JP3405101B2 - Sealed lead-acid battery - Google Patents

Sealed lead-acid battery

Info

Publication number
JP3405101B2
JP3405101B2 JP34102496A JP34102496A JP3405101B2 JP 3405101 B2 JP3405101 B2 JP 3405101B2 JP 34102496 A JP34102496 A JP 34102496A JP 34102496 A JP34102496 A JP 34102496A JP 3405101 B2 JP3405101 B2 JP 3405101B2
Authority
JP
Japan
Prior art keywords
battery
separator
cross
sectional area
bone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34102496A
Other languages
Japanese (ja)
Other versions
JPH10188999A (en
Inventor
雅之 井出
健浩 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP34102496A priority Critical patent/JP3405101B2/en
Publication of JPH10188999A publication Critical patent/JPH10188999A/en
Application granted granted Critical
Publication of JP3405101B2 publication Critical patent/JP3405101B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は密閉形鉛蓄電池に関
するものである。 【0002】 【従来の技術】従来、密閉形鉛蓄電池の正極格子の合金
は鉛−カルシウム−錫からなり、格子を形成する縦横の
骨の断面積の合計は極板厚み精度や製造上の点から、形
状が多少異なる場合があるが、縦骨と横骨との断面積は
ほぼ同一断面積であった。さらに、正極格子においては
腐食を考慮して極板の集電部分の枠骨(横骨)を太くし
たり、特開平5−234595号公報のように正極板の
横骨の体積を改良することも提示されてきた。また、近
年電池のトリクル長寿命化に伴い電池構成上セパレータ
の所定加圧状態での厚みと電池構成後のセパレータの厚
みとの比率であるセパレータの圧縮比率を増加させるこ
とで対処する傾向もあった。 【0003】 【発明が解決しようとする課題】近年のトリクル長寿命
化に対する技術として、セパレータの圧縮比率を増加す
ることによりセパレータの空隙部を減少させることによ
り、毛細管現象により電解液の保持性を高めて内部抵抗
の増加を抑制する方法があるが、最終的に使用時の劣化
モードは正極板の格子腐食によるところが大きい。そし
て、一層の長寿命化を実現するためには正極格子の断面
積を大きくする必要があった。しかし、長期間トリクル
使用した場合、電池内部の正極格子は腐食とともに大き
く伸びる傾向にあり、さらに格子骨の断面積を大きくす
れば腐食劣化や伸びは遅延できるものの、最終的な格子
骨の伸びは大きくなる傾向がある。 【0004】これらの電池の使用機器として、無停電電
源装置(UPS)に電池を組込んで使用するためには少
ない設置面積にする傾向があり、このため極板は縦長形
状が採用される。さらに、トランス等の近辺に電池が設
置された場合に電池の温度が上昇する結果、格子の腐食
と伸びが加速され活物質との密着性が劣化したり、格子
骨の腐食の伸びにより電槽に亀裂を生じさせ、電池寿命
が大幅に減少する。 【0005】 【課題を解決するための手段】この課題を解決するため
本発明の密閉形鉛蓄電池に用いる正極格子は、横方向よ
り縦方向を長くした鉛−カルシウム−錫合金製の正極格
子体であって、格子枠の縦骨の断面積を格子枠の横骨の
断面積の2倍以上とするとともに、セパレータの20k
g/dm 2 加圧状態での厚みをt 1 、電池構成時のセパレ
ータ厚みをt 2 としたときにt 2 /t 1 であらわされるセ
パレータ圧縮比率を1.1以上とするものである。 【0006】 【発明の実施の形態】本発明の密閉形鉛蓄電池は、その
正極格子を鉛とカルシウムと錫との合金製とし、しかも
横方向より縦方向が長い形状とする。そして、前記正極
格子の縦骨の断面積を横骨の断面積の2倍もしくは2倍
以上と太くする。これにより、電池使用中格子の縦方
向への伸びが抑制される。従って、活物質が格子から脱
落することを少なくし、また電槽の上下方向の変形を少
なくすることができる。しかも、正負極板の間に介在す
るセパレータは、電池を構成するセパレータの20kg
/dm 2 加圧状態での厚み(t 1 と電池構成状態でのセ
パレータ厚み(t 2 との比率(t 1 /t 2 であるセパ
レータの圧縮比率を1.1以上として電解液の保持力を
高くし電池のトリクル寿命を長寿命化することができ
る。 【0007】 【実施例】以下、本発明の実施例について具体的に説明
する。供試電池は12V6.5Ah(20HR)の密閉
形鉛蓄電池として試験を行った。0.08%のカルシウ
ムと0.8%の錫を含有した鉛合金を用いて鋳造方式に
より作成した格子に鉛酸化物を希硫酸で練合したペース
トを充填して未化成極板を得た。図1において、この時
に用いた正極格子枠の横骨1の断面積Wは7mm2 およ
び5mm2 とし、正極格子枠の縦骨2の断面積Yをその
効果を観るため太さを調整し、Y/Wがそれぞれ変化す
るように0.89〜2.8となるように変化させた。 【0008】この極板の寸法は正極,負極とも高さが6
2mm,幅が45mm、厚みはそれぞれ3.5mm,
2.0mmであり、従って厚みを一定にするための格子
枠の縦骨の断面積の増加は幅方向に太くすることにより
対処した。さらに、この極板耳部はそれぞれ長さ15m
m,幅5mmと同じものを用いた。 【0009】セパレータとしては直径2ミクロン以下の
ガラス繊維をマット状にして厚み2.0mmのものを用
い、正極3枚と負極4枚とをセパレータを挟んで交互に
合わせ、正極と負極の耳部がそれぞれ対応する形で同じ
側に位置するようにして、同極性を有する棚部の溶接を
行い極板群を構成した。 【0010】極板群圧力がセパレータに20Kg/dm
2 加わった際の厚みt1 に対して加圧状態での厚みt2
においてt1 /t2 をセパレータ圧縮比率とした。 【0011】この極板群を用いて電池を構成し常法によ
り、電解液を注液し、電槽化成を行い完成させた電池に
て各々トリクル寿命試験を行った。試験条件は13.8
Vの定電圧充電にて雰囲気温度は格子の腐食を加速させ
るとともに、UPSのトランス近辺に設置されたことを
想定した温度60℃で3週間連続し、その後0.25C
A放電にて容量を確認した。この容量が初期の50%以
下になった時点を寿命終了時期とし前回の容量との直線
関係より寿命結果回数を判断した。 【0012】供試電池に用いた格子枠の骨は横骨の断面
積Wを7.0mm2 として縦骨の断面積Yは6.2〜1
9.6mm2 に変化させた寿命試験結果を表1に示し
た。 【0013】 【表1】【0014】さらに、同様に横骨の断面積Wを5.0m
2 として縦骨の断面積Yを5.0〜14.0mm2
変化させ、寿命までの回数を測定し、その結果を表2に
示した。 【0015】 【表2】【0016】さらに、この条件の中でセパレータの圧縮
比率を1.0,1.1,1.3と変化させた電池も合わ
せて寿命評価を行った。 【0017】その結果、すべての場合においてセパレー
タの圧縮比率1.0(電池No.A,B,G,K,Q)
の電池は圧縮比率1.1〜1.3の範囲の電池に比較し
て寿命が劣る結果となった。これは正極活物質の充放電
に伴う膨張収縮を押さえ込むことで軟化現象を抑制して
いることに起因する。次に、セパレータの圧縮比率が
1.1〜1.3の電池においては格子枠の縦横骨の影響
を受けるものの寿命特性は安定した結果が得られた。従
って、本来の寿命特性を得るにはセパレータの圧縮比率
が1.1以上において有効である。 【0018】そして、格子枠の縦骨の断面積が増加する
につれトリクル寿命回数は増加するが、格子枠の縦骨の
断面積Yが格子枠の横骨の断面積Wよりも2倍もしくは
2倍以上になると寿命特性が安定する。その原因は格子
体の腐食による格子の伸びの発生が抑制され格子と活物
質との間の密着性が安定するからであり、本来の活物質
の特性、すなわち安定した電池特性を発揮できるためと
考えられる。 【0019】 【発明の効果】以上のように本発明は、鉛−カルシウム
−錫の合金製の正極格子において、格子枠の縦骨の断面
積を横骨の断面積の2倍もしくは2倍以上とし、かつ電
池構成時にセパレータの所定加圧状態での厚みと電池構
成後のセパレータの厚みとの比率であるセパレータの圧
縮比率を1.1以上とした密閉形鉛蓄電池であり、これ
により、セパレータの圧縮比率を増加させトリクル長寿
命化を実現し、電池容量を損なわずかつ正極格子の伸び
を抑制し、格子体と活物質との密着性を安定させ、本来
の活物質特性を発揮できる信頼性の高い密閉形鉛蓄電池
を供給できるものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sealed lead-acid battery. 2. Description of the Related Art Conventionally, the alloy of the positive electrode grid of a sealed lead-acid battery is composed of lead-calcium-tin, and the total cross-sectional area of the vertical and horizontal bones forming the grid is determined by the accuracy of the electrode plate thickness and the manufacturing point. Therefore, although the shape may be slightly different, the cross-sectional areas of the vertical bone and the horizontal bone were almost the same. Furthermore, in the positive electrode grid, the frame (horizontal bone) of the current collecting portion of the electrode plate is made thicker in consideration of corrosion, or the volume of the horizontal bone of the positive electrode plate is improved as disclosed in JP-A-5-234595. Has also been presented. In recent years, as the trickle life of batteries has been prolonged, there is also a tendency to address the problem by increasing the compression ratio of the separator, which is the ratio of the thickness of the separator in a predetermined pressurized state to the thickness of the separator after battery construction, in terms of battery configuration. Was. [0003] As a technique for prolonging the life of trickle in recent years, by reducing the voids of the separator by increasing the compression ratio of the separator, the ability of the electrolyte to be retained by the capillary phenomenon is improved. There is a method of suppressing the increase of the internal resistance by increasing the resistance. However, finally, the deterioration mode at the time of use largely depends on lattice corrosion of the positive electrode plate. In order to further extend the service life, it was necessary to increase the cross-sectional area of the positive electrode grid. However, when a trickle is used for a long period of time, the positive grid inside the battery tends to grow significantly with corrosion, and if the cross-sectional area of the grid bone is increased, the corrosion deterioration and elongation can be delayed, but the final growth of the grid bone will increase. Tends to be larger. [0004] As a device using these batteries, there is a tendency that the installation area is small in order to use the batteries incorporated in an uninterruptible power supply (UPS). For this reason, a vertically long electrode plate is adopted. Furthermore, when a battery is installed near a transformer or the like, the temperature of the battery rises, and as a result, the corrosion and elongation of the grid are accelerated, and the adhesion to the active material is degraded. Cracks, and the battery life is greatly reduced. [0005] In order to solve this problem, a positive electrode grid used in a sealed lead-acid battery of the present invention is a positive electrode grid body made of a lead-calcium-tin alloy whose longitudinal direction is longer than the horizontal direction. a is the cross-sectional area of the longitudinal bone lattice frame with a more than two times the cross-sectional area of the lateral bone lattice frame, 20k of the separator
g / dm 2 The thickness under the pressurized condition is t 1 ,
The data thickness is expressed as t 2 / t 1 when the data thickness is t 2.
The parator compression ratio is set to 1.1 or more. DESCRIPTION OF THE PREFERRED EMBODIMENTS The sealed lead-acid battery of the present invention has a positive electrode grid made of an alloy of lead, calcium and tin, and has a shape that is longer in the vertical direction than in the horizontal direction. Then, the cross-sectional area of the vertical bone of the positive electrode grid is increased to twice or more than twice the cross-sectional area of the horizontal bone. Thereby, the elongation of the grid in the vertical direction during use of the battery is suppressed. Therefore, the active material can be prevented from falling off the grid, and the deformation of the battery case in the vertical direction can be reduced. Moreover, the separator interposed between the positive and negative electrode plates is 20 kg of the separator constituting the battery.
/ Dm thickness at 2 pressurized state (t 1) and cell of the battery configuration state
Can be life of the trickle life of the raised cells of the retention of the electrolytic solution as 1.1 or the ratio (t 1 / t 2) compression ratio of the separator is the separator thickness (t 2)
You. An embodiment of the present invention will be specifically described below. The test battery was tested as a 12 V 6.5 Ah (20 HR) sealed lead storage battery. A grid formed by a casting method using a lead alloy containing 0.08% of calcium and 0.8% of tin was filled with a paste obtained by kneading lead oxide with dilute sulfuric acid to obtain an unformed electrode plate. . In Figure 1, the cross-sectional area W of the lateral bone 1 positive grid frame used at this time is set to 7 mm 2 and 5 mm 2, to adjust the thickness to watch the effect the cross-sectional area Y of the vertical bone 2 of the positive electrode lattice frame, Y / W was changed so as to be 0.89 to 2.8, respectively. The dimensions of this electrode plate are 6 for both the positive and negative electrodes.
2mm, width 45mm, thickness 3.5mm,
Therefore, the increase in the cross-sectional area of the vertical bone of the lattice frame for keeping the thickness constant was dealt with by increasing the width in the width direction. In addition, each of these pole ears is 15m long
m and the same width as 5 mm were used. As a separator, a glass fiber having a diameter of 2 μm or less and having a thickness of 2.0 mm in a mat shape is used, and three positive electrodes and four negative electrodes are alternately arranged with a separator interposed therebetween. Were placed on the same side in a corresponding manner, and a shelf having the same polarity was welded to form an electrode plate group. [0010] The electrode group pressure is 20 kg / dm
The thickness t 2 in a pressurized state with respect to the thickness t 1 when applied 2
In the above, t 1 / t 2 was set as the separator compression ratio. A battery was constructed using this electrode plate group, and an electrolytic solution was injected by a conventional method, and a battery case formation was performed. Each of the completed batteries was subjected to a trickle life test. Test conditions are 13.8
At constant voltage charging of V, the ambient temperature accelerates the corrosion of the grid, and continues for 3 weeks at a temperature of 60 ° C. assuming that it is installed near the UPS transformer, and then 0.25 C
The capacity was confirmed by A discharge. The time when this capacity became 50% or less of the initial value was regarded as the end of life, and the number of life results was determined from the linear relationship with the previous capacity. The cross-sectional area W of the horizontal frame is 7.0 mm 2 , and the cross-sectional area Y of the vertical bone is 6.2-1.
Table 1 shows the results of the life test in which the thickness was changed to 9.6 mm 2 . [Table 1] Furthermore, similarly, the cross-sectional area W of the transverse bone is set to 5.0 m.
The cross-sectional area Y of the vertical bone is changed with 5.0~14.0Mm 2 as m 2, measured the number of the life, and the results are shown in Table 2. [Table 2] Further, under these conditions, the life of the battery was also evaluated in which the compression ratio of the separator was changed to 1.0, 1.1, and 1.3. As a result, in all cases, the compression ratio of the separator was 1.0 (Battery No. A, B, G, K, Q)
The battery of No. 3 had a shorter life than the battery having the compression ratio in the range of 1.1 to 1.3. This is because the softening phenomenon is suppressed by suppressing expansion and contraction caused by charging and discharging of the positive electrode active material. Next, in the battery in which the compression ratio of the separator was 1.1 to 1.3, the result that the life characteristics were stabilized though the influence of the vertical and horizontal bones of the lattice frame was obtained. Therefore, it is effective to obtain the original life characteristics when the compression ratio of the separator is 1.1 or more. Then, as the cross-sectional area of the vertical bone of the lattice frame increases, the number of times of the trickle life increases, but the cross-sectional area Y of the vertical bone of the lattice frame is twice or twice the cross-sectional area W of the horizontal bone of the lattice frame. When it is twice or more, the life characteristics are stabilized. The cause is that the occurrence of lattice elongation due to corrosion of the lattice body is suppressed and the adhesion between the lattice and the active material is stabilized, and the characteristics of the original active material, that is, stable battery characteristics can be exhibited. Conceivable. As described above, according to the present invention, in the positive electrode grid made of a lead-calcium-tin alloy, the cross-sectional area of the vertical bone of the grid frame is twice or more than the cross-sectional area of the horizontal bone. And a sealed lead-acid battery in which the compression ratio of the separator, which is the ratio between the thickness of the separator in a predetermined pressurized state and the thickness of the separator after the battery is configured at the time of battery configuration, is 1.1 or more. To increase the life of the trickle by increasing the compression ratio, suppress the elongation of the positive electrode grid while slightly reducing the battery capacity, stabilize the adhesion between the grid and the active material, and demonstrate the original active material characteristics It can supply highly sealed lead-acid batteries.

【図面の簡単な説明】 【図1】本発明の実施例に用いた正極格子の正面図 【符号の説明】 1 正極格子枠の横骨 2 正極格子枠の縦骨[Brief description of the drawings] FIG. 1 is a front view of a positive electrode grid used in an example of the present invention. [Explanation of symbols] 1 Horizontal bone of positive electrode grid frame 2 Vertical bone of positive grid frame

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−349497(JP,A) 特開 平8−236143(JP,A) 特開 平5−234595(JP,A) 特開 昭60−117557(JP,A) 特開 昭53−66532(JP,A) 実開 昭60−3657(JP,U) (58)調査した分野(Int.Cl.7,DB名) H01M 10/06 H01M 4/73 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-6-349497 (JP, A) JP-A-8-236143 (JP, A) JP-A-5-234595 (JP, A) JP-A-60-1985 117557 (JP, A) JP-A-53-66532 (JP, A) JP-A-60-3657 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 10/06 H01M 4 / 73

Claims (1)

(57)【特許請求の範囲】 【請求項1】鉛−カルシウム−錫合金製の正極格子を備
えた密閉形鉛蓄電池において、前記正極格子の縦寸法は
横寸法より大であり、前記格子体の格子枠の縦骨の断面
積を格子枠の横骨の断面積の2倍以上とし、セパレータ
20kg/dm 2 加圧状態での厚みを 1 、電池構成後
のセパレータの厚みを 2 としたときにt 1 /t 2 であら
わされるセパレータの圧縮比率を1.1以上とした密閉
形鉛蓄電池。
(57) [Claims] [Claim 1] A positive electrode grid made of a lead-calcium-tin alloy is provided.
In the sealed lead-acid battery obtained, the vertical dimension of the positive electrode grid is
The cross-sectional area of the vertical bone of the lattice frame of the lattice body is at least twice the cross-sectional area of the horizontal bone of the lattice frame, and the thickness of the separator under a pressure of 20 kg / dm 2 is t 1 , t 1 / t 2 Deara the thickness of the separator after the battery structure is taken as t 2
A sealed lead-acid battery having a separator compression ratio of 1.1 or more.
JP34102496A 1996-12-20 1996-12-20 Sealed lead-acid battery Expired - Fee Related JP3405101B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34102496A JP3405101B2 (en) 1996-12-20 1996-12-20 Sealed lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34102496A JP3405101B2 (en) 1996-12-20 1996-12-20 Sealed lead-acid battery

Publications (2)

Publication Number Publication Date
JPH10188999A JPH10188999A (en) 1998-07-21
JP3405101B2 true JP3405101B2 (en) 2003-05-12

Family

ID=18342523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34102496A Expired - Fee Related JP3405101B2 (en) 1996-12-20 1996-12-20 Sealed lead-acid battery

Country Status (1)

Country Link
JP (1) JP3405101B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4281233B2 (en) * 2000-09-06 2009-06-17 新神戸電機株式会社 Lead-acid battery grid
JP4675156B2 (en) * 2005-05-25 2011-04-20 古河電池株式会社 Control valve type lead acid battery
JP5787086B2 (en) * 2011-11-28 2015-09-30 株式会社Gsユアサ Lead-acid battery positive electrode plate and lead-acid battery using the positive electrode plate
JP6326928B2 (en) * 2013-05-07 2018-05-23 株式会社Gsユアサ Control valve type lead acid battery
JP7188398B2 (en) * 2017-12-14 2022-12-13 株式会社Gsユアサ Valve-regulated lead-acid battery

Also Published As

Publication number Publication date
JPH10188999A (en) 1998-07-21

Similar Documents

Publication Publication Date Title
JP5168893B2 (en) Lead acid battery
JP3405101B2 (en) Sealed lead-acid battery
JP4433593B2 (en) Control valve type lead acid battery
JP4265260B2 (en) Control valve type lead acid battery
JP3412300B2 (en) Lead storage battery
JP2002075379A (en) Lead-acid battery
JP2001155722A (en) Sealed lead acid storage battery and method of fabricating it
JP2001202988A (en) Sealed lead-acid battery
JPS603489Y2 (en) lead acid battery
JP2002222662A (en) Lead storage battery
JP4654477B2 (en) Cylindrical sealed lead-acid battery
JP2001085046A (en) Sealed lead-acid battery
JP2003346790A (en) Lead acid storage battery
JP2581424Y2 (en) Anode plate for lead-acid battery
JP2001068117A (en) Lead-acid battery
JP2002231302A (en) Control valve type lead-acid battery
JP3577709B2 (en) Sealed lead-acid battery
JP2001332268A (en) Lead battery having control valve
JPH10294113A (en) Positive electrode plate for sealed lead-acid battery
JP4742424B2 (en) Control valve type lead acid battery
JP2961770B2 (en) Clad lead-acid battery
JP3010691B2 (en) Battery forming method for sealed lead-acid batteries
JPH06187967A (en) Clad type sealed lead-acid battery
JPH0770321B2 (en) Sealed lead acid battery
JPH05159797A (en) Sealed lead-acid battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees