JP3406958B2 - Observation device - Google Patents

Observation device

Info

Publication number
JP3406958B2
JP3406958B2 JP27766198A JP27766198A JP3406958B2 JP 3406958 B2 JP3406958 B2 JP 3406958B2 JP 27766198 A JP27766198 A JP 27766198A JP 27766198 A JP27766198 A JP 27766198A JP 3406958 B2 JP3406958 B2 JP 3406958B2
Authority
JP
Japan
Prior art keywords
observation
observation device
curvature
light
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27766198A
Other languages
Japanese (ja)
Other versions
JPH11160651A (en
Inventor
章市 山▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP13030194A external-priority patent/JP2911750B2/en
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP27766198A priority Critical patent/JP3406958B2/en
Publication of JPH11160651A publication Critical patent/JPH11160651A/en
Application granted granted Critical
Publication of JP3406958B2 publication Critical patent/JP3406958B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、観察光学系に関し、特
にヘッドアップディスプレイやメガネ型ディスプレイと
称せられる装置やそれに好適な光学系に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an observation optical system, and more particularly to a device called a head-up display or a glasses type display and an optical system suitable for the device.

【0002】[0002]

【従来の技術】従来より、CRTやLCDを観察者の頭
部近傍に配置し、CRT及びLCDが形成する像を観察
できるようになした表示装置の提案がいくつかなされて
いる。例えばUSP4081209号、USP4969
724号、特開昭58−78116号公報、特開平2−
297516号公報、特開平3−101709号公報が
ある。
2. Description of the Related Art Conventionally, some proposals have been made for a display device in which a CRT or LCD is placed near the head of an observer and an image formed by the CRT and LCD can be observed. For example, USP4081209 and USP4969
No. 724, JP-A-58-78116, JP-A-2-
There are 297516 and JP-A-3-101709.

【0003】特開平3−101709号公報では原画像
を再結像させる実像タイプの比較的見易い観察装置を開
示している。しかしながら再結像させるための光学レン
ズを用いているためにかなりの大型化が余儀なくされて
いる。
Japanese Unexamined Patent Publication (Kokai) No. 3-101709 discloses a real image type comparatively easy-to-see observation device for re-imaging an original image. However, since the optical lens for re-imaging is used, it is inevitably made large in size.

【0004】一方、USP4081209号、USP4
969724号、特開昭58−78116号公報、特開
平2−297516号公報では見易さの点では若干劣る
が小型化を図る上で有利な虚像を観察するタイプの観察
装置を開示している。
On the other hand, USP4081209 and USP4
No. 969724, JP-58-78116 discloses, although slightly inferior in terms of visibility in JP-A 2-297516 JP discloses a type of the observation apparatus for observing a favorable virtual image in reducing the size .

【0005】[0005]

【発明が解決しようとする問題点】後者のタイプの観察
装置では、確かに実像タイプに比べ小型化を図れるとは
いえまだまだ十分とはいえなかった。先の先行技術の中
で比較的小型化を図っている例として特開昭58−78
116号公報があげられるがやはり目の光軸方向の厚み
が厚くなっていた。又、観察される像に光学的歪み、非
点収差、コマ収差等の発生することが記載されている。
The latter type of observing device can certainly be downsized as compared with the real image type, but it is still not sufficient. Japanese Patent Laid-Open No. 58-78 discloses an example of the prior art which is relatively small.
No. 116 is cited, but the thickness of the eye in the direction of the optical axis is still thick. Moreover, it is described that optical distortion, astigmatism, coma, etc. occur in an observed image.

【0006】本発明はかかる点に鑑みて小型、且つ薄型
の観察光学系や、それを用いた観察装置を提供すること
を目的とする。
In view of the above points, the present invention has an object to provide a small and thin observation optical system and an observation apparatus using the same.

【0007】又、収差発生の少ない観察光学系や、それ
を用いた観察装置の提供を目的とする。
It is another object of the present invention to provide an observation optical system with less aberration and an observation apparatus using the same.

【0008】そしてかかる目的のもとで、本発明の観察
装置は、オリジナル画像を形成する表示手段と、該オリ
ジナル画像の光を透過する第1の面と、該第1の面を透
過する光を全反射させる曲面である第2の面と、該第2
の面で全反射された光を反射する第3の面とを備え、前
記第1乃至第3の面をプリズムの異なる面として形成す
る観察光学系を有し、前記第3の面で反射された光を前
記第2の面を透過させて眼球へ導く観察装置であって、
前記第1の面と前記第3の面はそれぞれアジムス角度に
より光学的パワーが異なる曲面であり、前記第3の面の
母線断面における近軸曲率半径をr 、子線断面におけ
る近軸曲率半径をr とするとき、 |r |<|r なる条件を満足する ことを特徴としている。
For such a purpose, the observation apparatus of the present invention is a display means for forming an original image, a first surface for transmitting the light of the original image, and a light for transmitting the first surface. And a second surface that is a curved surface that totally reflects
And a third surface that reflects the light totally reflected by the surface, and has an observation optical system that forms the first to third surfaces as different surfaces of the prism, and is reflected by the third surface. An observation device that guides the emitted light to the eyeball through the second surface ,
The first surface and the third surface have azimuth angles, respectively.
It is a curved surface with different optical power, and the third surface
The paraxial radius of curvature in the cross section of the generatrix is r y ,
When the paraxial radius of curvature is r x , the condition is | r x | <| r y | .

【0009】他の特徴的な事項は以下に示す実施例に開
示されている。
Other characteristic matters are disclosed in the following embodiments.

【0010】[0010]

【発明の実施の形態】まず図6をもとにして、本発明の
基本となる表示光学系を説明する。4は、オリジナル画
像となる文字や絵等の映像表示がなされる表示手段で、
例えば公知の液晶(LCD)で構成される。3aは表示
手段4からの光を観察者の目へ導光させるための第1の
光学部材、3bは第2の光学部材である。表示手段4か
らの光はまず第1の光学部材3aへ入射し、次に第1の
光学部材の目側の全反射面1にて全反射されハーフミラ
ーで構成される観察者凹面を向けた凹面ミラー2にて反
射され先の全反射面2aを透過して目へ導かれるように
なっている。
BEST MODE FOR CARRYING OUT THE INVENTION First, a display optical system which is the basis of the present invention will be described with reference to FIG. Reference numeral 4 is a display means for displaying an image such as an original image of characters and pictures.
For example, it is composed of a known liquid crystal (LCD). 3a is a display
The first optical member 3b for guiding the light from the means 4 to the observer's eyes is a second optical member. The light from the display means 4 first enters the first optical member 3a, and then is totally reflected by the total reflection surface 1 on the eye side of the first optical member, and the concave surface of the observer composed of a half mirror is directed. The light is reflected by the concave mirror 2 and transmitted through the total reflection surface 2a to be guided to the eye.

【0011】この様子を図1に示す。図1(A)は頭
部、(B)は側頭部からみた光路図を各々示す。
This state is shown in FIG. FIG. 1A shows an optical path as seen from the head, and FIG.

【0012】このように観察者は表示手段4の映像が外
の風景にスーパーインポーズされて確認することが可能
となる。本実施例ではスーパーインポーズ装置として示
しているが単なる映像表示をみるだけの装置としてもよ
い。尚この時凹面ミラーは鏡となる。
In this way, the observer can confirm the image on the display means 4 by superimposing it on the outside scenery. In the present embodiment, the device is shown as a superimposing device, but it may be a device that merely sees a video display. At this time, the concave mirror becomes a mirror.

【0013】本実施例では後述の実施例を含めてかかる
構成の下で光学系の厚さが10mm〜15mm程度で極
めて薄い小型の表示装置を達成している。又、視野画角
が水平方向で±16.8°程、垂直方向で±11.4°
程と広角視野を達成している。
In the present embodiment, including the embodiments described later, an extremely thin compact display device having an optical system thickness of about 10 mm to 15 mm is achieved under such a structure. In addition, the field of view angle is ± 16.8 ° in the horizontal direction and ± 11.4 ° in the vertical direction.
It has achieved a wide field of view.

【0014】そしてこのような小型化、そして広角化を
図り、良好に光学性能を図れたことの要因として本実施
例では観察者側の面を全反射面そして透過面として利用
したこと、又凹面ミラー2を目の光軸に対してかなり偏
心させたことがあげられるが、これに加えて後述の数値
実施例で示す如く全反射面を曲面、特にアジムス角度に
より光学的パワーの異なる曲面としたこと、あるいはこ
の凹面ミラー2にアジムス角度により異なる光学的パワ
ーを与えたことの各々の要素が大きく寄与している。
As a factor of such miniaturization, wide angle, and good optical performance, in this embodiment, the surface on the observer side was used as a total reflection surface and a transmission surface, and a concave surface was used. The mirror 2 may be considerably decentered with respect to the optical axis of the eyes. In addition to this, the total reflection surface is a curved surface, particularly a curved surface having different optical power depending on the azimuth angle, as shown in a numerical example described later. That is, or each element of giving different optical power to the concave mirror 2 depending on the azimuth angle greatly contributes.

【0015】特に凹面ミラー2にアジムス角度により異
なる光学的パワーを与えたことで、凹面ミラー自体が偏
心していることにより発生する偏心収差を十分に取り除
くようにすることを可能とした。又、全反射面も同様に
曲面を与えることで凹面ミラーで発生する収差を補正す
るようにしている。
Especially, the concave mirror 2 varies depending on the azimuth angle.
By applying such optical power, it becomes possible to sufficiently remove the decentering aberration caused by the decentering of the concave mirror itself. Similarly, the total reflection surface is also given a curved surface to correct the aberration generated by the concave mirror.

【0016】さて今後光の折り畳み方向を母線方向、そ
してこれと直交する方向を子線方向と呼ぶことにする。
本実施例においては子線方向の画角を広くとるようにし
ているが、凹面ミラーが比較的強い正の屈折力を持って
おり収差が発生することになるがこの正のパワーにより
発生する収差を、全反射面の子線断面において逆に負の
光学的パワーを与えてこれを補正するようにしている。
特に子線断面からみると、表示素子側、あるいは観察者
の目側から光路をたどってみると順に負の屈折力、正の
屈折力(凹面ミラー)、負の屈折力と各面がその作用を
果すことになるので、対称型の屈折力配置となり諸収差
を除去しやすいパワー配置を採用している。
Now, hereinafter, the folding direction of light will be referred to as the generatrix direction, and the direction orthogonal thereto will be referred to as the sagittal direction.
In this embodiment, the angle of view in the sagittal direction is set to be wide, but the concave mirror has a relatively strong positive refractive power, which causes aberration. However, the aberration generated by this positive power On the contrary, in the sagittal cross section of the total reflection surface, negative optical power is given to the contrary to correct it.
Especially when viewed from the sagittal section, when the optical path is traced from the display element side or the observer's eye side, the negative refractive power, the positive refractive power (concave mirror), and the negative refractive power and the respective surfaces act in order. As a result, a symmetrical power distribution is adopted, and a power layout that easily removes various aberrations is adopted.

【0017】そして目の光軸方向に対する厚さを短縮さ
せるには、光学系3を立てるように各要素を設定するこ
とが望ましく、具体的には図7を参照すると、全反射面
1の面頂点における接線の、目の光軸と垂直な線に対す
る角度(チルト角)をαとするときに|α|≦20°を
満たすとよい。この範囲を越えることにより光軸方向の
厚さが厚くなり大型化してしまうことになる。又、風景
に対して映像をスーパーインポーズする場合には光学部
材の傾きが大きくなり風景自体に歪みを与えてくるので
好ましくない。
In order to reduce the thickness of the eye in the optical axis direction, it is desirable to set each element so that the optical system 3 stands up. Specifically, referring to FIG. When the angle (tilt angle) of the tangent line at the apex to the line perpendicular to the optical axis of the eye is α, it is preferable to satisfy | α | ≦ 20 °. If it exceeds this range, the thickness in the optical axis direction becomes thick and the size becomes large. Further, when the image is superimposed on the landscape, the inclination of the optical member becomes large and the landscape itself is distorted, which is not preferable.

【0018】そしてより好ましくは −15°≦α≦5° を満たすとよい。下限をこえると眼球の光軸と平行な方
向で薄くできるが、歪みが大きくなる。上限をこえると
眼球の光軸と平行な方向の厚さが厚くなり、プリズム全
体重量が重くなり、好ましくない。
More preferably, it is preferable to satisfy -15 ° ≤α≤5 °. Beyond the lower limit, the thickness can be reduced in the direction parallel to the optical axis of the eyeball, but the distortion becomes large. If the upper limit is exceeded, the thickness of the eyeball in the direction parallel to the optical axis becomes large, and the total weight of the prism becomes heavy, which is not preferable.

【0019】尚、本実施例では全反射面が眼球側に凹面
を向けていることから、外側の光入射面6もこれと実質
同形状の曲面を与えて、風景が歪まないようにしてい
る。
In this embodiment, since the total reflection surface is a concave surface facing the eyeball side, the outer light incident surface 6 is also provided with a curved surface having substantially the same shape so that the landscape is not distorted. .

【0020】さて、次に凹面ミラー2は目の光軸に対し
てかなり偏心しており、この面で偏心収差が発生するこ
とになる。しかしながらこの偏心収差を取り除くべく
反射面、そして凹面ミラー2に前述した通りアジムス角
度により曲率が異なる面(トーリック面、あるいはアナ
モフィック面)を採用してこれらの偏心収差を良好に抑
えるように工夫している。そして望ましくはこれらの面
に非球面(トーリック非球面、あるいはアナモフィック
非球面)を採用し極めて良好な光学性能を得ている。
Next, the concave mirror 2 is considerably decentered with respect to the optical axis of the eye, and decentering aberration occurs on this surface. However, all in order to get rid of this eccentric aberration
As described above, a surface (toric surface or anamorphic surface) having a different curvature depending on the azimuth angle is adopted as the reflecting surface and the concave mirror 2 so as to suppress these decentering aberrations favorably. Desirably, an aspherical surface (a toric aspherical surface or an anamorphic aspherical surface) is used for these surfaces to obtain extremely good optical performance.

【0021】光線の折り畳み方向を母線方向(y方
向)、これと垂直な方向を子線方向(x方向)とした時
に、アジムス角度の違いにより光学的パワーを異ならし
めるように各面を設定するようにしているが、全系とし
てみた時各方向に対する近軸での焦点距離がほとんど一
定、即ち母線方向断面、そして子線方向断面における各
全系における近軸焦点距離をfy、fxとした時に 0.9<|fy/fx|<1.1 を満足させることが望ましい。
When the folding direction of the light rays is the generatrix direction (y direction) and the direction perpendicular thereto is the sagittal direction (x direction), each surface is set so that the optical power is made different due to the difference in azimuth angle. However, the paraxial focal lengths in each direction are almost constant when viewed as an entire system, that is, the paraxial focal lengths in each system in the generatrix section and the sagittal section are f y and f x , respectively. It is desirable to satisfy 0.9 <| f y / f x | <1.1 at that time.

【0022】又、全反射面(あるいは透過面)または凹
面ミラーは前述した通りアジムス角度の違いにより光学
的パワーが異なるように設定して偏心収差を抑制するよ
うになしたが、各面の母線方向断面、そして子線方向断
面における近軸曲率半径を各々ry、rxとした時に |rx|<|ry| を満たすようにするとよい。
Further, the total reflection surface (or the transmission surface) or the concave mirror is set to have different optical powers due to the difference of the azimuth angle as described above to suppress the decentering aberration. It is advisable to satisfy | r x | <| r y | when the paraxial radii of curvature in the directional section and the paraxial radius of curvature in the sagittal section are r y and r x , respectively.

【0023】本実施例では母線方向が折り畳み方向で、
小型化を図るためにこの方向に凹面ミラー2が大きくチ
ルト(偏心)しているので、この母線方向に対して偏心
収差が子線方向に比べて多く発生する。これに対して母
線方向断面における光学的パワーを子線方向の断面にお
けるパワーより弱く、即ち母線方向の近軸曲率半径を条
件式に示す通り長くし、母線方向の偏心収差の発生を抑
制するようにしている。
In this embodiment, the generatrix direction is the folding direction,
Since the concave mirror 2 is largely tilted (decentered) in this direction for downsizing , more decentering aberration occurs in this generatrix direction than in the sagittal direction. On the other hand, the optical power in the cross section in the generatrix direction is weaker than the power in the cross section in the sagittal direction, that is, the paraxial radius of curvature in the generatrix direction is increased as shown in the conditional expression to suppress the occurrence of eccentric aberration in the generatrix direction. I have to.

【0024】そして望ましくはこれらの曲率の関係を |rx/ry|<0.85 を満たすように設定することが好ましい。この範囲を越
えると偏心収差の発生が目立って大きくなってしまう。
It is preferable to set the relationship of these curvatures so as to satisfy | r x / r y | <0.85. If this range is exceeded, decentration aberrations will be noticeably increased.

【0025】尚、後で示す数値実施例2〜4のように入
射面5にアジムス角度の違いにより光学的パワーが異な
る面を形成した時には先の条件式とは逆に |rx|>|ry| なる条件式を満たすことで偏心収差の発生を抑えること
が可能となる。
When numerical values 2 to 4 shown later are used to form a surface having different optical powers on the entrance surface 5 due to the difference in azimuth angle, the condition | r x |> | By satisfying the conditional expression r y |, it becomes possible to suppress the occurrence of decentration aberrations.

【0026】そして更に収差を良好に補正するためには
全反射面(あるいは透過面)1、そして凹面ミラー2の
各々の子線方向断面における近軸曲率半径をrx2、rx3
とした時、 −2.0<2fx/rx2<−0.1…(a) −2.5<2fx/rx3<−0.5…(b) なる条件の範囲で設定するとよい。
In order to satisfactorily correct the aberration, the paraxial radius of curvature of each of the total reflection surface (or transmission surface) 1 and the concave mirror 2 in the sagittal direction is r x2 , r x3.
When a, it may be set in a range of -2.0 <2f x / r x2 < -0.1 ... (a) -2.5 <2f x / r x3 <-0.5 ... (b) The condition .

【0027】式(a)の下限を越えると子線方向の全反
射面の曲率(負のパワー)がきつくなり、ディストーシ
ョン補正が困難となる。式(b)の下限を越えると子線
方向の凹面ミラーの曲率(正のパワー)がきつくなり非
点収差補正が困難となる。一方、式(a)の上限を越え
る子線方向の全反射面の曲率が正のパワーを持つ方向に
なるので全反射条件を満たすことが困難となる。一方、
式(b)の上限を越えると子線方向の凹面ミラーの正パ
ワーが弱くなる方向で眼球の光軸と平行な方向の厚さが
厚くなり大型化してしまい好ましくない。
When the value goes below the lower limit of the expression (a), the curvature (negative power) of the total reflection surface in the sagittal direction becomes so tight that it becomes difficult to correct distortion. If the lower limit of the expression (b) is exceeded, the curvature (positive power) of the concave mirror in the sagittal direction becomes so tight that it becomes difficult to correct astigmatism. On the other hand, since the curvature of the total reflection surface in the sagittal direction that exceeds the upper limit of the expression (a) has a positive power, it becomes difficult to satisfy the total reflection condition. on the other hand,
If the value exceeds the upper limit of the expression (b), the positive power of the concave mirror in the sagittal direction becomes weak, and the thickness in the direction parallel to the optical axis of the eyeball becomes large, which is not preferable.

【0028】又更に、母線方向の全系焦点距離をfy
全反射面の曲率半径をry2、凹面ミラーの曲率半径をr
y3とした時 −1.0<2fy/ry2<0…(c) −2.5<2fy/ry3<−0.2…(d) を満たすように設定するとよい。
Further, the focal length of the entire system in the direction of the generatrix is f y ,
Let r y2 be the radius of curvature of the total reflection surface, and r be the radius of curvature of the concave mirror.
when the y3 -1.0 <2f y / r y2 <0 ... (c) -2.5 <2f y / r y3 < may be set so as to satisfy the -0.2 ... (d).

【0029】式(c)の下限を越えると母線方向の全反
射面の負のパワーが強くなり、偏心ディストーションの
補正がむずかしくなる。式(d)の下限を越えると母線
方向の凹ミラーの凸パワーが強くなり、偏心非点収差の
発生が大きくなる。式(c)の上限を越えると母線方向
の全反射条件とからむもので、これを越えると全反射条
件を満たすことが困難となる。式(d)は、母線方向の
凹面ミラーのパワーに関するもので、上限を越えるとパ
ワーが弱くなるので、母線方向に全長が延び大型化する
傾向となる。
When the value goes below the lower limit of the equation (c), the negative power of the total reflection surface in the generatrix direction becomes strong, and it becomes difficult to correct the eccentric distortion. When the value goes below the lower limit of the equation (d), the convex power of the concave mirror in the generatrix direction becomes strong, and the decentering astigmatism increases. If the upper limit of the expression (c) is exceeded, the condition of total reflection in the generatrix direction is involved, and if it exceeds this, it becomes difficult to satisfy the condition of total reflection. The formula (d) relates to the power of the concave mirror in the generatrix direction, and the power becomes weaker when the upper limit is exceeded, so that the total length tends to increase in the generatrix direction and the size tends to increase.

【0030】以上の説明は全反射面(あるいは透過面)
1、そして凹面ミラー2を曲率を中心にして説明した
が、本実施例では凹面ミラー2は、眼球の光軸より母線
方向(y方向)でオリジナル画像側(+)へ平行偏心し
ている(図7)。こうすることにより、母線方向での偏
心ディストーションをも小さく抑えている。
The above explanation is for a total reflection surface (or a transmission surface).
1 and the concave mirror 2 was described centering on the curvature, but in the present embodiment, the concave mirror 2 is decentered parallel to the original image side (+) in the generatrix direction (y direction) from the optical axis of the eyeball (see FIG. 7). By doing so, the eccentric distortion in the generatrix direction is also suppressed to a small level.

【0031】該平行偏心のシフト量(眼球の光軸から、
凹面ミラーの面頂点までの母線方向での距離)をEとす
ると(図7参照) E≧2.5mm を満たすよう平行偏心させることで、偏心ディストーシ
ョンを抑制させることが可能となる。尚、後述する実施
例1では、この偏心量Eの値が5.2mmとなっている
が、他の実施例のようにこの量Eを大きくすることでよ
り良好に収差補正を行うことが可能となりより望ましく
はE≧23mmとするとよい。
The shift amount of the parallel eccentricity (from the optical axis of the eyeball,
If the distance in the generatrix direction to the surface apex of the concave mirror is E (see FIG. 7), it is possible to suppress the eccentric distortion by performing parallel eccentricity so as to satisfy E ≧ 2.5 mm. In Example 1 to be described later, the value of the eccentricity amount E is 5.2 mm, but it is possible to perform better aberration correction by increasing the amount E as in other examples. Therefore, it is more preferable that E ≧ 23 mm.

【0032】次に入射面5に着目して説明すると、図7
に示す通り母線方向での表示手段であるオリジナル画像
面と入射面のなす角度βを 5°≦β≦30° を満たすように設定するとよい。下限を下回ると入射平
面とオリジナル画像面が平行に近くなるので、眼球の光
軸と平行な方向でオリジナル画像が厚くなり好ましくな
い。逆に上限を越えるとオリジナル画像が、眼球の光軸
と平行な方向に対し垂直となる。
Next, focusing on the incident surface 5, the description will be made with reference to FIG.
As shown in, the angle β between the original image plane, which is the display means in the direction of the generatrix, and the incident plane is preferably set so as to satisfy 5 ° ≦ β ≦ 30 °. When the value goes below the lower limit, the plane of incidence and the original image surface become nearly parallel, which is not preferable because the original image becomes thick in the direction parallel to the optical axis of the eyeball. On the contrary, if the upper limit is exceeded, the original image becomes perpendicular to the direction parallel to the optical axis of the eyeball.

【0033】本実施例においては、オリジナル画像を照
明するのに不図示であるが、バックライトまたダイレク
トな自然光照明を使うことを想定している。ここでオリ
ジナル画像が、前述したように該光軸に対し垂直になる
と、ダイレクトな自然光照明を考えた際、どうしても自
然光が効率よく得られにくくなって、反射光学系によっ
て得られる虚像の像が暗くなってしまう。従って本実施
例では自然光の強い昼などは自然光照明として、自然光
のない夜などはバックライト照明と外の明るさを検知し
て、自然光照明及びバックライト照明を選択的に使用し
ている。
In this embodiment, although not shown in the figure for illuminating the original image, it is assumed that a backlight or direct natural light illumination is used. Here, if the original image is perpendicular to the optical axis as described above, it becomes difficult to efficiently obtain natural light when considering direct natural light illumination, and the image of the virtual image obtained by the reflection optical system becomes dark. turn into. Therefore, in this embodiment, natural light illumination is used during daytime when natural light is strong, and backlight illumination and outside brightness are detected at night when there is no natural light to selectively use natural light illumination and backlight illumination.

【0034】ところで、オリジナル画像が形成される表
示手段4には液晶表示素子(LCD)を使用することに
より装置全体の小型を図っているが、この時オリジナル
画像の画像中心の光軸とオリジナル画像を射出する射出
光の主光線(眼球を絞りとした時の絞り中心光束)のな
す角度をγ(図7参照)は |γ|≦10° を満たすとよい。これはオリジナル画像面を液晶デバイ
スを使用する時に必要な条件である。一般的に液晶は見
える視野角度が狭いため液晶に斜めに入射し、射出する
ような光は消滅してしまう。そこで液晶面に対し光をで
きるだけ垂直に入射、射出させなければ明るい虚像は得
られない。そこでこの条件式を満たすことで十分な明る
い像が観察されるようになる。
By the way, the liquid crystal display element (LCD) is used for the display means 4 on which the original image is formed, so that the size of the entire apparatus is reduced. At this time, the optical axis of the image center of the original image and the original image are used. The angle γ (see FIG. 7) formed by the principal ray of the emitted light (the central light flux when the eyeball is used as the diaphragm) to satisfy | γ | ≦ 10 °. This is a necessary condition when using the liquid crystal device for the original image plane. Since liquid crystal generally has a narrow viewing angle, light that obliquely enters and exits the liquid crystal disappears. Therefore, a bright virtual image cannot be obtained unless the light is incident and emitted perpendicularly to the liquid crystal surface. Therefore, a sufficiently bright image can be observed by satisfying this conditional expression.

【0035】さて、図2、図3、図4、図5は各々以下
に示す数値実施例1、2、3、4の光学断面図を示して
いる。図2では凹面ミラーと全反射面ともにトーリック
非球面を使用している。図3は凹面ミラー、全反射面、
光入射面全てにアナモフィック非球面を使用している。
図4、図5でも全ての面にアナモフィック非球面を使用
している。
2, FIG. 3, FIG. 4, and FIG. 5 are optical sectional views of Numerical Examples 1, 2, 3, and 4 shown below, respectively. In FIG. 2, a toric aspherical surface is used for both the concave mirror and the total reflection surface. 3 shows a concave mirror, a total reflection surface,
Anamorphic aspherical surfaces are used for all light incident surfaces.
4 and 5, anamorphic aspherical surfaces are used for all surfaces.

【0036】尚、図3〜図5に対応する数値実施例2〜
4ではより良好な収差補正を達成するために入射面5に
も曲率を持たせている。
Numerical examples 2 to 2 corresponding to FIGS.
In No. 4, the entrance surface 5 also has a curvature in order to achieve better aberration correction.

【0037】又、本実施例において光学部材として全て
アクリルを使用しているが、ガラス材を用いてよいこと
は言うまでもない。
Although acrylic is used as the optical member in this embodiment, it goes without saying that a glass material may be used.

【0038】次に本発明実施例の数値を以下に示す。尚
TALはトーリック非球面、AALはアナモフィック非
球面を示す。
Next, the numerical values of the examples of the present invention are shown below. TAL is a toric aspherical surface, and AAL is an anamorphic aspherical surface.

【0039】TALの定義式は、The definition formula of TAL is

【0040】[0040]

【外1】 AALの定義式は、[Outer 1] The definition formula of AAL is

【0041】[0041]

【外2】 である。[Outside 2] Is.

【0042】各Ai、Bi…は各々非球面係数である。Each A i , B i ... Is an aspherical surface coefficient.

【0043】尚、以下に示す実施例では、少なくとも全
反射面にアジムス角度によって屈折力が異なる面を採用
したが、この面を回転対称型球面あるいは非球面で構成
することも可能である。
In the embodiments described below, at least a total reflection surface has a surface having a different refractive power depending on the azimuth angle. However, this surface may be a rotationally symmetric spherical surface or an aspherical surface.

【0044】[0044]

【外3】 [Outside 3]

【0045】[0045]

【外4】 [Outside 4]

【0046】[0046]

【外5】 [Outside 5]

【0047】[0047]

【外6】 [Outside 6]

【0048】[0048]

【発明の効果】以上説明したように、本発明によれば、
水平画角±16.8°、垂直画角±11.4°と広視野
画角(高拡大倍率)で、眼球の光軸と平行な方向で約1
0mm〜15mmと極端に薄いメガネ型ディスプレイを
開発できた。しかも明るく良好な光学性能を得ることが
できる。また凹面ミラーを半透過面とすることで風景を
歪ませることなく、この風景に対して明るいオリジナル
画像の虚像をスーパーインポーズすることが可能とな
る。
As described above, according to the present invention,
Horizontal angle of view ± 16.8 °, vertical angle of view ± 11.4 ° and wide field of view (high magnification), approximately 1 in the direction parallel to the optical axis of the eyeball.
We were able to develop an extremely thin glasses-type display of 0 to 15 mm. Moreover, bright and good optical performance can be obtained. Further, by using the concave mirror as a semi-transmissive surface, it is possible to superimpose a virtual image of a bright original image on the landscape without distorting the landscape.

【0049】また本発明では広視野画角に設定したが、
もうすこし狭視野画角に設定して、本発明を使用すれば
厚さはもっと薄くすることが可能となる。というのは本
発明の厚さは、画角の広さにより決まってくるものであ
るからである。
In the present invention, the wide viewing angle is set,
If the present invention is used with a slightly narrower field angle of view, the thickness can be made thinner. This is because the thickness of the present invention is determined by the wide angle of view.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に関する観察光学系における光路を示す
図。
FIG. 1 is a diagram showing an optical path in an observation optical system according to the present invention.

【図2】本発明に関する数値実施例1の観察光学系にお
ける断面及び光路を示す図。
FIG. 2 is a diagram showing a cross section and an optical path in an observation optical system of Numerical Example 1 according to the present invention.

【図3】本発明に関する数値実施例2の観察光学系にお
ける断面及び光路を示す図。
FIG. 3 is a diagram showing a cross section and an optical path in an observation optical system of Numerical Example 2 according to the present invention.

【図4】本発明に関する数値実施例3の観察光学系にお
ける断面及び光路を示す図。
FIG. 4 is a diagram showing a cross section and an optical path in an observation optical system of Numerical Example 3 according to the present invention.

【図5】本発明に関する数値実施例4の観察光学系にお
ける断面及び光路を示す図。
FIG. 5 is a diagram showing a cross section and an optical path in an observation optical system of Numerical Example 4 according to the present invention.

【図6】本発明に関する観察光学系の基礎となる光学断
面図。
FIG. 6 is an optical sectional view which is a basis of an observation optical system according to the present invention.

【図7】本発明に関する観察光学系の基礎となる光学断
面図。
FIG. 7 is an optical sectional view which is a basis of an observation optical system according to the present invention.

【符号の説明】[Explanation of symbols]

1 全反射面(あるいは透過面) 2 凹面ミラー 5 入射面 4 オリジナル画像を形成する表示手段 1 Total reflection surface (or transmission surface) 2 concave mirror 5 incident surface 4 Display means to form original image

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G02B 27/02 H04N 5/64 Front page continued (58) Fields surveyed (Int.Cl. 7 , DB name) G02B 27/02 H04N 5/64

Claims (14)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 オリジナル画像を形成する表示手段と、
該オリジナル画像の光を透過する第1の面と、該第1の
面を透過する光を全反射させる曲面である第2の面と、
該第2の面で全反射された光を反射する第3の面とを備
え、前記第1乃至第3の面をプリズムの異なる面として
形成する観察光学系を有し、前記第3の面で反射された
光を前記第2の面を透過させて眼球へ導く観察装置であ
って、前記第1の面と前記第3の面はそれぞれアジムス
角度により光学的パワーが異なる曲面であり、前記第3
の面の母線断面における近軸曲率半径をr 、子線断面
における近軸曲率半径をr とするとき、 |r |<|r なる条件を満足する ことを特徴とする観察装置。
1. Display means for forming an original image,
A first surface that transmits the light of the original image, and a second surface that is a curved surface that totally reflects the light that transmits the first surface,
A third surface that reflects the light totally reflected by the second surface, and an observation optical system that forms the first to third surfaces as different surfaces of a prism, and the third surface An observation device that guides the light reflected by the eye through the second surface to the eyeball.
The first surface and the third surface are azimuths, respectively.
The curved surface having different optical power depending on the angle,
Paraxial curvature radius r y, sagittal section in the meridional cross section of the surface
When the r x paraxial radius of curvature, | r x | <| r y | observation apparatus characterized by satisfying the condition that.
【請求項2】 前記第2の面は子線断面において負の光
学的パワーを有することを特徴とする請求項1の観察装
置。
2. The observation device according to claim 1, wherein the second surface has a negative optical power in a sagittal section.
【請求項3】 前記第3の面は凹面ミラー面であり、か
つ前記第2の面は子線断面において負の光学的パワーを
有することを特徴とする請求項1の観察装置。
3. The observation device according to claim 1, wherein the third surface is a concave mirror surface, and the second surface has a negative optical power in a sagittal section.
【請求項4】 前記観察光学系を全系としてみた時、各
方向に対する近軸での焦点距離がほとんど一定であるこ
とを特徴とする請求項1の観察装置。
4. The observation device according to claim 1, wherein when the observation optical system is viewed as a whole system, the paraxial focal length in each direction is almost constant.
【請求項5】 前記第2の面はアジムス角度により光学
的パワーが異なる曲面であることを特徴とする請求項1
の観察装置。
5. The second surface is a curved surface having different optical power depending on the azimuth angle.
Observation device.
【請求項6】 前記第2の面は、眼球直前にあることを
特徴とする請求項1の観察装置。
6. The observation device according to claim 1, wherein the second surface is immediately in front of the eyeball.
【請求項7】 前記第2の面の面頂点における接線の目
の光軸と垂直な線に対する角度をαとするとき、|α|
≦20°なる式を満足することを特徴とする請求項1の
観察装置。
7. When the angle of the tangent at the surface vertex of the second surface with respect to the line perpendicular to the optical axis of the eye is α, then | α |
The observing device according to claim 1, wherein the expression ≦ 20 ° is satisfied.
【請求項8】 前記観察光学系の厚さが10mm〜15
mmのメガネ型であることを特徴とする請求項1の観察
装置。
8. The thickness of the observation optical system is from 10 mm to 15 mm.
The observation device according to claim 1, wherein the observation device is a spectacle type of mm.
【請求項9】 前記第3の面が、外側の風景の光入射面
であることを特徴とする請求項1の観察装置。
9. The observation device according to claim 1, wherein the third surface is a light incident surface of an outside landscape.
【請求項10】 前記オリジナル画像を照明するのに外
の明るさを検知して、自然光照明とバックライト照明を
選択的に使用することを特徴とする請求項1の観察装
置。
10. The observation device according to claim 1, wherein external light is detected to illuminate the original image, and natural light illumination and backlight illumination are selectively used.
【請求項11】 前記オリジナル画像と前記第1の面が
非平行であることを特徴とする請求項1の観察装置。
11. The observation device according to claim 1, wherein the original image and the first surface are not parallel to each other.
【請求項12】 母線断面において前記オリジナル画像
と前記第1の面のなす角度をβとするとき、5°≦β≦
30°なる式を満足することを特徴とする請求項1の観
察装置。
12. When the angle formed by the original image and the first surface in the generatrix cross section is β, 5 ° ≦ β ≦
The observation apparatus according to claim 1, wherein the expression of 30 ° is satisfied.
【請求項13】 前記第3の面の母線断面における近軸
曲率半径r 、子線断面における近軸曲率半径r は、 |r /r |<0.85 なる条件を満足することを特徴とする請求項1の観察装
置。
13. A paraxial line in a generatrix cross section of the third surface.
The observing apparatus according to claim 1, wherein the radius of curvature r y and the paraxial radius of curvature r x in the sagittal section satisfy the condition of | r x / r y | <0.85.
Place
【請求項14】 前記第1の面の母線断面における近軸
曲率半径をr 、子線断面における近軸曲率半径をr
とするとき、 |r |>|r なる条件を満足することを特徴とする請求項1の観察装
置。
14. A paraxial line in a cross section of a generatrix of the first surface.
The radius of curvature is r y , and the paraxial radius of curvature in the sagittal section is r x
When the, | r x |> | r y | observation instrumentation claim 1, characterized by satisfying the following condition
Place
JP27766198A 1994-06-13 1998-09-30 Observation device Expired - Lifetime JP3406958B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27766198A JP3406958B2 (en) 1994-06-13 1998-09-30 Observation device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP13030194A JP2911750B2 (en) 1994-06-13 1994-06-13 Observation optical system
JP27766198A JP3406958B2 (en) 1994-06-13 1998-09-30 Observation device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP13030194A Division JP2911750B2 (en) 1994-06-13 1994-06-13 Observation optical system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003017542A Division JP2003228018A (en) 2003-01-27 2003-01-27 Observation optical system

Publications (2)

Publication Number Publication Date
JPH11160651A JPH11160651A (en) 1999-06-18
JP3406958B2 true JP3406958B2 (en) 2003-05-19

Family

ID=26465470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27766198A Expired - Lifetime JP3406958B2 (en) 1994-06-13 1998-09-30 Observation device

Country Status (1)

Country Link
JP (1) JP3406958B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11029516B2 (en) 2017-08-31 2021-06-08 Canon Kabushiki Kaisha Image display apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11029516B2 (en) 2017-08-31 2021-06-08 Canon Kabushiki Kaisha Image display apparatus

Also Published As

Publication number Publication date
JPH11160651A (en) 1999-06-18

Similar Documents

Publication Publication Date Title
JP2911750B2 (en) Observation optical system
JP3599828B2 (en) Optical device
JP3683317B2 (en) Image display device
JP3487859B2 (en) Head mounted display device and display optical system used in the device
JP3658034B2 (en) Image observation optical system and imaging optical system
JP3486468B2 (en) Prism optical system
EP1102105B1 (en) Image display apparatus with a prism having optical power
JP3847799B2 (en) Display device having gaze detection system
US7081999B2 (en) Image display apparatus and head mounted display using it
JPH07120679A (en) Homocentric optical system
JPH09258104A (en) Optical system
JP3496890B2 (en) Display device
US5777794A (en) Image display apparatus
JP2002228970A (en) Optical system and picture display device using the same
JP3155336B2 (en) Visual display device
JP3486465B2 (en) Visual display device
JP3212762B2 (en) Display device
JP3304497B2 (en) Eyepiece for visual display
JPH06250113A (en) Head mounted display device
JPH11133315A (en) Eyepiece and virtual image presenting device
JP3406958B2 (en) Observation device
JP3262889B2 (en) Visual display device
JP3245473B2 (en) Video display device
JP3212784B2 (en) Visual display device
JP3977002B2 (en) Image display device and head mounted display using the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030225

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080307

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090307

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100307

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100307

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140307

Year of fee payment: 11

EXPY Cancellation because of completion of term
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250