での収差発生量が大きく、撮影距離変
化に伴う収差変動を補正するのが難しい。したがって、
至近撮影倍率の確保、大口径化、操作性の向上等が図ら
れていない。
In the present invention, as the focusing method,
Focusing is performed by moving the negative second lens group (G2) to the image plane side and the positive third lens group (G3) to the object side in the positive, negative, positive, and negative four-group configuration. In the case of the focusing method, the second lens unit having a negative refractive power moves toward the image plane side, so that the distance between the positive first lens unit and the negative second lens unit increases, and the image plane moves toward the object side. Further, the third group having a positive refractive power moves to the object side, so that the distance between the positive third group and the negative fourth group increases, and similarly the image surface moves to the object side. . Since this double focusing makes it possible to move the image plane toward the object side, it can be said that it is an optimum focusing method for a telephoto macro lens that requires a high shooting magnification especially at a close range. As described above, several prior arts have been proposed as this focusing method. In these proposals, the amount of aberration generated in the second group of negative refracting power, which is the moving group, is large, and it is difficult to correct aberration fluctuations due to changes in the shooting distance. Therefore,
It does not attempt to secure close-up photography magnification, increase the aperture, or improve operability.

【0016】そこで、本発明においては、移動群である
負屈折力の第2群(G2)を、物体側より順に、物体側
に凸面を向けた負メニスカスレンズと、その接合面が正
の屈折力を有する正レンズと負レンズとの接合負レンズ
を少なくとも1つ含む構成とすることにより、第2群内
での収差発生量を小さく抑え、かつ、第3群を第2群と
逆方向に移動することにより、距離変化に伴う収差変動
を補正し合わせ、至近距離での性能を良好に保つことが
可能となった。
Therefore, in the present invention, the second lens unit (G2) having a negative refractive power, which is a moving lens unit, has a negative meniscus lens having a convex surface directed toward the object side in order from the object side, and the cemented surface thereof has a positive refraction. By including at least one cemented negative lens composed of a positive lens and a negative lens having power, the amount of aberration generated in the second group is suppressed to a small level, and the third group is moved in the direction opposite to the second group. By moving, it became possible to correct the aberration variation due to the distance change and maintain good performance at close range.

【0017】詳しく述べると、移動群である負屈折力の
第2群(G2)は、フォーカシングの際の移動量を小さ
く取るために、比較的強い屈折力が必要とされる。そこ
で、第2群内での負屈折力による収差の発生量が大きく
なる欠点がある。そのために、第2負レンズ群には、従
来より、その接合面に正屈折力を持つ接合レンズを利用
することが行われている。この第2群の第1面構成を、
物体側に凹面を向けた負レンズ面とすると、その凹面で
の負作用が大きくなりすぎ、第2群内での負作用の収差
を十分に補正することが難しくなる。本発明では、第2
群(G2)の最も物体側を、物体側に凸面を向けた負の
メニスカスレンズとすることにより、第2群内での負屈
折力を十分補いながら、第2群内第1面での収差発生量
を小さく抑えている。これにより、従来補正し切れなか
った第2群での負作用の収差を良好に補正することが可
能となる。
More specifically, the second lens unit (G2) having a negative refractive power, which is a moving lens unit, needs a relatively strong refractive power in order to reduce the amount of movement during focusing. Therefore, there is a drawback that the amount of aberration generated by the negative refracting power in the second group becomes large. Therefore, for the second negative lens group, conventionally, a cemented lens having a positive refractive power on its cemented surface has been conventionally used. This first surface configuration of the second group,
If the negative lens surface has a concave surface facing the object side, the negative effect on the concave surface becomes too large, and it becomes difficult to sufficiently correct the aberration of the negative effect in the second group. In the present invention, the second
By making the most object side of the group (G2) a negative meniscus lens having a convex surface facing the object side, while sufficiently compensating for the negative refracting power in the second group, the aberration at the first surface in the second group The amount generated is kept small. As a result, it becomes possible to excellently correct the negatively acting aberration in the second lens group, which cannot be corrected in the past.

【0018】また、本発明では、前述の負メニスカスレ
ンズに引き続き、その接合面が正の屈折力を有する正レ
ンズと負レンズとの接合負レンズを配置することによ
り、第2群が持つ負屈折力を分担し、かつ、第2群内で
の色収差発生量を小さく補正することが可能となってい
る。同時に、第2群内での第1面での負作用力が弱まっ
たことで、それに続く接合レンズの接合面の正屈折力が
相対的に大きく作用するようになる。本発明では、負の
第2群と正の第3群を互いに逆方向に移動させてフォー
カシングしているために、第2群内での接合面の正屈折
力の影響で、第2群と第3群とは互いに収差変動を補い
合うことになる。つまり、至近撮影時に第2群が像面側
に移動することにより、球面収差及び軸外像面湾曲は共
に補正過剰方向に変化するが、第3群が物体側に移動す
ることにより、球面収差及び軸外像面湾曲は共に収差発
生方向に変化している。このことにより、本発明では、
撮影距離変化に対応するフォーカシング時の収差変動を
小さくすることが可能となり、無限遠から1/2倍程度
の高倍率な至近距離に至る全ての状態において、非常に
良好に収差補正がされた大口径望遠マクロレンズを提供
できることになる。
Further, in the present invention, after the above-mentioned negative meniscus lens, by arranging a cemented negative lens of a positive lens and a negative lens whose cemented surface has a positive refractive power, the negative refraction of the second lens group is arranged. It is possible to share the force and correct the amount of chromatic aberration generated in the second lens unit. At the same time, since the negative acting force on the first surface in the second group is weakened, the positive refracting power on the cemented surface of the cemented lens that follows subsequently becomes relatively large. In the present invention, since the negative second lens unit and the positive third lens unit are moved in opposite directions to each other for focusing, the positive refractive power of the cemented surface in the second lens unit influences the second lens unit and the second lens unit. The third lens group and the third lens group complement each other in variation of aberration. In other words, the spherical aberration and the off-axis field curvature both change in the overcorrection direction when the second lens unit moves to the image plane side during close-up photography, but the third lens unit moves to the object side, causing spherical aberration. And the off-axis field curvature both change in the direction in which aberration occurs. Therefore, in the present invention,
It is possible to reduce aberration fluctuations during focusing that corresponds to changes in the shooting distance, and in all conditions from infinity to high magnification close-up distance of about 1/2, a large aperture with very well corrected aberrations. It will be possible to provide a telephoto macro lens.

【0019】また、本発明では、第4群を負屈折力で構
成し、第4群に拡大倍率を持たせることにより、フォー
カシングの一部を補う第3レンズ群の移動量を小さくす
ることが可能となっている。
Further, in the present invention, the fourth lens unit has a negative refracting power, and the fourth lens unit has a magnifying power, so that the movement amount of the third lens unit which compensates a part of focusing can be reduced. It is possible.

【0020】そこで、本発明は、負屈折力の第4レンズ
群(G4)の無限遠物体にフォーカシングした状態での
横倍率をβ4 とすると、下記の条件式を満足するもので
ある。
Therefore, the present invention satisfies the following conditional expression, where β 4 is the lateral magnification of the fourth lens group (G4) having a negative refractive power in a state of being focused on an object at infinity.

【0021】 1.1<β4 <1.4 ・・・(1) 条件(1)の下限の1.1を越えると、第3群の合焦時
の移動量が大きくなり、レンズサイズが大型化してしま
う。逆に、条件(1)の上限の1.4を越えると、第4
群での拡大倍率が大きすぎて、第1群から第3群までの
収差を拡大することとなり、レンズ系全体での収差補正
が困難となる。
1.1 <β 4 <1.4 (1) If the lower limit of 1.1 of the condition (1) is exceeded, the amount of movement of the third lens unit during focusing increases, and the lens size increases. It becomes large. On the contrary, when the upper limit of 1.4 of the condition (1) is exceeded, the fourth
The magnifying power of the group is too large to magnify the aberrations of the first to third groups, which makes it difficult to correct the aberration of the entire lens system.

【0022】次に、以上の本発明の基本構成において、
より性能の良好な操作性の良いマクロレンズを実現する
ために望ましい条件式をあげる。負屈折力の第2群の移
動量をΔG2、正屈折力の第3群の移動量をΔG3、第
2群の最も物体側の面の曲率半径をr2F、無限遠物体に
フォーカシングした状態での全系の焦点距離をfとした
時、下記の条件式を満足することが望ましい。
Next, in the above basic structure of the present invention,
The conditional expressions desirable for realizing a macro lens with better performance and better operability are given below. The amount of movement of the second lens unit having negative refractive power is ΔG2, the amount of movement of the third lens unit having positive refractive power is ΔG3, the radius of curvature of the most object-side surface of the second lens unit is r 2F , and the object is focused at infinity. It is desirable that the following conditional expression be satisfied, where f is the focal length of the entire system.

【0023】 −5<ΔG3/ΔG2<−1 ・・・(2) 0.2<r2F/f<1.1 ・・・(3) 上記(2)の条件は、本発明での第2群と第3群との移
動量の比率を規定したもので、(2)式の上限の−1を
越えると、第2群移動による収差変動量が非常に大きく
なり、補正が困難となる。同様に(2)式の下限の−5
を越えると、逆に第3群移動による収差変動量が大きく
なり、補正が困難となる。
-5 <ΔG3 / ΔG2 <-1 (2) 0.2 <r 2F /f<1.1 (3) The condition (2) above is the second condition in the present invention. It defines the ratio of the amount of movement between the third group and the third group. When the upper limit of -1 in equation (2) is exceeded, the amount of aberration variation due to movement of the second group becomes extremely large, making correction difficult. Similarly, the lower limit of equation (2), -5
On the contrary, when the value exceeds, the amount of aberration variation due to the movement of the third lens unit becomes large, and the correction becomes difficult.

【0024】上記(3)の条件は、第2群の最も物体側
のレンズ面、つまり、負メニスカスレンズの第1面の曲
率半径を規定する条件で、(3)式の上限の1.1を越
えると、第2群内での負作用の収差発生量が大きくなっ
てしまい、本発明で提案している第2群と第3群との逆
方向へのフォーカシングでは収差変動が補正できずに、
特に至近距離での球面収差がアンダーに大きく発生して
しまう。(3)式の下限の0.2を越えると、その負メ
ニスカスレンズが第2群の負屈折力を負担し切れなくな
り、第2群の屈折力不足を招き、レンズサイズが大型化
してしまう。
The condition (3) above defines the radius of curvature of the lens surface closest to the object in the second lens group, that is, the first surface of the negative meniscus lens, and the upper limit of the expression (3) is 1.1. Beyond the above range, the amount of negatively generated aberration in the second lens group becomes large, and the aberration fluctuation cannot be corrected by the focusing in the opposite direction of the second lens group and the third lens group proposed in the present invention. To
In particular, large spherical aberration occurs at an extremely short distance. When the lower limit of 0.2 in the expression (3) is exceeded, the negative meniscus lens cannot fully bear the negative refracting power of the second group, which causes insufficient refracting power of the second group, resulting in an increase in lens size.

【0025】本発明では、無限遠物体から近距離物体に
フォーカシングする際に、第2群(G2)と第3群(G
3)の移動に加えて、負屈折力の第4群(G4)を像面
側に移動することにより、至近撮影時における画質をよ
り良好とすることが可能となる。この場合、正の第3群
(G3)の移動量をΔG3、負の第4群(G4)の移動
量をΔG4とした時、下記の条件式を満足することが望
ましい。
According to the present invention, when focusing from an object at infinity to a near object, the second lens group (G2) and the third lens group (G2).
In addition to the movement of 3), by moving the fourth lens unit (G4) having negative refractive power to the image plane side, it becomes possible to improve the image quality during close-up photography. In this case, when the moving amount of the positive third lens group (G3) is ΔG3 and the moving amount of the negative fourth lens group (G4) is ΔG4, it is desirable to satisfy the following conditional expression.

【0026】 −0.75<ΔG4/ΔG3<−0.06 ・・・(4) (4)式の下限の−0.75を越えると、第4群の移動
量が大きくなりすぎてしまい、至近撮影時における球面
収差及び軸外コマ収差が良好に補正できなくなる。
(4)式の上限の−0.06を越えると、至近距離時に
おける軸外コマ収差のバランス良い補正が困難になり、
高画質を維持することが難しくなる。
−0.75 <ΔG4 / ΔG3 <−0.06 (4) If the lower limit of −0.75 of the expression (4) is exceeded, the movement amount of the fourth group becomes too large, Spherical aberration and off-axis coma aberration cannot be corrected well during close-up photography.
If the upper limit of −0.06 of the expression (4) is exceeded, it becomes difficult to correct off-axis coma aberration in a well-balanced manner at a close distance.
It becomes difficult to maintain high image quality.

【0027】また、無限遠物体にフォーカシングした状
態での正屈折力の第1レンズ群(G1)と負屈折力の第
2レンズ群(G2)との合成焦点距離をf12、全系の焦
点距離をfとした時、下記の条件式を満足することが望
ましい。
Further, the composite focal length of the first lens group (G1) having a positive refractive power and the second lens group (G2) having a negative refractive power in the state of focusing on an object at infinity is f 12 , and the focal point of the entire system is When the distance is f, it is desirable to satisfy the following conditional expression.

【0028】 1.8<f12/f<3.6 ・・・(5) (5)式の上限の3.6を越えると、第1〜2群での収
束力が弱いために、第3群に入射する光線高が大きくな
り、レンズサイズの大型化を招いてしまう。(5)式の
下限の1.8を越えると、第1〜2群での収束力が強く
なりすぎて、特に第1レンズ群で発生する球面収差量が
増加し、負の第2群を合わせても補正困難となってしま
う。
1.8 <f 12 /f<3.6 (5) When the upper limit of 3.6 in the equation (5) is exceeded, the convergence power in the first and second groups is weak, so The height of light rays incident on the third lens group becomes large, which leads to an increase in lens size. When the lower limit of 1.8 of the equation (5) is exceeded, the focusing power in the first and second lens groups becomes too strong, and the amount of spherical aberration generated in the first lens group increases, and the negative second lens group becomes Even if they are combined, it will be difficult to correct.

【0029】さらに、負屈折力の第2群(G2)の無限
遠物体にフォーカシングした状態での横倍率をβ2 とし
た時、下記の条件式を満足することが望ましい。 2.7<β2 <5.6 ・・・(6) (6)式の上限の5.6を越えると、第2群での拡大倍
率が大きすぎ、第1正レンズ群の屈折力が大きくなると
共に、その収差発生量を補正し切れなくなってしまう。
(6)式の下限の2.7を越えると、至近距離時の撮影
倍率を確保するために、第4群の横倍率が大きくなり、
本発明で提案するフォーカシング方式では十分な性能を
確保することが難しくなる。
Further, when the lateral magnification in the state of focusing on an object at infinity of the second lens unit (G2) having negative refractive power is β 2 , it is desirable that the following conditional expression be satisfied. 2.7 <β 2 <5.6 (6) If the upper limit of 5.6 in equation (6) is exceeded, the magnification of the second lens unit will be too large, and the refractive power of the first positive lens unit will be too large. As the size increases, it becomes impossible to correct the amount of aberration generated.
If the lower limit of 2.7 in the expression (6) is exceeded, the lateral magnification of the fourth lens unit will be increased in order to secure the photographing magnification at a close range,
With the focusing method proposed by the present invention, it becomes difficult to secure sufficient performance.

【0030】さらに、より高画質で、よりコンパクトな
マクロレンズを実現するために、望ましい条件式を下記
にあげる。負屈折力の第2群(G2)の移動量をΔG
2、正屈折力第3群(G3)の移動量をΔG3とした
時、下記の条件式を満足することが望ましい。
Further, desirable conditional expressions for realizing a higher quality and more compact macro lens are given below. The moving amount of the second group (G2) having negative refractive power is ΔG
2. When the amount of movement of the positive refractive power third group (G3) is ΔG3, it is desirable that the following conditional expression be satisfied.

【0031】 −3.8<ΔG3/ΔG2<−1.4 ・・・(7) (7)式の上限の−1.4を越えると、第2群移動によ
る収差変動量が非常に大きくなり、至近撮影時の球面収
差が補正過剰となる。したがって、特に高画質化をめざ
す場合には好ましくない。(7)式の下限の−3.8を
越えると、逆に第3群移動による収差変動量が大きくな
り、至近撮影時の球面収差が補正不足となる。したがっ
て、特に高画質化をめざす場合には好ましくない。
-3.8 <ΔG3 / ΔG2 <−1.4 (7) When the upper limit of −1.4 of the equation (7) is exceeded, the amount of aberration variation due to the movement of the second lens unit becomes extremely large. , Spherical aberration during close-up photography is overcorrected. Therefore, it is not preferable especially when aiming at high image quality. If the lower limit of −3.8 of equation (7) is exceeded, the amount of aberration variation due to the movement of the third lens unit will become large, and the spherical aberration at the time of close-up photography will be insufficiently corrected. Therefore, it is not preferable especially when aiming at high image quality.

【0032】負屈折力の第2群(G2)の最も物体側の
面の曲率半径をr2F、無限遠物体にフォーカシングした
状態での全系の焦点距離をfとした時、下記の条件式を
満足することが望ましい。 0.34<r2F/f<0.88 ・・・(8) (8)式の上限の0.88を越えると、至近撮影時での
球面収差補正が不足気味となり、至近距離での高画質化
が難しくなる。(8)式の下限の0.34を越えると、
フォーカシング群である第2群の屈折力が弱まる屈折力
配置となり、よりコンパクトなマクロレンズ実現には望
ましくない。
When the radius of curvature of the most object-side surface of the second lens unit (G2) having negative refractive power is r 2F and the focal length of the entire system in a state of focusing on an object at infinity is f, the following conditional expression is given. It is desirable to satisfy. 0.34 <r 2F /f<0.88 (8) If the upper limit of 0.88 in the formula (8) is exceeded, spherical aberration correction at the time of close-up shooting will be insufficient, and high at close range. Image quality becomes difficult. When the lower limit of 0.34 in equation (8) is exceeded,
The second lens group, which is the focusing lens group, has a refractive power arrangement that weakens the refractive power, which is not desirable for realizing a more compact macro lens.

【0033】無限遠物体にフォーカシングした状態での
正屈折力の第1レンズ群(G1)と負屈折力の第2レン
ズ群(G2)との合成焦点距離をf12、全系の焦点距離
をfとした時、下記の条件式を満足することが望まし
い。 1.84<f12/f<3.0 ・・・(9) (9)式の上限の3.0を越えると、第1〜2群での収
束力が弱まる屈折力配置となり、第3群に入射する光線
高が大きくなってくる。したがって、よりコンパクトな
マクロレンズ実現には望ましくない。(9)式の下限の
1.84を越えると、第1〜2群での収束力が強まる屈
折力配置となり、第1〜2群内での収差補正が高画質な
マクロレンズを実現するには十分でなくなる。
The combined focal length of the first lens group (G1) having a positive refractive power and the second lens group (G2) having a negative refractive power in the state of focusing on an object at infinity is f 12 , and the focal length of the entire system is When f, it is desirable to satisfy the following conditional expression. 1.84 <f 12 /f<3.0 (9) When the upper limit of 3.0 in the equation (9) is exceeded, the convergent power in the first and second groups becomes weak, and the refractive power arrangement becomes the third. The height of the light rays entering the group increases. Therefore, it is not desirable for realizing a more compact macro lens. When the lower limit of 1.84 in the expression (9) is exceeded, the refractive power arrangement is such that the converging power in the first and second groups is increased, and it is possible to realize a macro lens with high image quality for aberration correction in the first and second groups. Will not be enough.

【0034】また、本発明において、第1群を固定とす
ることによって、操作性の良い望遠レンズを提供するこ
とができる。また、第1群と第4群を固定とすることに
よって、フォーカシングのためのカムを極力少なくする
ことが可能となり、鏡枠サイズがコンパクトな操作性の
良い望遠レンズが提供できる。また、絞り位置に関して
は、第2群と第3群との間に設置するのが望ましく、こ
れにより、軸外収差の倍率色収差のフォーカシングによ
る収差変動を小さくすることが可能となる。
Further, in the present invention, by fixing the first group, it is possible to provide a telephoto lens having good operability. Further, by fixing the first and fourth groups, it is possible to minimize the number of cams for focusing, and it is possible to provide a telephoto lens having a compact lens frame size and good operability. Further, it is desirable to set the diaphragm position between the second group and the third group, and thereby it is possible to reduce aberration fluctuation due to focusing of lateral chromatic aberration of off-axis aberration.

【0035】また、第1群構成を以下のようにすること
によって、より高性能な大口径レンズが提供できる。大
口径を維持したまま至近距離時の撮影倍率を十分に確保
しようとすると、正屈折力を持つ第1群内での収差を十
分に抑えておく必要があ。本発明では、正屈折力の第1
群を、少なくとも3つの正レンズと1つの負レンズより
構成し、大口径時の大光束を十分に収束させると共に、
第1群内の収差を良好にしている。
Further, by making the constitution of the first group as follows, it is possible to provide a high-performance large-diameter lens. In order to secure a sufficient photographing magnification at a close-up distance while maintaining a large aperture, it is necessary to sufficiently suppress the aberration in the first lens unit having a positive refractive power. In the present invention, the first
The group is composed of at least three positive lenses and one negative lens to sufficiently converge a large luminous flux at a large aperture, and
The aberration in the first lens group is good.

【0036】さらに、第1群の構成を、物体側より順
に、両面が凸の正レンズ、凸面を物体側に向けた正メニ
スカスレンズ、両凹レンズ、凸レンズで構成することに
より、第1群内の軸外収差発生量をより小さくすること
が可能となる。
Furthermore, by constructing the first group in order from the object side, a positive lens having convex surfaces on both sides, a positive meniscus lens having a convex surface facing the object side, a biconcave lens, and a convex lens. It is possible to further reduce the amount of off-axis aberrations generated.

【0037】なお、本発明においては、物体側より順
に、正の第1群を両面が凸の正レンズ、凸面を物体側に
向けた正メニスカスレンズ、両凹レンズ、凸レンズで構
成し、負の第2群を、物体側より順に、物体側に凸面を
向けた負メニスカスレンズ、正メニスカスレンズと両凹
レンズとの接合負レンズで構成し、正の第3群を、両凸
レンズ、凹レンズと凸レンズの接合正レンズで構成し、
負の第4群を、両凹レンズで構成することにより、非常
に少ないレンズ枚数で、非常に良好に収差補正された大
口径望遠マクロレンズを提供することが可能である。
In the present invention, the positive first lens group is composed of, in order from the object side, a positive lens having convex surfaces on both sides, a positive meniscus lens having a convex surface facing the object side, a biconcave lens, and a convex lens. The second lens group is composed of, in order from the object side, a negative meniscus lens having a convex surface directed toward the object side, and a negative lens cemented with a positive meniscus lens and a biconcave lens. The third lens group positive is cemented with a biconvex lens and a concave lens and a convex lens. It consists of a positive lens,
By constructing the negative fourth lens group with a biconcave lens, it is possible to provide a large-aperture telephoto macro lens in which aberrations are corrected very well with a very small number of lenses.

【0038】[0038]

【実施例】以下、本発明の大口径望遠マクロレンズの実
施例1〜10について説明する。各実施例の数値データ
は後記するが、図1、図2にそれぞれ実施例1、2の無
限遠(a)、1/10倍(b)、1/2倍(c)にフォ
ーカシングした時のレンズ断面図、図3〜図7にそれぞ
れ実施例4〜8の無限遠にフォーカシングした時のレン
ズ断面図を示す。なお、実施例3は実施例1と、実施例
9、10は実施例8とほぼ同様なレンズ構成をしている
ので図示は省く。
EXAMPLES Examples 1 to 10 of the large aperture telephoto macro lens of the present invention will be described below. Numerical data of each example will be described later, but when focusing at infinity (a), 1/10 times (b), and 1/2 times (c) of Examples 1 and 2 in FIGS. 1 and 2, respectively. A lens cross-sectional view and FIGS. 3 to 7 show lens cross-sectional views of Examples 4 to 8 when focusing to infinity, respectively. The third embodiment has substantially the same lens configuration as that of the first embodiment and the ninth and tenth embodiments have the same lens configuration as that of the eighth embodiment, and therefore, the illustration thereof is omitted.

【0039】実施例1〜10は、無限遠から1/2倍ま
で撮影可能な大口径マクロレンズで、正屈折力の第1レ
ンズ群G1、負屈折力の第2レンズ群G2、正屈折力の
第3レンズ群G3、負屈折力の第4レンズ群G4よりな
り、無限遠から近距離に合焦する際に、負の第2群G2
は像面側に移動し、正の第3群G3は物体側に移動して
フォーカシングを行い、移動群である負の第2レンズ群
G2は、物体側より順に、物体側に凸面を向けた負のメ
ニスカスレンズと、その接合面が正の屈折力を有する正
レンズと負レンズとの接合負レンズで構成されている。
なお、実施例1〜7、10においては、無限遠から近距
離に合焦する際に、第4群G4は像面側に移動する。
Examples 1 to 10 are large-diameter macro lenses capable of photographing from infinity to 1/2 times, and have a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a positive lens having a positive refractive power. It includes a third lens group G3 and a fourth lens group G4 having negative refractive power, and when focusing from infinity to a short distance, a negative second group G2.
Moves toward the image side, the positive third lens group G3 moves toward the object side for focusing, and the negative second lens group G2, which is a moving lens group, has a convex surface directed toward the object side from the object side. It is composed of a negative meniscus lens and a cemented negative lens whose cemented surface is a cemented positive lens and a negative lens having a positive refractive power.
In addition, in Examples 1 to 7 and 10, when focusing from infinity to a short distance, the fourth group G4 moves to the image plane side.

【0040】レンズ構成については、実施例1、3は、
第1群G1が、両凸レンズ、凸面を物体側に向けた正メ
ニスカスレンズ、両凹レンズ、両凸レンズからなり、第
2群G2が、物体側に凸面を向けた負メニスカスレン
ズ、正メニスカスレンズと両凹レンズとの接合レンズか
らなり、第3群G3が、両凸レンズ、凸面を物体側に向
けた負メニスカスレンズと正メニスカスレンズとの接合
レンズからなり、第4群G4が、両凹レンズからなる。
Regarding the lens structure,
The first group G1 includes a biconvex lens, a positive meniscus lens having a convex surface directed toward the object side, a biconcave lens, and a biconvex lens, and the second group G2 includes a negative meniscus lens having a convex surface directed toward the object side and a positive meniscus lens. The third lens group G3 is composed of a cemented lens with a concave lens, the third lens group G3 is composed of a biconvex lens, a cemented lens of a negative meniscus lens and a positive meniscus lens having a convex surface facing the object side, and the fourth lens group G4 is composed of a biconcave lens.

【0041】実施例2は、第1群G1が、両凸レンズ、
凸面を物体側に向けた正メニスカスレンズ、両凹レン
ズ、凸面を物体側に向けた正メニスカスレンズからな
り、第2群G2が、物体側に凸面を向けた負メニスカス
レンズ、正メニスカスレンズと両凹レンズとの接合レン
ズからなり、第3群G3が、両凸レンズ、凸面を物体側
に向けた負メニスカスレンズと正メニスカスレンズとの
接合レンズからなり、第4群G4が、両凹レンズからな
る。
In the second embodiment, the first group G1 is a biconvex lens,
A positive meniscus lens having a convex surface directed toward the object side, a biconcave lens, and a positive meniscus lens having a convex surface directed toward the object side, and the second group G2 includes a negative meniscus lens having a convex surface directed toward the object side, a positive meniscus lens and a biconcave lens. The third lens group G3 is a biconvex lens, the third lens group G3 is a cemented lens having a negative meniscus lens and a positive meniscus lens having a convex surface facing the object side, and the fourth lens group G4 is a biconcave lens.

【0042】実施例4は、第1群G1が、両凸レンズ、
凸面を物体側に向けた正メニスカスレンズ、両凹レン
ズ、凸面を物体側に向けた正メニスカスレンズからな
り、第2群G2が、物体側に凸面を向けた負メニスカス
レンズ、正メニスカスレンズと両凹レンズとの接合レン
ズからなり、第3群G3が、両凸レンズ、両凸レンズと
両凹レンズとの接合レンズからなり、第4群G4が、両
凹レンズからなる。
In the fourth embodiment, the first group G1 is a biconvex lens,
A positive meniscus lens having a convex surface directed toward the object side, a biconcave lens, and a positive meniscus lens having a convex surface directed toward the object side, and the second group G2 includes a negative meniscus lens having a convex surface directed toward the object side, a positive meniscus lens and a biconcave lens. The third lens group G3 includes a biconvex lens, a cemented lens including a biconvex lens and a biconcave lens, and the fourth lens group G4 includes a biconcave lens.

【0043】実施例5は、第1群G1が、両凸レンズ、
凸面を物体側に向けた正メニスカスレンズ、両凹レン
ズ、両凸レンズからなり、第2群G2が、物体側に凸面
を向けた負メニスカスレンズ、正メニスカスレンズと両
凹レンズとの接合レンズからなり、第3群G3が、両凹
レンズと両凸レンズとの接合レンズ、物体側に凸面を向
けた負メニスカスレンズと正メニスカスレンズとの接合
レンズからなり、第4群G4が、物体側に凸面を向けた
負メニスカスレンズからなる。
In the fifth embodiment, the first group G1 is a biconvex lens,
The second group G2 includes a positive meniscus lens having a convex surface directed toward the object side, a biconcave lens, and a biconvex lens. The second group G2 includes a negative meniscus lens having a convex surface directed toward the object side, and a cemented lens including a positive meniscus lens and a biconcave lens. The third group G3 includes a cemented lens of a biconcave lens and a biconvex lens, and a cemented lens of a negative meniscus lens and a positive meniscus lens having a convex surface directed toward the object side. The fourth group G4 has a negative surface having a convex surface directed toward the object side. It consists of a meniscus lens.

【0044】実施例6は、第1群G1が、両凸レンズ、
両凸レンズ、両凸レンズ、両凹レンズからなり、第2群
G2が、物体側に凸面を向けた負メニスカスレンズ、正
メニスカスレンズと両凹レンズとの接合レンズからな
り、第3群G3が、両凸レンズ、凸面を物体側に向けた
負メニスカスレンズと正メニスカスレンズとの接合レン
ズからなり、第4群G4が、両凹レンズからなる。
In the sixth embodiment, the first group G1 is a biconvex lens,
The second group G2 includes a biconvex lens, a biconvex lens, and a biconcave lens. The second group G2 includes a negative meniscus lens having a convex surface facing the object side, a cemented lens of a positive meniscus lens and a biconcave lens, and the third group G3 includes a biconvex lens. The cemented lens includes a negative meniscus lens having a convex surface directed toward the object side and a positive meniscus lens, and the fourth group G4 includes a biconcave lens.

【0045】実施例7は、第1群G1が、両凸レンズ、
凸面を物体側に向けた正メニスカスレンズ、両凹レン
ズ、凸面を物体側に向けた正メニスカスレンズからな
り、第2群G2が、物体側に凸面を向けた負メニスカス
レンズと正メニスカスレンズとの接合レンズ、正メニス
カスレンズと両凹レンズとの接合レンズからなり、第3
群G3が、両凸レンズ、凸面を物体側に向けた負メニス
カスレンズと正メニスカスレンズとの接合レンズからな
り、第4群G4が、両凹レンズからなる。
In the seventh embodiment, the first group G1 is a biconvex lens,
A positive meniscus lens having a convex surface directed to the object side, a biconcave lens, and a positive meniscus lens having a convex surface directed to the object side, and the second group G2 is a junction of a negative meniscus lens having a convex surface directed to the object side and a positive meniscus lens. A lens, a cemented lens of a positive meniscus lens and a biconcave lens,
The group G3 is composed of a biconvex lens, a cemented lens of a negative meniscus lens with a convex surface facing the object side and a positive meniscus lens, and the fourth group G4 is composed of a biconcave lens.

【0046】実施例8〜10は、第1群G1が、両凸レ
ンズ、凸面を物体側に向けた正メニスカスレンズ、両凹
レンズ、凸面を物体側に向けた正メニスカスレンズから
なり、第2群G2が、物体側に凸面を向けた負メニスカ
スレンズ、正メニスカスレンズと両凹レンズとの接合レ
ンズからなり、第3群G3が、両凸レンズ、凸面を物体
側に向けた負メニスカスレンズと正メニスカスレンズと
の接合レンズからなり、第4群G4が、両凹レンズから
なる。
In Examples 8 to 10, the first group G1 is composed of a biconvex lens, a positive meniscus lens having a convex surface directed toward the object side, a biconcave lens, and a positive meniscus lens having a convex surface directed toward the object side. Is a negative meniscus lens having a convex surface facing the object side, and a cemented lens of a positive meniscus lens and a biconcave lens. The third group G3 includes a biconvex lens, a negative meniscus lens having a convex surface facing the object side, and a positive meniscus lens. The fourth lens group G4 is composed of a biconcave lens.

【0047】次に、各実施例の数値データを示すが、記
号は上記の外、fは無限遠合焦時の全系焦点距離、FNO
は無限遠合焦時のFナンバー、2ωは無限遠合焦時の画
角、r1 、r2 …は各レンズ面の曲率半径、d1 、d2
…は各レンズ面間の間隔、nd1、nd2…は各レンズのd
線の屈折率、νd1、νd2…は各レンズのアッベ数であ
る。また、フォーカシング間隔中のs’は物点距離を、
βは横倍率を表す。
Next, the numerical data of each embodiment will be shown. The symbols are those other than the above, f is the focal length of the entire system at infinity focusing, and F NO.
Is the F number when focused on infinity, 2ω is the angle of view when focused on infinity, r 1 , r 2 ... Is the radius of curvature of each lens surface, and d 1 and d 2
... is the distance between the lens surfaces, n d1 , n d2 ... is the d of each lens
The refractive indices of the lines, ν d1 , ν d2, ... Are the Abbe numbers of each lens. In addition, s'in the focusing interval is the object distance,
β represents lateral magnification.

【0048】実施例1 f=100 ,FNO=2.9 ,2ω=13.66 ° r1 = 59.6729 d1 = 5.2121 nd1 =1.49700 νd1 =81.61 r2 = -135.5467 d2 = 0.1108 r3 = 38.9969 d3 = 5.9548 nd2 =1.61700 νd2 =62.79 r4 = 117.3671 d4 = 2.2031 r5 = -153.3249 d5 = 2.8858 nd3 =1.65412 νd3 =39.70 r6 = 23.3014 d6 = 0.3046 r7 = 23.0854 d7 = 5.2314 nd4 =1.49700 νd4 =81.61 r8 = -607.1432 d8 =(可変) r9 = 49.8741 d9 = 1.8388 nd5 =1.51112 νd5 =60.48 r10= 29.4433 d10= 4.7496 r11= -146.1015 d11= 2.4297 nd6 =1.78472 νd6 =25.68 r12= -32.4001 d12= 1.2844 nd7 =1.51454 νd7 =54.69 r13= 45.1267 d13=(可変) r14= 74.4861 d14= 2.0182 nd8 =1.74100 νd8 =52.68 r15= -119.1764 d15= 1.8332 r16= 73.0480 d16= 1.5050 nd9 =1.68893 νd9 =31.08 r17= 27.1209 d17= 3.1544 nd10=1.62299 νd10=58.14 r18= 132.2364 d18=(可変) r19= -108.3234 d19= 1.8040 nd11=1.51742 νd11=52.41 r20= 77.7336 (1)β4 = 1.32 (2)ΔG3/ΔG2=-1.63 (3)r2F/f = 0.50 (4)ΔG4/ΔG3=-0.13 (5)f12/f = 2.12 (6)β2 = 3.11
Example 1 f = 100, F NO = 2.9, 2ω = 13.66 ° r 1 = 59.6729 d 1 = 5.2121 n d1 = 1.49700 ν d1 = 81.61 r 2 = -135.5467 d 2 = 0.1108 r 3 = 38.9969 d 3 = 5.9548 n d2 = 1.61700 ν d2 = 62.79 r 4 = 117.3671 d 4 = 2.2031 r 5 = -153.3249 d 5 = 2.8858 n d3 = 1.65412 ν d3 = 39.70 r 6 = 23.3014 d 6 = 0.3046 r 7 = 23.0854 d 7 = 5.2314 n d4 = 1.49700 ν d4 = 81.61 r 8 = -607.1432 d 8 = (variable) r 9 = 49.8741 d 9 = 1.8388 n d5 = 1.51112 ν d5 = 60.48 r 10 = 29.4433 d 10 = 4.7496 r 11 = -146.1015 d 11 = 2.4297 n d6 = 1.78472 ν d6 = 25.68 r 12 = -32.4001 d 12 = 1.2844 n d7 = 1.51454 ν d7 = 54.69 r 13 = 45.1267 d 13 = (variable) r 14 = 74.4861 d 14 = 2.0182 n d8 = 1.74100 ν d8 = 52.68 r 15 = -119.1764 d 15 = 1.8332 r 16 = 73.0480 d 16 = 1.5050 n d9 = 1.68893 ν d9 = 31.08 r 17 = 27.1209 d 17 = 3.1544 n d10 = 1.62299 ν d10 = 58.14 r 18 = 132.2364 d 18 = (variable) r 19 = -108.3234 d 19 = 1.8040 n d11 = 1.51742 ν d11 = 52.41 r 20 = 77.7336 (1) β 4 = 1.32 (2) ΔG3 / ΔG2 = -1.63 (3) r 2F / f = 0.50 (4) ΔG4 / ΔG3 = -0.13 (5) f 12 / f = 2.12 (6) β 2 = 3.11
.

【0049】実施例2 f=100 ,FNO=2.9 ,2ω=13.71 ° r1 = 61.3429 d1 = 4.9626 nd1 =1.49700 νd1 =81.61 r2 = -118.7059 d2 = 0.1111 r3 = 38.5998 d3 = 6.0135 nd2 =1.61800 νd2 =63.38 r4 = 162.5006 d4 = 2.2653 r5 = -150.4865 d5 = 2.6757 nd3 =1.65412 νd3 =39.70 r6 = 24.1994 d6 = 0.2778 r7 = 23.7233 d7 = 5.1604 nd4 =1.49700 νd4 =81.61 r8 = 400.8545 d8 =(可変) r9 = 58.3059 d9 = 1.8564 nd5 =1.51454 νd5 =54.69 r10= 28.4861 d10= 4.6730 r11= -133.9909 d11= 2.7339 nd6 =1.76180 νd6 =27.11 r12= -29.7782 d12= 1.3725 nd7 =1.51602 νd7 =56.80 r13= 47.7707 d13=(可変) r14= ∞(絞り) d14=(可変) r15= 86.9710 d15= 2.2754 nd8 =1.72916 νd8 =54.68 r16= -113.4004 d16= 1.7556 r17= 79.7360 d17= 1.4518 nd9 =1.68893 νd9 =31.08 r18= 26.7805 d18= 2.7699 nd10=1.69680 νd10=55.52 r19= 152.5004 d19=(可変) r20= -164.7318 d20= 1.5910 nd11=1.51823 νd11=58.96 r21= 73.1718 (1)β4 = 1.29 (2)ΔG3/ΔG2=-1.90 (3)r2F/f = 0.58 (4)ΔG4/ΔG3=-0.17 (5)f12/f = 2.32 (6)β2 = 3.53
Example 2 f = 100, F NO = 2.9, 2ω = 13.71 ° r 1 = 61.3429 d 1 = 4.9626 n d1 = 1.49700 ν d1 = 81.61 r 2 = -118.7059 d 2 = 0.1111 r 3 = 38.5998 d 3 = 6.0135 n d2 = 1.61800 ν d2 = 63.38 r 4 = 162.5006 d 4 = 2.2653 r 5 = -150.4865 d 5 = 2.6757 n d3 = 1.65412 ν d3 = 39.70 r 6 = 24.1994 d 6 = 0.2778 r 7 = 23.7233 d 7 = 5.1604 n d4 = 1.49700 ν d4 = 81.61 r 8 = 400.8545 d 8 = (variable) r 9 = 58.3059 d 9 = 1.8564 n d5 = 1.51454 ν d5 = 54.69 r 10 = 28.4861 d 10 = 4.6730 r 11 = -133.9909 d 11 = 2.7339 n d6 = 1.76180 ν d6 = 27.11 r 12 = -29.7782 d 12 = 1.3725 n d7 = 1.51602 ν d7 = 56.80 r 13 = 47.7707 d 13 = (variable) r 14 = ∞ (aperture) d 14 = (variable) r 15 = 86.9710 d 15 = 2.2754 n d8 = 1.72916 ν d8 = 54.68 r 16 = -113.4004 d 16 = 1.7556 r 17 = 79.7360 d 17 = 1.4518 n d9 = 1.68893 ν d9 = 31.08 r 18 = 26.7805 d 18 = 2.7699 n d10 = 1.69680 ν d10 = 55.52 r 19 = 152.5004 d 19 = ( Yes ) R 20 = -164.7318 d 20 = 1.5910 n d11 = 1.51823 ν d11 = 58.96 r 21 = 73.1718 (1) β 4 = 1.29 (2) ΔG3 / ΔG2 = -1.90 (3) r 2F / f = 0.58 (4) ΔG4 / ΔG3 = -0.17 (5) f 12 / f = 2.32 (6) β 2 = 3.53
.

【0050】実施例3 f=100 ,FNO=2.9 ,2ω=13.82 ° r1 = 64.0900 d1 = 6.8802 nd1 =1.49700 νd1 =81.61 r2 = -107.6008 d2 = 0.1121 r3 = 36.1599 d3 = 5.4088 nd2 =1.61700 νd2 =62.79 r4 = 134.4123 d4 = 2.7788 r5 = -136.4106 d5 = 2.3189 nd3 =1.65412 νd3 =39.70 r6 = 22.3587 d6 = 0.1401 r7 = 21.9630 d7 = 6.2977 nd4 =1.49700 νd4 =81.61 r8 = -367.5851 d8 =(可変) r9 = 63.8917 d9 = 1.4994 nd5 =1.48749 νd5 =70.21 r10= 27.3332 d10= 4.9039 r11= -107.1986 d11= 3.0137 nd6 =1.84666 νd6 =23.78 r12= -29.0403 d12= 1.1207 nd7 =1.56013 νd7 =46.99 r13= 46.5207 d13=(可変) r14= 70.4185 d14= 2.1006 nd8 =1.72600 νd8 =53.56 r15= -112.3361 d15= 2.8020 r16= 74.9398 d16= 1.6774 nd9 =1.64769 νd9 =33.80 r17= 23.3060 d17= 4.1147 nd10=1.61700 νd10=62.79 r18= 98.8444 d18=(可変) r19= -111.8423 d19= 1.7905 nd11=1.51602 νd11=56.80 r20= 215.5641 (1)β4 = 1.23 (2)ΔG3/ΔG2=-2.69 (3)r2F/f = 0.64 (4)ΔG4/ΔG3=-0.36 (5)f12/f = 2.35 (6)β2 = 3.92
Example 3 f = 100, F NO = 2.9, 2ω = 13.82 ° r 1 = 64.0900 d 1 = 6.8802 n d1 = 1.49700 ν d1 = 81.61 r 2 = -107.6008 d 2 = 0.1121 r 3 = 36.1599 d 3 = 5.4088 n d2 = 1.61700 ν d2 = 62.79 r 4 = 134.4123 d 4 = 2.7788 r 5 = -136.4106 d 5 = 2.3189 n d3 = 1.65412 ν d3 = 39.70 r 6 = 22.3587 d 6 = 0.1401 r 7 = 21.9630 d 7 = 6.2977 n d4 = 1.49700 ν d4 = 81.61 r 8 = -367.5851 d 8 = (variable) r 9 = 63.8917 d 9 = 1.4994 n d5 = 1.48749 ν d5 = 70.21 r 10 = 27.3332 d 10 = 4.9039 r 11 = -107.1986 d 11 = 3.0137 n d6 = 1.84666 ν d6 = 23.78 r 12 = -29.0403 d 12 = 1.1207 n d7 = 1.56013 ν d7 = 46.99 r 13 = 46.5207 d 13 = (variable) r 14 = 70.4185 d 14 = 2.1006 n d8 = 1.72600 ν d8 = 53.56 r 15 = -112.3361 d 15 = 2.8020 r 16 = 74.9398 d 16 = 1.6774 n d9 = 1.64769 ν d9 = 33.80 r 17 = 23.3060 d 17 = 4.1147 n d10 = 1.61700 ν d10 = 62.79 r 18 = 98.8444 d 18 = (variable) r 19 = -111.8423 d 19 = 1.7905 n d11 = 1.51602 ν d11 = 56.80 r 20 = 215.5641 (1) β 4 = 1.23 (2) ΔG3 / ΔG2 = -2.69 (3) r 2F / f = 0.64 (4) ΔG4 / ΔG3 = -0.36 (5) f 12 / f = 2.35 (6) β 2 = 3.92
.

【0051】実施例4 f=100 ,FNO=2.85,2ω=13.71 ° r1 = 58.1349 d1 = 6.4639 nd1 =1.49700 νd1 =81.61 r2 = -118.4629 d2 = 0.1111 r3 = 38.4647 d3 = 5.3346 nd2 =1.61700 νd2 =62.79 r4 = 166.9827 d4 = 2.5909 r5 = -138.0723 d5 = 2.3025 nd3 =1.66998 νd3 =39.27 r6 = 23.5781 d6 = 0.1389 r7 = 23.1332 d7 = 6.2786 nd4 =1.49700 νd4 =81.61 r8 = 1680.3642 d8 =(可変) r9 = 76.7961 d9 = 1.5631 nd5 =1.48749 νd5 =70.20 r10= 30.5379 d10= 4.8466 r11= -116.3645 d11= 2.6387 nd6 =1.78470 νd6 =26.30 r12= -29.5622 d12= 1.2753 nd7 =1.50137 νd7 =56.40 r13= 47.5484 d13=(可変) r14= 87.0217 d14= 2.2067 nd8 =1.74100 νd8 =52.68 r15= -94.6677 d15= 2.4680 r16= 49.0942 d16= 3.8889 nd9 =1.65160 νd9 =58.52 r17= -94.8473 d17= 1.7059 nd10=1.68893 νd10=31.08 r18= 58.6424 d18=(可変) r19= -124.1233 d19= 1.8129 nd11=1.51823 νd11=58.96 r20= 115.1996 (1)β4 = 1.29 (2)ΔG3/ΔG2=-1.97 (3)r2F/f = 0.77 (4)ΔG4/ΔG3=-0.60 (5)f12/f = 2.29 (6)β2 = 3.51
Example 4 f = 100, F NO = 2.85, 2ω = 13.71 ° r 1 = 58.1349 d 1 = 6.4639 n d1 = 1.49700 ν d1 = 81.61 r 2 = -118.4629 d 2 = 0.1111 r 3 = 38.4647 d 3 = 5.3346 n d2 = 1.61700 ν d2 = 62.79 r 4 = 166.9827 d 4 = 2.5909 r 5 = -138.0723 d 5 = 2.3025 n d3 = 1.66998 ν d3 = 39.27 r 6 = 23.5781 d 6 = 0.1389 r 7 = 23.1332 d 7 = 6.2786 n d4 = 1.49700 ν d4 = 81.61 r 8 = 1680.3642 d 8 = (variable) r 9 = 76.7961 d 9 = 1.5631 n d5 = 1.48749 ν d5 = 70.20 r 10 = 30.5379 d 10 = 4.8466 r 11 = -116.3645 d 11 = 2.6387 n d6 = 1.78470 ν d6 = 26.30 r 12 = -29.5622 d 12 = 1.2753 n d7 = 1.50137 ν d7 = 56.40 r 13 = 47.5484 d 13 = (variable) r 14 = 87.0217 d 14 = 2.2067 n d8 = 1.74100 ν d8 = 52.68 r 15 = -94.6677 d 15 = 2.4680 r 16 = 49.0942 d 16 = 3.8889 n d9 = 1.65160 ν d9 = 58.52 r 17 = -94.8473 d 17 = 1.7059 n d10 = 1.68893 ν d10 = 31.08 r 18 = 58.6424 d 18 = (variable) r 19 = -124.1233 d 19 = 1.8129 n d11 = 1.51823 ν d11 = 58.96 r 20 = 115.1996 (1) β 4 = 1.29 (2) ΔG3 / ΔG2 = -1.97 (3) r 2F / f = 0.77 (4) ΔG4 / ΔG3 = -0.60 (5) f 12 / f = 2.29 (6) β 2 = 3.51
.

【0052】実施例5 f=100 ,FNO=2.90,2ω=13.81 ° r1 = 62.1121 d1 = 5.1287 nd1 =1.49700 νd1 =81.61 r2 = -110.5626 d2 = 0.1120 r3 = 37.4107 d3 = 6.0551 nd2 =1.61700 νd2 =62.80 r4 = 142.4898 d4 = 1.9959 r5 = -159.5032 d5 = 2.8264 nd3 =1.65412 νd3 =39.70 r6 = 25.6288 d6 = 0.2799 r7 = 24.9476 d7 = 5.2768 nd4 =1.49700 νd4 =81.61 r8 = -2206.3969 d8 =(可変) r9 = 59.1662 d9 = 2.1035 nd5 =1.50378 νd5 =66.81 r10= 24.2565 d10= 4.4756 r11= -72.1558 d11= 2.3742 nd6 =1.76182 νd6 =26.55 r12= -27.8022 d12= 1.0693 nd7 =1.51602 νd7 =56.80 r13= 67.6381 d13=(可変) r14= -361.5159 d14= 1.1024 nd8 =1.66672 νd8 =48.32 r15= 92.4569 d15= 1.9070 nd9 =1.72916 νd9 =54.68 r16= -65.2019 d16= 1.5673 r17= 42.1795 d17= 1.6573 nd10=1.68893 νd10=31.08 r18= 23.0968 d18= 3.1769 nd11=1.62299 νd11=58.14 r19= 103.9824 d19=(可変) r20= 230.4922 d20= 2.1999 nd12=1.51633 νd12=64.15 r21= 57.0792 (1)β4 = 1.20 (2)ΔG3/ΔG2=-2.06 (3)r2F/f = 0.59 (4)ΔG4/ΔG3=-0.16 (5)f12/f = 2.66 (6)β2 = 4.54
Example 5 f = 100, F NO = 2.90, 2ω = 13.81 ° r 1 = 62.1121 d 1 = 5.1287 n d1 = 1.49700 ν d1 = 81.61 r 2 = -110.5626 d 2 = 0.1120 r 3 = 37.4107 d 3 = 6.0551 n d2 = 1.61700 ν d2 = 62.80 r 4 = 142.4898 d 4 = 1.9959 r 5 = -159.5032 d 5 = 2.8264 n d3 = 1.65412 ν d3 = 39.70 r 6 = 25.6288 d 6 = 0.2799 r 7 = 24.9476 d 7 = 5.2768 n d4 = 1.49700 ν d4 = 81.61 r 8 = -2206.3969 d 8 = (variable) r 9 = 59.1662 d 9 = 2.1035 n d5 = 1.50378 ν d5 = 66.81 r 10 = 24.2565 d 10 = 4.4756 r 11 = -72.1558 d 11 = 2.3742 n d6 = 1.76182 ν d6 = 26.55 r 12 = -27.8022 d 12 = 1.0693 n d7 = 1.51602 ν d7 = 56.80 r 13 = 67.6381 d 13 = (variable) r 14 = -361.5159 d 14 = 1.1024 n d8 = 1.66672 ν d8 = 48.32 r 15 = 92.4569 d 15 = 1.9070 n d9 = 1.72916 ν d9 = 54.68 r 16 = -65.2019 d 16 = 1.5673 r 17 = 42.1795 d 17 = 1.6573 n d10 = 1.68893 ν d10 = 31.08 r 18 = 23.0968 d 18 = 3.1769 n d11 = 1.62299 ν d11 = 58.14 r 19 = 103.9824 d 19 = (variable) r 20 = 230.4922 d 20 = 2.1999 n d12 = 1.51633 ν d12 = 64.15 r 21 = 57.0792 (1) β 4 = 1.20 (2) ΔG3 / ΔG2 = -2.06 (3) r 2F / f = 0.59 (4) ΔG4 / ΔG3 = -0.16 (5) f 12 / f = 2.66 (6) β 2 = 4.54
.

【0053】実施例6 f=100 ,FNO=2.84,2ω=14.02 ° r1 = 204.9797 d1 = 2.2668 nd1 =1.51633 νd1 =64.15 r2 = -209.6796 d2 = 0.1627 r3 = 48.5295 d3 = 4.7415 nd2 =1.49700 νd2 =81.61 r4 = -775.2388 d4 = 0.1135 r5 = 41.5367 d5 = 5.4648 nd3 =1.49700 νd3 =81.61 r6 = -357.2494 d6 = 0.9277 r7 = -174.5944 d7 = 1.8896 nd4 =1.74000 νd4 =31.71 r8 = 60.8308 d8 =(可変) r9 = 53.2658 d9 = 1.9124 nd5 =1.51823 νd5 =58.96 r10= 29.0903 d10= 4.8048 r11= -99.3424 d11= 2.8431 nd6 =1.76182 νd6 =26.55 r12= -30.5829 d12= 1.3778 nd7 =1.51454 νd7 =54.69 r13= 45.5594 d13=(可変) r14= 104.0724 d14= 2.3224 nd8 =1.72916 νd8 =54.68 r15= -119.3903 d15= 1.7955 r16= 80.7745 d16= 1.3662 nd9 =1.68893 νd9 =31.08 r17= 26.4470 d17= 2.8362 nd10=1.69680 νd10=55.53 r18= 319.2894 d18=(可変) r19= -265.1666 d19= 1.6902 nd11=1.51112 νd11=60.48 r20= 79.1122 (1)β4 = 1.26 (2)ΔG3/ΔG2=-1.88 (3)r2F/f = 0.53 (4)ΔG4/ΔG3=-0.18 (5)f12/f = 2.80 (6)β2 = 4.24
Example 6 f = 100, F NO = 2.84, 2ω = 14.02 ° r 1 = 204.9797 d 1 = 2.2668 n d1 = 1.51633 ν d1 = 64.15 r 2 = -209.6796 d 2 = 0.1627 r 3 = 48.5295 d 3 = 4.7415 n d2 = 1.49700 ν d2 = 81.61 r 4 = -775.2388 d 4 = 0.1135 r 5 = 41.5367 d 5 = 5.4648 n d3 = 1.49700 ν d3 = 81.61 r 6 = -357.2494 d 6 = 0.9277 r 7 = -174.5944 d 7 = 1.8896 n d4 = 1.74000 ν d4 = 31.71 r 8 = 60.8308 d 8 = (variable) r 9 = 53.2658 d 9 = 1.9124 n d5 = 1.51823 ν d5 = 58.96 r 10 = 29.0903 d 10 = 4.8048 r 11 = -99.3424 d 11 = 2.8431 n d6 = 1.76182 ν d6 = 26.55 r 12 = -30.5829 d 12 = 1.3778 n d7 = 1.51454 ν d7 = 54.69 r 13 = 45.5594 d 13 = (variable) r 14 = 104.0724 d 14 = 2.3224 n d8 = 1.72916 ν d8 = 54.68 r 15 = -119.3903 d 15 = 1.7955 r 16 = 80.7745 d 16 = 1.3662 n d9 = 1.68893 ν d9 = 31.08 r 17 = 26.4470 d 17 = 2.8362 n d10 = 1.69680 ν d10 = 55.53 r 18 = 319.2894 d 18 = (variable) r 19 = -265.1666 d 19 = 1.6902 d11 = 1.51112 ν d11 = 60.48 r 20 = 79.1122 (1) β 4 = 1.26 (2) ΔG3 / ΔG2 = -1.88 (3) r 2F / f = 0.53 (4) ΔG4 / ΔG3 = -0.18 (5) f 12 / f = 2.80 (6) β 2 = 4.24
.

【0054】実施例7 f=100 ,FNO=2.9 ,2ω=13.82 ° r1 = 63.6694 d1 = 5.0129 nd1 =1.49700 νd1 =81.61 r2 = -112.8453 d2 = 0.1120 r3 = 40.0294 d3 = 6.0643 nd2 =1.61800 νd2 =63.38 r4 = 190.7494 d4 = 2.2835 r5 = -135.9655 d5 = 2.6933 nd3 =1.65016 νd3 =39.39 r6 = 24.5394 d6 = 0.2800 r7 = 24.0042 d7 = 5.2065 nd4 =1.49700 νd4 =81.61 r8 = 316.1788 d8 =(可変) r9 = 72.0666 d9 = 1.8395 nd5 =1.59551 νd5 =39.21 r10= 158.8230 d10= 1.4139 nd6 =1.53172 νd6 =48.90 r11= 31.0722 d11= 4.4929 r12= -165.7423 d12= 2.7708 nd7 =1.76180 νd7 =27.11 r13= -30.2910 d13= 1.3898 nd8 =1.51602 νd8 =56.80 r14= 48.4022 d14=(可変) r15= 95.4432 d15= 2.3061 nd9 =1.72916 νd9 =54.68 r16= -114.6571 d16= 1.7699 r17= 80.8710 d17= 1.4551 nd10=1.68893 νd10=31.08 r18= 26.9630 d18= 2.7928 nd11=1.69680 νd11=55.52 r19= 216.1122 d19=(可変) r20= -147.7944 d20= 1.6158 nd12=1.51742 νd12=52.41 r21= 67.0931 (1)β4 = 1.31 (2)ΔG3/ΔG2=-1.78 (3)r2F/f = 0.72 (4)ΔG4/ΔG3=-0.21 (5)f12/f = 2.17 (6)β2 = 3.20
Example 7 f = 100, F NO = 2.9, 2ω = 13.82 ° r 1 = 63.6694 d 1 = 5.0129 n d1 = 1.49700 ν d1 = 81.61 r 2 = -112.8453 d 2 = 0.1120 r 3 = 40.0294 d 3 = 6.0643 n d2 = 1.61800 ν d2 = 63.38 r 4 = 190.7494 d 4 = 2.2835 r 5 = -135.9655 d 5 = 2.6933 n d3 = 1.65016 ν d3 = 39.39 r 6 = 24.5394 d 6 = 0.2800 r 7 = 24.0042 d 7 = 5.2065 n d4 = 1.49700 ν d4 = 81.61 r 8 = 316.1788 d 8 = (variable) r 9 = 72.0666 d 9 = 1.8395 n d5 = 1.59551 ν d5 = 39.21 r 10 = 158.8230 d 10 = 1.4139 n d6 = 1.53172 ν d6 = 48.90 r 11 = 31.0722 d 11 = 4.4929 r 12 = -165.7423 d 12 = 2.7708 n d7 = 1.76180 ν d7 = 27.11 r 13 = -30.2910 d 13 = 1.3898 n d8 = 1.51602 ν d8 = 56.80 r 14 = 48.4022 d 14 = (Variable) r 15 = 95.4432 d 15 = 2.3061 n d9 = 1.72916 ν d9 = 54.68 r 16 = -114.6571 d 16 = 1.7699 r 17 = 80.8710 d 17 = 1.4551 n d10 = 1.68893 ν d10 = 31.08 r 18 = 26.9630 d 18 = 2.7928 n d11 = 1.69680 ν d11 = 55.52 r 19 = 216.1122 d 19 = (variable) r 20 = -147.7944 d 20 = 1.6158 n d12 = 1.51742 ν d12 = 52.41 r 21 = 67.0931 (1) β 4 = 1.31 (2) ΔG3 / ΔG2 = -1.78 (3) r 2F / f = 0.72 (4) ΔG4 / ΔG3 = -0.21 (5) f 12 / f = 2.17 (6) β 2 = 3.20
.

【0055】実施例8 f=100 ,FNO=2.85,2ω=13.84 ° r1 = 64.7106 d1 = 5.5035 nd1 =1.49700 νd1 =81.61 r2 = -119.1082 d2 = 0.1122 r3 = 39.6510 d3 = 6.2451 nd2 =1.61700 νd2 =62.79 r4 = 171.1740 d4 = 2.4554 r5 = -151.3110 d5 = 3.1625 nd3 =1.65412 νd3 =39.70 r6 = 24.3968 d6 = 0.3085 r7 = 23.9975 d7 = 5.5040 nd4 =1.49700 νd4 =81.61 r8 = 829.4415 d8 =(可変) r9 = 58.6698 d9 = 1.8999 nd5 =1.51602 νd5 =56.80 r10= 28.6686 d10= 5.0664 r11= -109.3497 d11= 2.3903 nd6 =1.76180 νd6 =27.11 r12= -29.5887 d12= 1.2966 nd7 =1.51602 νd7 =56.80 r13= 53.2024 d13=(可変) r14= 77.1050 d14= 1.9659 nd8 =1.74100 νd8 =52.68 r15= -110.3530 d15= 1.9344 r16= 66.4529 d16= 1.5033 nd9 =1.68893 νd9 =31.08 r17= 25.2899 d17= 3.4780 nd10=1.62299 νd10=58.14 r18= 117.6886 d18=(可変) r19= -104.1600 d19= 1.7865 nd11=1.51112 νd11=60.48 r20= 95.7755 (1)β4 = 1.27 (2)ΔG3/ΔG2=-1.92 (3)r2F/f = 0.59 (4)ΔG4/ΔG3= 0 (5)f12/f = 2.37 (6)β2 = 3.59
Example 8 f = 100, F NO = 2.85, 2ω = 13.84 ° r 1 = 64.7106 d 1 = 5.5035 n d1 = 1.49700 ν d1 = 81.61 r 2 = -119.1082 d 2 = 0.1122 r 3 = 39.6510 d 3 = 6.2451 n d2 = 1.61700 ν d2 = 62.79 r 4 = 171.1740 d 4 = 2.4554 r 5 = -151.3110 d 5 = 3.1625 n d3 = 1.65412 ν d3 = 39.70 r 6 = 24.3968 d 6 = 0.3085 r 7 = 23.9975 d 7 = 5.5040 n d4 = 1.49700 ν d4 = 81.61 r 8 = 829.4415 d 8 = (variable) r 9 = 58.6698 d 9 = 1.8999 n d5 = 1.51602 ν d5 = 56.80 r 10 = 28.6686 d 10 = 5.0664 r 11 = -109.3497 d 11 = 2.3903 n d6 = 1.76180 ν d6 = 27.11 r 12 = -29.5887 d 12 = 1.2966 n d7 = 1.51602 ν d7 = 56.80 r 13 = 53.2024 d 13 = (variable) r 14 = 77.1050 d 14 = 1.9659 n d8 = 1.74100 ν d8 = 52.68 r 15 = -110.3530 d 15 = 1.9344 r 16 = 66.4529 d 16 = 1.5033 n d9 = 1.68893 ν d9 = 31.08 r 17 = 25.2899 d 17 = 3.4780 n d10 = 1.62299 ν d10 = 58.14 r 18 = 117.6886 d 18 = (Variable) r 19 = -104.1600 d 19 = 1.7865 n d11 = 1.51112 ν d11 = 60.48 r 20 = 95.7755 (1) β 4 = 1.27 (2) ΔG3 / ΔG2 = -1.92 (3) r 2F / f = 0.59 (4) ΔG4 / ΔG3 = 0 (5) f 12 / f = 2.37 (6) β 2 = 3.59
.

【0056】実施例9 f=100 ,FNO=2.9 ,2ω=13.79 ° r1 = 53.0194 d1 = 5.1320 nd1 =1.49700 νd1 =81.61 r2 = -133.5855 d2 = 0.1118 r3 = 40.1585 d3 = 5.9974 nd2 =1.62041 νd2 =60.27 r4 = 128.1050 d4 = 2.1952 r5 = -157.8966 d5 = 2.8813 nd3 =1.65412 νd3 =39.70 r6 = 22.4071 d6 = 0.3074 r7 = 22.3114 d7 = 5.2562 nd4 =1.49700 νd4 =81.61 r8 = 1505.2707 d8 =(可変) r9 = 44.6673 d9 = 1.8497 nd5 =1.51454 νd5 =54.69 r10= 30.1865 d10= 4.7671 r11= -168.7365 d11= 2.3842 nd6 =1.78472 νd6 =25.68 r12= -32.8966 d12= 1.2126 nd7 =1.51454 νd7 =54.69 r13= 36.7787 d13=(可変) r14= 66.9950 d14= 1.9292 nd8 =1.74100 νd8 =52.68 r15= -131.8245 d15= 1.8502 r16= 72.0404 d16= 1.4870 nd9 =1.68893 νd9 =31.08 r17= 27.0233 d17= 3.1425 nd10=1.62299 νd10=58.14 r18= 99.3810 d18=(可変) r19= -94.3384 d19= 1.7301 nd11=1.51742 νd11=52.41 r20= 103.8599 (1)β4 = 1.25 (2)ΔG3/ΔG2=-3.46 (3)r2F/f = 0.45 (4)ΔG4/ΔG3= 0 (5)f12/f = 1.91 (6)β2 = 2.83
Example 9 f = 100, F NO = 2.9, 2ω = 13.79 ° r 1 = 53.0194 d 1 = 5.1320 n d1 = 1.49700 ν d1 = 81.61 r 2 = -133.5855 d 2 = 0.1118 r 3 = 40.1585 d 3 = 5.9974 n d2 = 1.62041 ν d2 = 60.27 r 4 = 128.1050 d 4 = 2.1952 r 5 = -157.8966 d 5 = 2.8813 n d3 = 1.65412 ν d3 = 39.70 r 6 = 22.4071 d 6 = 0.3074 r 7 = 22.3114 d 7 = 5.2562 n d4 = 1.49700 ν d4 = 81.61 r 8 = 1505.2707 d 8 = (variable) r 9 = 44.6673 d 9 = 1.8497 n d5 = 1.51454 ν d5 = 54.69 r 10 = 30.1865 d 10 = 4.7671 r 11 = -168.7365 d 11 = 2.3842 n d6 = 1.78472 ν d6 = 25.68 r 12 = -32.8966 d 12 = 1.2126 n d7 = 1.51454 ν d7 = 54.69 r 13 = 36.7787 d 13 = (variable) r 14 = 66.9950 d 14 = 1.9292 n d8 = 1.74100 ν d8 = 52.68 r 15 = -131.8245 d 15 = 1.8502 r 16 = 72.0404 d 16 = 1.4870 n d9 = 1.68893 ν d9 = 31.08 r 17 = 27.0233 d 17 = 3.1425 n d10 = 1.62299 ν d10 = 58.14 r 18 = 99.3810 d 18 = (variable) r 19 = -94.3384 d 19 = 1.7301 n d 11 = 1.51742 ν d11 = 52.41 r 20 = 103.8599 (1) β 4 = 1.25 (2) ΔG3 / ΔG2 = −3.46 (3) r 2F / f = 0.45 (4) ΔG4 / ΔG3 = 0 (5) f 12 / f = 1.91 (6) β 2 = 2.83
.

【0057】実施例10 f=100 ,FNO=2.9 ,2ω=13.71 ° r1 = 57.5724 d1 = 5.1615 nd1 =1.49700 νd1 =81.61 r2 = -127.2885 d2 = 0.1111 r3 = 38.7077 d3 = 5.9634 nd2 =1.61700 νd2 =62.79 r4 = 142.9246 d4 = 2.2006 r5 = -163.1952 d5 = 2.8772 nd3 =1.65412 νd3 =39.70 r6 = 22.9667 d6 = 0.3056 r7 = 22.7365 d7 = 5.2343 nd4 =1.49700 νd4 =81.61 r8 = 655.0067 d8 =(可変) r9 = 49.3937 d9 = 1.8404 nd5 =1.51454 νd5 =54.69 r10= 28.7921 d10= 4.7479 r11= -137.6632 d11= 2.4032 nd6 =1.78472 νd6 =25.68 r12= -31.6190 d12= 1.2352 nd7 =1.51454 νd7 =54.69 r13= 41.5604 d13=(可変) r14= 70.1818 d14= 1.9758 nd8 =1.74100 νd8 =52.68 r15= -130.9345 d15= 1.8394 r16= 71.6960 d16= 1.4878 nd9 =1.68893 νd9 =31.08 r17= 26.2307 d17= 3.1348 nd10=1.62299 νd10=58.14 r18= 127.0597 d18=(可変) r19= -121.3879 d19= 1.7676 nd11=1.51454 νd11=54.69 r20= 81.9302 (1)β4 = 1.27 (2)ΔG3/ΔG2=-2.23 (3)r2F/f = 0.49 (4)ΔG4/ΔG3=-0.11 (5)f12/f = 2.09 (6)β2 = 3.18
Example 10 f = 100, F NO = 2.9, 2ω = 13.71 ° r 1 = 57.5724 d 1 = 5.1615 n d1 = 1.49700 ν d1 = 81.61 r 2 = -127.2885 d 2 = 0.1111 r 3 = 38.7077 d 3 = 5.9634 n d2 = 1.61700 ν d2 = 62.79 r 4 = 142.9246 d 4 = 2.2006 r 5 = -163.1952 d 5 = 2.8772 n d3 = 1.65412 ν d3 = 39.70 r 6 = 22.9667 d 6 = 0.3056 r 7 = 22.7365 d 7 = 5.2343 n d4 = 1.49700 ν d4 = 81.61 r 8 = 655.0067 d 8 = (variable) r 9 = 49.3937 d 9 = 1.8404 n d5 = 1.51454 ν d5 = 54.69 r 10 = 28.7921 d 10 = 4.7479 r 11 = -137.6632 d 11 = 2.4032 n d6 = 1.78472 ν d6 = 25.68 r 12 = -31.6190 d 12 = 1.2352 n d7 = 1.51454 ν d7 = 54.69 r 13 = 41.5604 d 13 = (variable) r 14 = 70.1818 d 14 = 1.9758 n d8 = 1.74100 ν d8 = 52.68 r 15 = -130.9345 d 15 = 1.8394 r 16 = 71.6960 d 16 = 1.4878 n d9 = 1.68893 ν d9 = 31.08 r 17 = 26.2307 d 17 = 3.1348 n d10 = 1.62299 ν d10 = 58.14 r 18 = 127.0597 d 18 = (variable) r 19 = -121.3879 d 19 = 1.7676 d11 = 1.51454 ν d11 = 54.69 r 20 = 81.9302 (1) β 4 = 1.27 (2) ΔG3 / ΔG2 = -2.23 (3) r 2F / f = 0.49 (4) ΔG4 / ΔG3 = -0.11 (5) f 12 / f = 2.09 (6) β 2 = 3.18
.

【0058】図8〜図17にそれぞれ実施例1〜10の
無限遠物点に焦点を合わせた状態(a)、1/10倍の
近距離物点に焦点を合わせた状態(b)、1/2の至近
距離物点に焦点を合わせた状態(c)の、球面収差、非
点収差、歪曲収差を対比して示す。なお、これらの図
中、Yは像高を示す。
FIGS. 8 to 17 show a state (a) in which the object point at infinity of Examples 1 to 10 is focused, and a state (b) in which the object point at a short distance of 1/10 is focused (b). The spherical aberration, the astigmatism, and the distortion aberration in the state (c) of focusing on the object point at a close distance of / 2 are shown in comparison. In these figures, Y represents the image height.

【0059】以上の本発明の近距離撮影可能なレンズは
次のように構成することができる。 〔1〕 物体側より順に、正屈折力の第1レンズ群(G
1)、負屈折力の第2レンズ群(G2)、正屈折力の第
3レンズ群(G3)、負屈折力の第4レンズ群(G4)
を有し、無限遠物体から近距離物体にフォーカシングす
る際に、前記第2レンズ群(G2)は像面側に移動し、
前記第3レンズ群(G3)は物体側に移動するように構
成され、前記移動群である第2レンズ群(G2)は、物
体側より順に、物体側に凸面を向けた負メニスカスレン
ズと、その接合面が正の屈折力を有する正レンズと負レ
ンズとの接合負レンズを少なくとも1つ含む構成であ
り、前記第4レンズ群(G4)の無限遠物体にフォーカ
シングした状態での横倍率をβ4 とする時、下記の条件
式を満足することを特徴とする近距離撮影可能なレン
ズ。 1.1<β4 <1.4 ・・・(1)。
The above-mentioned lens capable of short-distance photographing of the present invention can be configured as follows. [1] In order from the object side, the first lens group (G
1), a second lens group (G2) having a negative refractive power, a third lens group (G3) having a positive refractive power, and a fourth lens group (G4) having a negative refractive power.
When focusing from an object at infinity to a near object, the second lens group (G2) moves to the image plane side,
The third lens group (G3) is configured to move toward the object side, and the second lens group (G2) that is the moving group includes, in order from the object side, a negative meniscus lens having a convex surface facing the object side, The cemented surface includes at least one cemented negative lens composed of a positive lens and a negative lens having a positive refractive power, and a lateral magnification of the fourth lens group (G4) in a state of being focused on an object at infinity. A lens capable of short-distance shooting, characterized by satisfying the following conditional expression when β 4 is set. 1.1 <β 4 <1.4 (1).

【0060】〔2〕 前記第2レンズ群(G2)の移動
量をΔG2、前記第3レンズ群(G3)の移動量をΔG
3、前記第2レンズ群(G2)の最も物体側の面の曲率
半径をr2F、無限遠物体にフォーカシングした状態での
全系の焦点距離をfとする時、下記の条件式を満足する
〔1〕記載の近距離撮影可能なレンズ。 −5<ΔG3/ΔG2<−1 ・・・(2) 0.2<r2F/f<1.1 ・・・(3)。
[2] The moving amount of the second lens group (G2) is ΔG2, and the moving amount of the third lens group (G3) is ΔG.
3. When the radius of curvature of the most object side surface of the second lens group (G2) is r 2F and the focal length of the entire system in a state of focusing on an object at infinity is f, the following conditional expression is satisfied. [1] A lens capable of short-distance shooting. -5 <ΔG3 / ΔG2 <-1 (2) 0.2 <r 2F /f<1.1 (3).

【0061】〔3〕 無限遠物体から近距離物体にフォ
ーカシングする際に、前記第2レンズ群(G2)は像面
側に移動し、前記第3レンズ群(G3)は物体側に移動
し、前記第4レンズ群(G4)は像面側に移動し、前記
第3レンズ群(G3)の移動量をΔG3、前記第4レン
ズ群(G4)の移動量をΔG4とする時、下記の条件式
を満足する〔1〕又は〔2〕記載の近距離撮影可能なレ
ンズ。 −0.75<ΔG4/ΔG3<−0.06 ・・・(4)。
[3] When focusing from an object at infinity to a near object, the second lens group (G2) moves to the image side, the third lens group (G3) moves to the object side, The fourth lens group (G4) moves toward the image plane side, and the moving amount of the third lens group (G3) is ΔG3 and the moving amount of the fourth lens group (G4) is ΔG4. A lens capable of short-distance photography according to [1] or [2], which satisfies the formula. −0.75 <ΔG4 / ΔG3 <−0.06 (4).

【0062】〔4〕 前記第1レンズ群(G1)と前記
第2レンズ群(G2)との無限遠物体にフォーカシング
した状態での合成焦点距離をf12、無限遠物体にフォー
カシングした状態での全系の焦点距離をfとする時、下
記の条件式を満足する〔1〕、〔2〕又は〔3〕記載の
近距離撮影可能なレンズ。 1.8<f12/f<3.6 ・・・(5)。
[4] The combined focal length of the first lens group (G1) and the second lens group (G2) when focused on an object at infinity is f 12 , and the combined focal length when focused on an object at infinity. A lens capable of short-distance photography as described in [1], [2] or [3], which satisfies the following conditional expression, where f is the focal length of the entire system. 1.8 <f 12 /f<3.6 (5).

【0063】〔5〕 前記第2レンズ群(G2)の無限
遠物体にフォーカシングした状態での横倍率をβ2 とす
る時、下記の条件式を満足する〔1〕、〔2〕、〔3〕
又は〔4〕記載の近距離撮影可能なレンズ。 2.7<β2 <5.6 ・・・(6)。
[5] When the lateral magnification of the second lens group (G2) focused on an object at infinity is β 2 , the following conditional expressions [1], [2] and [3] are satisfied. ]
Alternatively, the lens described in [4] can be used for short-range photography. 2.7 <β 2 <5.6 (6).

【0064】〔6〕 前記第2レンズ群(G2)の移動
量をΔG2、前記第3レンズ群(G3)の移動量をΔG
3とする時、下記の条件式を満足する〔1〕、〔2〕、
〔3〕、〔4〕又は〔5〕記載の近距離撮影可能なレン
ズ。 −3.8<ΔG3/ΔG2<−1.4 ・・・(7)。
[6] The moving amount of the second lens group (G2) is ΔG2, and the moving amount of the third lens group (G3) is ΔG.
When 3, the following conditional expressions are satisfied [1], [2],
[3], [4] or [5] is a lens capable of short-distance photography. -3.8 <ΔG3 / ΔG2 <-1.4 (7).

【0065】〔7〕 前記第2レンズ群(G2)の最も
物体側の面の曲率半径をr2F、無限遠物体にフォーカシ
ングした状態での全系の焦点距離をfとする時、下記の
条件式を満足する〔1〕、〔2〕、〔3〕、〔4〕、
〔5〕又は〔6〕記載の近距離撮影可能なレンズ。 0.34<r2F/f<0.88 ・・・(8)。
[7] When the radius of curvature of the most object side surface of the second lens group (G2) is r 2F and the focal length of the entire system in a state of focusing on an object at infinity is f, the following conditions are satisfied. Satisfying the formulas [1], [2], [3], [4],
A lens capable of short-distance photography according to [5] or [6]. 0.34 <r 2F /f<0.88 (8).

【0066】〔8〕 前記第1レンズ群(G1)と前記
第2レンズ群(G2)との無限遠物体にフォーカシング
した状態での合成焦点距離をf12、無限遠物体にフォー
カシングした状態での全系の焦点距離をfとする時、下
記の条件式を満足する〔1〕、〔2〕、〔3〕、
〔4〕、〔5〕、〔6〕又は〔7〕記載の近距離撮影可
能なレンズ。 1.84<f12/f<3.0 ・・・(9)。
[8] The combined focal length of the first lens group (G1) and the second lens group (G2) when focused on an object at infinity is f 12 , and the combined focal length is focused on an object at infinity. When the focal length of the entire system is f, the following conditional expressions are satisfied [1], [2], [3],
[4], [5], [6] or [7] is a lens capable of short-distance photography. 1.84 <f 12 /f<3.0 (9).

【0067】[0067]

【発明の効果】以上の説明から明らかなように、本発明
により、無限遠から1/2倍程度の高倍率な至近距離に
至る全ての状態において、非常に良好に収差補正された
マクロレンズで、大口径な望遠レンズでありながら比較
的コンパクトで操作性の良い近距離撮影可能なレンズが
可能となる。
As is clear from the above description, according to the present invention, a macro lens in which aberrations are corrected very well in all states from infinity to a high magnification close-up distance of about 1/2 times, Although it is a large-aperture telephoto lens, it is possible to make a lens that is relatively compact and can be used for close-up photography with good operability.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1の近距離撮影可能なレンズの
無限遠(a)、1/10倍(b)、1/2倍(c)にフ
ォーカシングした時のレンズ断面図である。
FIG. 1 is a lens cross-sectional view when focusing on infinity (a), 1/10 times (b), and 1/2 times (c) of a lens capable of performing short-distance shooting according to a first embodiment of the present invention.

【図2】実施例2の図1と同様なレンズ断面図である。2 is a lens cross-sectional view similar to FIG. 1 of Example 2. FIG.

【図3】実施例4の無限遠にフォーカシングした時のレ
ンズ断面図である。
FIG. 3 is a lens cross-sectional view of Example 4 upon focusing to infinity.

【図4】実施例5の無限遠にフォーカシングした時のレ
ンズ断面図である。
FIG. 4 is a lens cross-sectional view of Example 5 upon focusing to infinity.

【図5】実施例6の無限遠にフォーカシングした時のレ
ンズ断面図である。
FIG. 5 is a lens cross-sectional view of Example 6 upon focusing to infinity.

【図6】実施例7の無限遠にフォーカシングした時のレ
ンズ断面図である。
FIG. 6 is a lens cross-sectional view of Example 7 upon focusing to infinity.

【図7】実施例8の無限遠にフォーカシングした時のレ
ンズ断面図である。
FIG. 7 is a lens cross-sectional view of Example 8 when focused on infinity.

【図8】実施例1の無限遠物点に焦点を合わせた状態
(a)、1/10倍の近距離物点に焦点を合わせた状態
(b)、1/2の至近距離物点に焦点を合わせた状態
(c)の、球面収差、非点収差、歪曲収差を対比して示
す収差図である。
8A and 8B are a state in which an object point at infinity of Example 1 is focused (a), a state in which an object point at a short distance of 1/10 times is focused (b), and an object point at a close distance of 1/2. FIG. 9 is an aberration diagram showing, in contrast, spherical aberration, astigmatism, and distortion in a focused state (c).

【図9】実施例2の図8と同様の収差図である。FIG. 9 is an aberration diagram similar to FIG. 8 of Example 2.

【図10】実施例3の図8と同様の収差図である。FIG. 10 is an aberration diagram similar to FIG. 8 of Example 3.

【図11】実施例4の図8と同様の収差図である。FIG. 11 is an aberration diagram similar to FIG. 8 of Example 4.

【図12】実施例5の図8と同様の収差図である。FIG. 12 is an aberration diagram similar to FIG. 8 of Example 5.

【図13】実施例6の図8と同様の収差図である。FIG. 13 is an aberration diagram similar to FIG. 8 of Example 6.

【図14】実施例7の図8と同様の収差図である。FIG. 14 is an aberration diagram similar to FIG. 8 of Example 7.

【図15】実施例8の図8と同様の収差図である。FIG. 15 is an aberration diagram similar to FIG. 8 of Example 8;

【図16】実施例9の図8と同様の収差図である。FIG. 16 is an aberration diagram similar to FIG. 8 of Example 9.

【図17】実施例10の図8と同様の収差図である。FIG. 17 is an aberration diagram similar to FIG. 8 of Example 10.

【符号の説明】[Explanation of symbols]

G1…第1レンズ群 G2…第2レンズ群 G3…第3レンズ群 G4…第4レンズ群 G1 ... First lens group G2: Second lens group G3 ... Third lens group G4 ... 4th lens group

Claims (14)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 物体側より順に、正屈折力の第1レンズ
群(G1)、負屈折力の第2レンズ群(G2)、正屈折
力の第3レンズ群(G3)、負屈折力の第4レンズ群
(G4)を有し、無限遠物体から近距離物体にフォーカ
シングする際に、前記第2レンズ群(G2)は像面側に
移動し、前記第3レンズ群(G3)は物体側に移動する
ように構成され、前記移動群である第2レンズ群(G
2)は、物体側より順に、物体側に凸面を向けた負メニ
スカスレンズと、その接合面が正の屈折力を有する正レ
ンズと負レンズとの接合負レンズを少なくとも1つ含む
構成であり、前記第4レンズ群(G4)の無限遠物体に
フォーカシングした状態での横倍率をβ4 とする時、下
記の条件式を満足することを特徴とする近距離撮影可能
なレンズ。 1.1<β4 <1.4 ・・・(1)
1. A first lens group (G1) having a positive refractive power, a second lens group (G2) having a negative refractive power, a third lens group (G3) having a positive refractive power, and a negative lens group having a negative refractive power in order from the object side. Having a fourth lens group (G4), the second lens group (G2) moves to the image plane side and the third lens group (G3) moves to the object when focusing from an infinite object to a short-distance object. The second lens group (G
2) is a configuration including, in order from the object side, a negative meniscus lens having a convex surface directed toward the object side, and at least one cemented negative lens composed of a positive lens and a negative lens whose cemented surface has a positive refractive power, A lens capable of short-distance photography, wherein the following conditional expression is satisfied when the lateral magnification of the fourth lens group (G4) in a state of being focused on an object at infinity is β 4 . 1.1 <β 4 <1.4 (1)
【請求項2】 前記第2レンズ群(G2)の移動量をΔ
G2、前記第3レンズ群(G3)の移動量をΔG3、前
記第2レンズ群(G2)の最も物体側の面の曲率半径を
2F、無限遠物体にフォーカシングした状態での全系の
焦点距離をfとする時、下記の条件式を満足する請求項
1記載の近距離撮影可能なレンズ。 −5<ΔG3/ΔG2<−1 ・・・(2) 0.2<r2F/f<1.1 ・・・(3)
2. The amount of movement of the second lens group (G2) is Δ
G2, the moving amount of the third lens group (G3) is ΔG3, the radius of curvature of the most object-side surface of the second lens group (G2) is r 2F , and the focus of the entire system in a state of focusing on an object at infinity The lens capable of short-distance photography according to claim 1, wherein the following conditional expression is satisfied when the distance is f. -5 <ΔG3 / ΔG2 <-1 (2) 0.2 <r 2F /f<1.1 (3)
【請求項3】 無限遠物体から近距離物体にフォーカシ
ングする際に、前記第2レンズ群(G2)は像面側に移
動し、前記第3レンズ群(G3)は物体側に移動し、前
記第4レンズ群(G4)は像面側に移動し、前記第3レ
ンズ群(G3)の移動量をΔG3、前記第4レンズ群
(G4)の移動量をΔG4とする時、下記の条件式を満
足する請求項1記載の近距離撮影可能なレンズ。 −0.75<ΔG4/ΔG3<−0.06 ・・・(4)
3. When focusing from an object at infinity to a near object, the second lens group (G2) moves to the image side, the third lens group (G3) moves to the object side, and The fourth lens group (G4) moves to the image plane side, and when the moving amount of the third lens group (G3) is ΔG3 and the moving amount of the fourth lens group (G4) is ΔG4, the following conditional expression is satisfied. The lens according to claim 1, which satisfies the above condition. −0.75 <ΔG4 / ΔG3 <−0.06 (4)
【請求項4】 前記第1レンズ群(G1)と前記第2レ
ンズ群(G2)との無限遠物体にフォーカシングした状
態での合成焦点距離をf12、無限遠物体にフォーカシン
グした状態での全系の焦点距離をfとする時、下記の条
件式を満足する請求項1、2又は3記載の近距離撮影可
能なレンズ。 1.8<f12/f<3.6 ・・・(5)
4. The combined focal length of the first lens group (G1) and the second lens group (G2) when focused on an object at infinity is f 12 , and the total focal length when focused on an object at infinity. The lens capable of short-distance photography according to claim 1, 2 or 3, wherein the following conditional expression is satisfied, where f is the focal length of the system. 1.8 <f 12 /f<3.6 (5)
【請求項5】 前記第2レンズ群(G2)の無限遠物体
にフォーカシングした状態での横倍率をβ2 とする時、
下記の条件式を満足する請求項1、2、3又は4記載の
近距離撮影可能なレンズ。 2.7<β2 <5.6 ・・・(6)
5. When the lateral magnification of the second lens group (G2) in a state of being focused on an object at infinity is β 2 ,
The lens capable of short-distance photography according to claim 1, 2, 3 or 4, which satisfies the following conditional expression. 2.7 <β 2 <5.6 (6)
【請求項6】 前記第2レンズ群(G2)の移動量をΔ
G2、前記第3レンズ群(G3)の移動量をΔG3とす
る時、下記の条件式を満足する請求項1、2、3、4又
は5記載の近距離撮影可能なレンズ。 −3.8<ΔG3/ΔG2<−1.4 ・・・(7)
6. The movement amount of the second lens group (G2) is set to Δ
The lens capable of short-distance photographing according to claim 1, 2, 3, 4, or 5, wherein the following conditional expression is satisfied, where G2 and the movement amount of the third lens group (G3) are ΔG3. -3.8 <ΔG3 / ΔG2 <-1.4 (7)
【請求項7】 前記第2レンズ群(G2)の最も物体側
の面の曲率半径をr2F、無限遠物体にフォーカシングし
た状態での全系の焦点距離をfとする時、下記の条件式
を満足する請求項1、2、3、4、5又は6記載の近距
離撮影可能なレンズ。 0.34<r2F/f<0.88 ・・・(8)
7. When the radius of curvature of the most object-side surface of the second lens group (G2) is r 2F and the focal length of the entire system in a state of focusing on an object at infinity is f, the following conditional expression is satisfied: A lens capable of short-distance photography according to claim 1, 2, 3, 4, 5 or 6, which satisfies the following. 0.34 <r 2F /f<0.88 (8)
【請求項8】 前記第1レンズ群(G1)と前記第2レ
ンズ群(G2)との無限遠物体にフォーカシングした状
態での合成焦点距離をf12、無限遠物体にフォーカシン
グした状態での全系の焦点距離をfとする時、下記の条
件式を満足する請求項1、2、3、4、5、6又は7記
載の近距離撮影可能なレンズ。 1.84<f12/f<3.0 ・・・(9)
8. The combined focal length of the first lens group (G1) and the second lens group (G2) when focused on an object at infinity is f 12 , and the total focal length when focused on an object at infinity. The lens capable of short-distance photography according to claim 1, 2, 3, 4, 5, 6 or 7, wherein the following conditional expression is satisfied, where f is the focal length of the system. 1.84 <f 12 /f<3.0 (9)
【請求項9】 前記第1レンズ群(G1)を固定とする
ことを特徴とする請求項1、2、3、4、5、6、7又
は8記載の近距離撮影可能なレンズ。
9. The lens capable of short-distance photographing according to claim 1, 2, 3, 4, 5, 6, 7 or 8, wherein the first lens group (G1) is fixed.
【請求項10】 前記第1レンズ群(G1)と前記第4
レンズ群(G4)を固定とすることを特徴とする請求項
又は2記載の近距離撮影可能なレンズ。
10. The first lens group (G1) and the fourth lens group (G1).
The lens capable of short-distance photography according to claim 1 or 2, wherein the lens group (G4) is fixed.
【請求項11】 絞りを前記第2レンズ群(G2)と前
記第3レンズ群(G3)との間に設置したことを特徴と
する請求項1、2、3、4、5、6、7、8、9又は1
0記載の近距離撮影可能なレンズ。
11. A diaphragm is provided between the second lens group (G2) and the third lens group (G3), and the diaphragm is arranged between the second lens group (G2) and the third lens group (G3). , 8, 9 or 1
A lens capable of short-distance shooting described in 0.
【請求項12】 前記第1レンズ群(G1)を、少なく
とも3つの正レンズと1つの負レンズより構成したこと
を特徴とする請求項1、2、3、4、5、6、7、8、
9、10又は11記載の近距離撮影可能なレンズ。
12. The first lens group (G1) includes at least three positive lenses and one negative lens, and the first lens group (G1) includes one, two, three, four, five, six, seven and eight. ,
A lens capable of short-distance shooting according to 9, 10, or 11.
【請求項13】 前記第1レンズ群(G1)の構成を、
物体側より順に、両面が凸の正レンズ、凸面を物体側に
向けた正メニスカスレンズ、両凹レンズ、凸レンズで構
成することを特徴とする請求項12記載の近距離撮影可
能なレンズ。
13. The configuration of the first lens group (G1)
The lens capable of short-distance photographing according to claim 12, characterized in that, in order from the object side, the positive lens has a convex surface on both sides, a positive meniscus lens having a convex surface facing the object side, a biconcave lens, and a convex lens.
【請求項14】 物体側より順に、前記第1レンズ群を
両面が凸の正レンズ、凸面を物体側に向けた正メニスカ
スレンズ、両凹レンズ、凸レンズで構成し、前記第2レ
ンズ群(G2)を、物体側より順に、物体側に凸面を向
けた負メニスカスレンズ、正メニスカスレンズと両凹レ
ンズとの接合負レンズで構成し、前記第3レンズ群(G
3)を、両凸レンズ、凹レンズと凸レンズの接合正レン
ズで構成し、前記第4レンズ群(G4)を、両凹レンズ
で構成したことを特徴とする請求項1、2、3、4、
5、6、7、8、9、10又は11記載の近距離撮影可
能なレンズ。
14. The first lens group comprises, in order from the object side, a positive lens having convex surfaces on both sides, a positive meniscus lens having a convex surface facing the object side, a biconcave lens, and a convex lens, and the second lens group (G2). Is composed of, in order from the object side, a negative meniscus lens having a convex surface facing the object side, and a cemented negative lens composed of a positive meniscus lens and a biconcave lens, and the third lens group (G
3. A biconvex lens, a cemented positive lens composed of a concave lens and a convex lens, and 4) the fourth lens group (G4) is a biconcave lens.
A lens capable of short-distance photography according to 5, 6, 7, 8, 9, 10 or 11.
JP21106694A 1994-09-05 1994-09-05 Lens that can be used for close-up photography Expired - Lifetime JP3407421B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21106694A JP3407421B2 (en) 1994-09-05 1994-09-05 Lens that can be used for close-up photography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21106694A JP3407421B2 (en) 1994-09-05 1994-09-05 Lens that can be used for close-up photography

Publications (2)

Publication Number Publication Date
JPH0876012A JPH0876012A (en) 1996-03-22
JP3407421B2 true JP3407421B2 (en) 2003-05-19

Family

ID=16599844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21106694A Expired - Lifetime JP3407421B2 (en) 1994-09-05 1994-09-05 Lens that can be used for close-up photography

Country Status (1)

Country Link
JP (1) JP3407421B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6246833B1 (en) 1998-02-19 2001-06-12 Canon Kabushiki Kaisha Photographic lens and photographing apparatus having the same
JP5315562B2 (en) * 2009-02-05 2013-10-16 株式会社タムロン Macro lens
JP5786265B2 (en) * 2011-12-12 2015-09-30 株式会社タムロン Shooting lens
US9063253B2 (en) 2011-12-12 2015-06-23 Tamron Co., Ltd. Imaging lens
JP5849884B2 (en) * 2012-05-29 2016-02-03 コニカミノルタ株式会社 Telephoto lens, imaging optical device and digital equipment
CN103336355B (en) * 2013-07-19 2015-05-27 中山联合光电科技有限公司 Optical system
JP6771371B2 (en) * 2016-12-12 2020-10-21 富士フイルム株式会社 Imaging lens and imaging device
JP6689768B2 (en) * 2017-02-28 2020-04-28 富士フイルム株式会社 Imaging lens and imaging device
JP6754541B1 (en) * 2020-03-25 2020-09-16 エーエーシー オプティックス ソリューションズ ピーティーイー リミテッド Imaging lens
RU2760643C1 (en) * 2021-02-05 2021-11-29 Публичное акционерное общество "Красногорский завод им. С.А. Зверева" Photographic macrolens

Also Published As

Publication number Publication date
JPH0876012A (en) 1996-03-22

Similar Documents

Publication Publication Date Title
JP2538526B2 (en) Zoom lens
US4772106A (en) Compact zoom lens system
JP2621247B2 (en) Zoom lens
JP3304518B2 (en) Zoom lens
JP3668365B2 (en) Zoom lens
JP3429562B2 (en) Macro lens
JP3429554B2 (en) Zoom lens
JP3254239B2 (en) Large aperture medium telephoto lens
JP3407421B2 (en) Lens that can be used for close-up photography
JP3365837B2 (en) Focusing method of 3-group zoom lens
JP2526923B2 (en) Zoom lenses
JP3445359B2 (en) Zoom lens
JP3486457B2 (en) High magnification zoom lens including wide angle range
JP3221765B2 (en) Lens that can shoot at close range
JPH07140388A (en) Zoom lens
JP3476909B2 (en) telescope lens
JP3369598B2 (en) Zoom lens
JPH05107477A (en) Telescoping zoom lens constructed with five groups of lenses
JP2001337265A (en) Photographing lens utilizing floating
JP3029148B2 (en) Rear focus zoom lens
JPH06130330A (en) Zoom lens equipped with vibration preventing function
JP3414499B2 (en) Zoom lens
JP3414519B2 (en) Camera using a small 3-group zoom lens
JP3447424B2 (en) High zoom lens
JPH08278446A (en) Zoom lens

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030219

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090314

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090314

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100314

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140314

Year of fee payment: 11

EXPY Cancellation because of completion of term