JP3403100B2 - Manufacturing method of friction material used for vibration wave motor - Google Patents

Manufacturing method of friction material used for vibration wave motor

Info

Publication number
JP3403100B2
JP3403100B2 JP34956198A JP34956198A JP3403100B2 JP 3403100 B2 JP3403100 B2 JP 3403100B2 JP 34956198 A JP34956198 A JP 34956198A JP 34956198 A JP34956198 A JP 34956198A JP 3403100 B2 JP3403100 B2 JP 3403100B2
Authority
JP
Japan
Prior art keywords
friction material
friction
fluororesin
vibration wave
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34956198A
Other languages
Japanese (ja)
Other versions
JP2000175471A (en
Inventor
暁 北島
裕 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP34956198A priority Critical patent/JP3403100B2/en
Priority to US09/456,291 priority patent/US6643906B2/en
Publication of JP2000175471A publication Critical patent/JP2000175471A/en
Application granted granted Critical
Publication of JP3403100B2 publication Critical patent/JP3403100B2/en
Priority to US10/643,998 priority patent/US6726866B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、振動波モータの摩
擦材及びその製造方法、さらにそれを用いた振動波モー
タ並びに機器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a friction material for a vibration wave motor, a method for manufacturing the friction material, and a vibration wave motor and equipment using the friction material.

【0002】[0002]

【従来の技術】一般に振動波モータは、振動体の表面上
の各点に円又は楕円運動を起こさせ、これに押圧された
接触体を摩擦駆動するものである。
2. Description of the Related Art Generally, a vibration wave motor causes a circular or elliptical motion at each point on the surface of a vibrating body and frictionally drives a contact body pressed by the circular or elliptical motion.

【0003】進行性振動波を利用した振動波モータの原
理的概要は下記のようである。全長がある長さλの整数
倍であるような金属等の弾性体材料でリング状に形成さ
れた弾性体の片面に、周方向に配列された二群の複数個
の圧電素子を接着したものを振動体(ステータ)とす
る。
The principle outline of a vibration wave motor using progressive vibration waves is as follows. One in which two or more piezoelectric elements arranged in the circumferential direction are bonded to one surface of an elastic body formed in a ring shape from an elastic material such as metal whose total length is an integral multiple of a certain length λ Is a vibrating body (stator).

【0004】これらの圧電素子は、各群内ではλ/2の
ピッチにて、かつ交互に逆の伸縮極性となるように配列
されており、また両群間にはλ/4の奇数倍のずれがあ
るように配列されている。圧電素子の両群にはそれぞれ
電極膜が施されている。
These piezoelectric elements are arranged at a pitch of λ / 2 in each group and are alternately arranged to have opposite expansion and contraction polarities, and between the groups, an odd multiple of λ / 4 is arranged. It is arranged so that there is a gap. Both groups of piezoelectric elements are provided with electrode films.

【0005】いずれかの一群(以下A相と称す)のみに
交流電圧を印加すれば、上記振動体は、前記A相の各圧
電素子の中央点及びそこからλ/2おきの点が腹の位
置、また前記腹の位置間の中央点が節の位置であるよう
な曲げ振動の定在波(波長λ)が弾性体の全周にわたっ
て発生する。
When an AC voltage is applied to only one of the groups (hereinafter referred to as the A phase), the vibrating body has an antinode at the center point of each piezoelectric element of the A phase and every λ / 2 point from the center point. A standing wave (wavelength λ) of bending vibration is generated over the entire circumference of the elastic body such that the center point between the positions and the position of the antinode is the node position.

【0006】また、他の一群(以下B相と称す)のみに
交流電圧を印加すると、同様に定在波が発生するが、そ
の腹及び節の位置はA相による定在波に対して、位置的
にλ/4ずれた位相になる。
Further, when an AC voltage is applied only to another group (hereinafter referred to as the B phase), a standing wave is generated in the same manner, but the antinodes and the positions of the nodes are different from those of the A phase. The phase is shifted by λ / 4 in terms of position.

【0007】両A、B相に、周波数が同じで、かつ互い
に90°の時間的位相差を有する交番信号を同時に印加
すると、両者の定在波の合成の結果、弾性体には周方向
に振動する曲げ振動の進行波(波長λ)が発生し、この
とき、厚みを有する上記弾性体の表面の各点は楕円運動
をする。
When alternating signals having the same frequency and a temporal phase difference of 90 ° are simultaneously applied to both the A and B phases, the standing waves of the both are combined, and as a result, the elastic body moves in the circumferential direction. A traveling wave (wavelength λ) of the oscillating bending vibration is generated, and at this time, each point on the surface of the elastic body having a thickness makes an elliptic motion.

【0008】よって、振動体の片面に接触体(例えば移
動体としてのロータ)として、例えばリング状の接触体
を直接加圧接触させておけば、前記接触体は振動体から
の周方向の摩擦力を受け回転駆動される。
Therefore, if a ring-shaped contact body (for example, a rotor as a moving body) is directly brought into pressure contact with one surface of the vibrating body, the contact body is rubbed in the circumferential direction from the vibrating body. It receives force and is driven to rotate.

【0009】[0009]

【発明が解決しようとする課題】振動波モータ用の摩擦
材については従来から多種多様の材料が提案されている
が、上述の特徴を有するものとして、例えば、特開平1
−129781号公報、特開平1−206880号公報
などのようにフッ素樹脂と強化繊維や高分子材料などの
複合材料が耐摩耗性が良く長期の耐久寿命と摩擦係数の
安定性から振動波モータ用の摩擦材に適した材料として
開示されている。
A wide variety of materials have been proposed in the past as friction materials for vibration wave motors. As a material having the above-mentioned characteristics, for example, Japanese Patent Application Laid-Open No. HEI-1 is proposed.
As disclosed in JP-A-129781 and JP-A-1-206880, a composite material such as a fluororesin and a reinforced fiber or a polymer material has good wear resistance and is suitable for a vibration wave motor because of its long life and stability of friction coefficient. Is disclosed as a material suitable for the friction material.

【0010】このようなフッ素樹脂複合材料を製造する
方法としては、一般に圧縮成形法(プレス成形法)を利
用する方法が知られている。これはフッ素樹脂粉末と他
の材料粉末などを均一に混合し、金型に充填し、プレス
により成形して作る圧縮成形法であり、その後この成形
体をフッ素樹脂の融点以上で焼成し固めて焼成体である
フッ素樹脂複合材料とする。
As a method for producing such a fluororesin composite material, a method utilizing a compression molding method (press molding method) is generally known. This is a compression molding method in which fluororesin powder and other material powders are uniformly mixed, filled in a mold, and molded by pressing.After that, this molded body is baked at a temperature not lower than the melting point of fluororesin and solidified. A fluororesin composite material that is a fired body is used.

【0011】しかしながら、上述のようにして作成し
た、炭素繊維を添加した棒状のフッ素樹脂複合材料を切
断(スライス)して厚さ0.5mm程度の丸形状のシー
トを作り、振動波モータ用の摩擦材として使用し摩耗の
仕方を観察したところ、振動波モータの駆動中に摩擦材
が摩擦面全面が徐々に摩耗するにつれ繊維状の炭素が繊
維の状態のまま抜け落ち、摩擦材の摩耗が急速に増大し
ていくことがわかった。
However, the rod-shaped fluororesin composite material to which carbon fiber is added, which has been prepared as described above, is cut (sliced) to form a round sheet having a thickness of about 0.5 mm, which is used for a vibration wave motor. When used as a friction material and observed how it wears, as the friction material gradually wears over the entire friction surface during driving of the vibration wave motor, fibrous carbon falls off in the form of fibers, and the friction material wears rapidly. It turned out to increase to.

【0012】また、このような棒材を切断して作成した
摩擦材は、大体の炭素繊維が切断面(スライス面)に対
して平行すなわち横になって寝ている様な状態の配向性
を有することも観察の結果わかった。このスライスした
材料を摩擦材として利用する場合、リング状の金属部品
に接着するために、振動体と接触体との摩擦接触部すな
わち摩擦面は丸棒の切断面(スライス面)と一致する。
その結果フッ素樹脂中の炭素繊維は寝た様な状態に配向
し前述のように繊維のまま簡単に抜け落ちやすく、摩耗
が増えることが認められた。
Further, the friction material prepared by cutting such a bar material has an orientation in which most carbon fibers lie parallel to the cutting surface (slice surface), that is, lying down. It was also found as a result of the observation that it has. When this sliced material is used as a friction material, the frictional contact portion between the vibrating body and the contact body, that is, the frictional surface, coincides with the cut surface (slice surface) of the round bar in order to adhere to the ring-shaped metal part.
As a result, it was confirmed that the carbon fibers in the fluororesin were oriented in a lying state and, as described above, the fibers were easily slipped out and abrasion was increased.

【0013】また、元来フッ素樹脂は他の材料と反応し
て接着する性質が少なく炭素繊維はいわばフッ素樹脂の
中に機械的に埋め込まれたような状態であり、たとえば
顕著な例として球状の炭素であるとか、長さの極く短い
炭素繊維は丸棒から切断しただけでも容易に抜け落ちる
ことがあり、さらにフッ素樹脂がポーラスであるとか比
重が小さいとかの場合は特に顕著であることもわかって
きた。
Originally, the fluororesin has a small property of reacting with other materials and adhering to it, and the carbon fiber is, so to speak, mechanically embedded in the fluororesin. It was also found that carbon or carbon fiber with an extremely short length can easily fall out even by cutting it from a round bar, and it is also particularly remarkable when the fluororesin is porous or has a low specific gravity. Came.

【0014】本発明の目的は上述の急速な多量の摩耗の
問題の解決を計るもので、圧縮成形法によって作ったフ
ッ素樹脂複合材料を振動波モータ用の摩擦材として利用
することにより、耐摩耗性に優れ、信頼性の高い摩擦材
を大量にかつ安価に提供するものである。
An object of the present invention is to solve the above-mentioned problem of rapid and large amount of wear. By using a fluororesin composite material produced by a compression molding method as a friction material for a vibration wave motor, wear resistance is improved. A large amount of inexpensive and highly reliable friction material is provided at low cost.

【0015】[0015]

【0016】[0016]

【課題を解決するための手段】即ち、本発明は、振動波
モータの振動を形成する振動体と、該振動体に加圧され
て接触し振動によって振動体と相対移動する接触体との
摩擦接触面に用いる摩擦材の製造方法において、フッ素
樹脂粉末と繊維状の材料を圧縮成形して得られたフッ素
樹脂を主成分とする成形体を焼成してフッ素樹脂複合材
を生成した後、切削加工によりフッ素樹脂複合材を外周
部からシート状に削り出して成形することを特徴とする
ものである。
That is, the present invention relates to friction between a vibrating body that forms vibration of a vibration wave motor and a contact body that is pressed against the vibrating body and comes into contact with the vibrating body to move relative to the vibrating body. In a method of manufacturing a friction material used for a contact surface , a fluororesin composite material is obtained by firing a molded body containing a fluororesin as a main component, which is obtained by compression molding fluororesin powder and a fibrous material.
After generating the
It is characterized in that it is carved from the part into a sheet shape
It is a thing.

【0017】また、フッ素樹脂複合材の比重が理論比重
の80%以上となるように圧縮成形を行うことが好まし
い。また、フッ素樹脂複合材が円筒または柱状であり、
その外周部を切削加工によりシート状に削り出すのが好
ましい。また、繊維状の材料は長さが50μm〜350
μmの炭素繊維であることが好ましい。また、前記シー
ト状に削り出して成形した摩擦材に含有されている繊維
状の材料が、摩擦接触面に対しておよそ垂直に配向して
いることが好ましい。
The specific gravity of the fluororesin composite material is the theoretical specific gravity.
It is preferable to perform compression molding so that it is 80% or more of
Yes. Further, the fluororesin composite material is cylindrical or columnar,
It is preferable to cut the outer periphery into a sheet by cutting.
Good The fibrous material has a length of 50 μm to 350 μm.
It is preferable that the carbon fiber is μm. Also, the sea
Fibers contained in the friction material formed by carving into a shape
Material is oriented approximately perpendicular to the friction contact surface
Is preferred.

【0018】[0018]

【0019】[0019]

【0020】[0020]

【0021】[0021]

【発明の実施の形態】本発明は、振動波モータの振動
形成する振動体と、振動体に加圧されて接触し振動によ
って振動体と相対移動する接触体との摩擦接触に用い
る摩擦材の製造方法において、フッ素樹脂粉末と繊維状
の材料を圧縮成形して得られたフッ素樹脂を主成分とす
る成形体を焼成してフッ素樹脂複合材を生成した後、切
削加工によりフッ素樹脂複合材を外周部からシート状に
削り出して成形することを特徴とするものであり、この
摩擦材の使用により多量の摩耗の発生をなくすことがで
きる。
DETAILED DESCRIPTION OF THE INVENTION The present invention includes a vibrating body forming the vibration of the vibration wave motor, in contact with the vibration pressurized to the vibrating body
In the method of manufacturing a friction material used for the frictional contact surface between the vibrating body and the contact body that moves relative to the vibrating body , the main component is the fluororesin obtained by compression molding the fluororesin powder and the fibrous material .
After firing the molded product to produce a fluororesin composite,
Fluorine resin composite material is turned into a sheet from the outer periphery by machining
It is characterized by shaving and molding.
The use of friction material can eliminate the occurrence of a large amount of wear.
Wear.

【0022】[0022]

【0023】また、本発明の摩擦材は、フッ素樹脂を主
成分とし繊維状の材料が添加されて構成され、該繊維が
摩擦接触面(摩擦面)に対しおおよそ垂直に配向されて
おり、理論比重に対し80%以上の比重を有する摩擦材
であり、該摩擦材の使用により多量の摩耗の発生をなく
すことができ、さらに該繊維として長さ50μm〜35
0μm、直径数μm〜20μmの炭素繊維を用いれば、
その摩耗防止効果は大きく振動波モータ用の摩擦材とし
て安定して少ない摩耗になる。
Further, the friction material of the present invention is constituted by adding a fibrous material containing a fluororesin as a main component, and the fibers are oriented substantially perpendicular to the friction contact surface (friction surface). It is a friction material having a specific gravity of 80% or more with respect to the specific gravity, and by using the friction material, a large amount of abrasion can be eliminated, and the length of the fiber is 50 μm to 35 μm.
If a carbon fiber having a diameter of 0 μm and a diameter of several μm to 20 μm is used,
Its wear-preventing effect is great, and it is stable and has little wear as a friction material for a vibration wave motor.

【0024】以下、本発明を図面に基づいて説明する。
図1は本発明の振動波モータの一実施の形態を示す断面
図である。図中、1は振動体でステンレス鋼からなるリ
ング状の金属弾性体3の一端面に、前述の様にリング状
で複数個に分極された2群の圧電素子4を耐熱性のエボ
キシ樹脂系接着剤で接着し、金属弾性体3のもう一方の
端面には摩擦材5を同様に接着して形成した。
The present invention will be described below with reference to the drawings.
FIG. 1 is a sectional view showing an embodiment of a vibration wave motor of the present invention. In the figure, reference numeral 1 is a vibrating body, and on one end face of a ring-shaped metallic elastic body 3 made of stainless steel, two groups of piezoelectric elements 4 each having a ring shape and polarized as described above are provided on a heat-resistant epoxy resin system. The metal elastic body 3 was bonded with an adhesive, and the friction material 5 was similarly bonded to the other end surface of the metal elastic body 3.

【0025】一方、移動体2側のアルミニウム合金から
なるリング状の接触体6の摩擦摺動面には摩擦材6aを
設けてある。接触体6はゴムリング7を介して支持体8
に取付けてあり、支持体8はネジ11により出力軸12
に固定されている。そして、振動体1の摩擦材5と接触
体6の摩擦材6aは接触して摩擦摺動面を形成し、加圧
用の板バネ16により、軸方向に総圧で5kgfの荷重
で加圧されている。9はベアリング、13は振動体を固
定するプレート、14、15は与圧カラー、17はカラ
ーでネジ11aにより出力軸12に固定されている。1
8はカバーである。
On the other hand, a friction material 6a is provided on the friction sliding surface of the ring-shaped contact body 6 made of an aluminum alloy on the moving body 2 side. The contact body 6 is a support body 8 via a rubber ring 7.
Mounted on the output shaft 12 by means of screws 11.
It is fixed to. Then, the friction material 5 of the vibrating body 1 and the friction material 6a of the contact body 6 contact each other to form a friction sliding surface, and the leaf spring 16 for pressurization applies a total pressure of 5 kgf in the axial direction. ing. Reference numeral 9 is a bearing, 13 is a plate for fixing the vibrating body, 14 and 15 are pressurizing collars, and 17 is a collar which is fixed to the output shaft 12 by a screw 11a. 1
8 is a cover.

【0026】シート状の摩擦材5には、円周状の段差5
aを機械加工により設けている。また、図1の摩擦材5
と6aの接触部(摩擦面)の幅aは0.8mm、接触部
(摺動面)の直径bは30mmである。
The sheet-shaped friction material 5 has a circumferential step 5
a is provided by machining. Also, the friction material 5 of FIG.
And 6a, the width a of the contact portion (friction surface) is 0.8 mm, and the diameter b of the contact portion (sliding surface) is 30 mm.

【0027】そして、交互に厚み方向に分極処理された
2群の圧電素子4に振動体1に固有の周波数の交流電圧
を印加すると、振動体1は共振を起こし、その周方向に
進行性振動波を生じ、摩擦材5を介して摩擦材6aに摩
擦力が作用し、移動体2は回転駆動する。
When an alternating voltage having a frequency unique to the vibrating body 1 is applied to the two groups of piezoelectric elements 4 which are polarized in the thickness direction alternately, the vibrating body 1 resonates and progressive vibration occurs in the circumferential direction. A wave is generated and a frictional force acts on the friction material 6a via the friction material 5, and the moving body 2 is rotationally driven.

【0028】本発明の摩擦材は、摩擦材5および6aの
両方に使用してもよく、またいずれか一方に使用しても
よい。一方に本発明の摩擦材を使用した場合には、もう
一方には通常の摩擦材を使用することができる。通常の
摩擦材としては、硬質でじん性があり、摩耗のほとんど
ないアルミ−シリコン合金、焼入鋼、セラミックス、超
硬合金等が挙げられるが、本実施例ではフッ素樹脂複合
材料を摩擦材5に、摩擦材6aはセラミックス(アルミ
ナ)を用いた。
The friction material of the present invention may be used for both the friction materials 5 and 6a, or may be used for either one of them. When the friction material of the present invention is used for one side, a normal friction material can be used for the other side. Usual friction materials include aluminum-silicon alloy, hardened, tough, and hardly worn, hardened steel, ceramics, cemented carbide, etc. In this embodiment, a fluororesin composite material is used as the friction material 5. In addition, ceramics (alumina) was used as the friction material 6a.

【0029】[0029]

【実施例】以下実施例について、従来例と比較しながら
説明し、本発明の詳細を明らかにする。
EXAMPLES Examples will be described below in comparison with conventional examples to clarify the details of the present invention.

【0030】実施例1 摩擦材は以下のようにして作成した。フッ素樹脂粉末
(ポリテトラフルオロエチレン:PTFE、ダイキン工
業社製、商品名 ポリフロン M12)80重量%に炭
素繊維(短繊維:チップファイバー、直径約13μm、
長さ約110μm、大阪ガス社製、商品名 SG−24
9)20重量%をヘキシェルミキサーにより均一に混合
した後に、円筒形の金型に充填し、圧力500kg/c
2 にて均一にプレスにて加圧し、圧縮成形し、外径2
0cm、内径5cm、長さ12cmの円筒状の成形体を
作成した。その後、温度380℃で3時間焼成し焼成体
を得た。
Example 1 A friction material was prepared as follows. Fluorine resin powder (polytetrafluoroethylene: PTFE, manufactured by Daikin Industries, Ltd., trade name: Polyflon M12) in 80% by weight of carbon fiber (short fiber: chip fiber, diameter of about 13 μm,
Length about 110 μm, manufactured by Osaka Gas Co., Ltd., trade name SG-24
9) After uniformly mixing 20% by weight with a hexshell mixer, the mixture was filled in a cylindrical mold and the pressure was 500 kg / c.
uniformly pressed by a press at m 2, and compression molded, the outer diameter 2
A cylindrical molded body having 0 cm, an inner diameter of 5 cm and a length of 12 cm was prepared. Then, it baked at the temperature of 380 degreeC for 3 hours, and the baked body was obtained.

【0031】その後、図2に示すように、旋盤で焼成体
30を回転させながら焼成体の外周面に幅15cmの超
硬製の切削刃31を当て厚さ0.5mmになるように、
焼成体の回転と刃の焼成体の中心方向への移動を同期さ
せた装置を用いて切削を行い、焼成体の外周面から切削
刃であたかも皮をむくようにシート32を削り出した。
シート32は切削加工による応力と熱でカール(曲が
り)を生じながら帯状になった。
Thereafter, as shown in FIG. 2, while rotating the fired body 30 by a lathe, a carbide blade 21 having a width of 15 cm is applied to the outer peripheral surface of the fired body so that the thickness becomes 0.5 mm.
Cutting was performed using an apparatus in which the rotation of the fired body and the movement of the blade toward the center of the fired body were synchronized, and the sheet 32 was cut from the outer peripheral surface of the fired body as if peeling with a cutting blade.
The sheet 32 was curled (bent) due to the stress and heat generated by the cutting process and formed into a band shape.

【0032】次に、シート32をトムソン刃を埋め込ん
だ抜き型とプレスを用いて、図1の摩擦材5を得るため
にシート32をリング状に打抜いて金属弾性体3に接着
して、摩擦材5の凸部5aを機械加工により形成した。
その摩擦材5を設けた振動波モータを実際に駆動させ、
負荷300g・cm、回転数300rpmでで評価し
た。10台の振動波モータでの100時間当りの摩擦材
5の摩耗量は5〜8μm/100Hであった。
Next, the sheet 32 is punched in a ring shape and bonded to the metal elastic body 3 in order to obtain the friction material 5 of FIG. 1 by using a punching die having a Thomson blade embedded therein and a press. The convex portion 5a of the friction material 5 was formed by machining.
The vibration wave motor provided with the friction material 5 is actually driven,
The evaluation was performed under a load of 300 g · cm and a rotation speed of 300 rpm. The amount of wear of the friction material 5 per 100 hours with 10 vibration wave motors was 5 to 8 μm / 100H.

【0033】なお、摩耗量はあらかじめ凸部5aの高さ
を測定しておき、評価後再測定しその差を摩耗量とし
た。また、摩擦材6aは摩耗はほとんどなかった。
The amount of wear was obtained by measuring the height of the convex portion 5a in advance, re-measured after evaluation, and taking the difference as the amount of wear. Moreover, the friction material 6a was scarcely worn.

【0034】比較例1 実施例1と同じ原料で同じように均一混合した後に、円
筒状の実施例1とは異なる金型に充填し、圧力500k
g/cm2 で均一に加圧し圧縮成形を行い、直径60m
m、内径10mm、長さ12cmの丸棒の成形体を作
り、その後、実施例1と同条件で焼成し焼成体を得た。
Comparative Example 1 The same raw materials as in Example 1 were mixed in the same manner and then charged in a cylindrical mold different from that of Example 1, and the pressure was 500 k.
Pressurized uniformly at g / cm 2 for compression molding, diameter 60m
A molded body of a round bar having a diameter of m, an inner diameter of 10 mm and a length of 12 cm was produced, and then fired under the same conditions as in Example 1 to obtain a fired body.

【0035】そして、得られた丸棒を旋盤に取り付け回
転させながら超硬製のナイフ状の刃で半径方向に突切り
ながら丸棒を切断(スライス)して厚さ0.5mmの薄
い円盤状の材料を得た後、実施例1と同様の抜き型とプ
レスで、摩擦材5を得るためにリング状に打抜いて接着
し、実施例1と同様に摩擦材5の凸部5aを削り出し
た。その摩擦材5を設けた振動波モータで同条件で評価
した。10台の振動波モータの100時間当りの摩擦材
5の摩耗量は22〜35μm/100Hであった。
Then, the obtained round bar is attached to a lathe, and while being rotated, the round bar is cut (sliced) while being cut off in a radial direction with a cemented carbide knife-shaped blade to form a thin disc shape with a thickness of 0.5 mm. After obtaining the material of (1), the same punching and pressing as in Example 1 were used to punch and bond in a ring shape to obtain the friction material 5, and the convex portion 5a of the friction material 5 was scraped as in Example 1. I put it out. The vibration wave motor provided with the friction material 5 was evaluated under the same conditions. The wear amount of the friction material 5 per 100 hours of the 10 vibration wave motors was 22 to 35 μm / 100H.

【0036】上記の実施例1と比較例1について説明す
る。実施例1と比較例1の摩耗量の相違は、前述のよう
にフッ素樹脂複合材に含まれる炭素繊維の配向が摩耗面
に対して異なることに起因していると思われる。実際、
評価中に時間を追って摩擦面の炭素繊維の挙動を顕微鏡
で調べたところ、実施例1では炭素繊維は摩擦面に対し
てほぼ大体半数程度垂直に配向しており、摩擦による炭
素繊維抜けや移動は極少数の欠けたり、長さの短いもの
に限られるのに対し、比較例1では炭素繊維は摩擦面に
対してほぼ大体半数程度が摩擦面と平行であり、比較的
長い数10μm〜100μm程度の炭素繊維も接触体
(ロータ)の移動方向に押し流されるように移動してお
り、ひどいものは炭素繊維が完全に抜け落ちていること
も確認できた。両者とも成形、焼成は同条件であり、比
重も同じ2.0程度であることから、材料のち密度は同
じであり炭素繊維の移動は炭素繊維の配向性によること
は明らかと思われる。
The above Example 1 and Comparative Example 1 will be described. The difference in the amount of wear between Example 1 and Comparative Example 1 is considered to be due to the difference in the orientation of the carbon fibers contained in the fluororesin composite material with respect to the worn surface, as described above. In fact
When the behavior of the carbon fibers on the friction surface was examined with a microscope over time during the evaluation, it was found that in Example 1, the carbon fibers were oriented substantially perpendicular to the friction surface, and the carbon fibers were removed or moved due to friction. Is limited to a very small number of chips or a short length, whereas in Comparative Example 1, about half of the carbon fibers are parallel to the friction surface, and a relatively long number of 10 μm to 100 μm. It was also confirmed that the carbon fibers of a certain extent were moved so as to be swept away in the moving direction of the contact body (rotor), and in the worst case, the carbon fibers had completely fallen out. Since the molding and firing were performed under the same conditions and the specific gravities were both about 2.0, it is clear that the density of the materials is the same and the movement of the carbon fibers depends on the orientation of the carbon fibers.

【0037】ここでより詳しく炭素繊維の配向性の生じ
る理由について図3および図4を用いて説明する。図3
において、フッ素樹脂粉末に炭素繊維を混合した混合粉
末33を円筒形状の金型34内に入れ、2つのパンチ3
5a、35bで上下(両軸)(単軸プレスでも良いが成
形体を均一密度により近づけるため)から加圧し圧縮成
形を行う。(図3(a)参照)ここで金型34には芯金
36が設けられている。加圧して得られた成形体37は
中空円筒形状となる。(図3(b)参照)
Here, the reason why the orientation of the carbon fibers occurs will be described in more detail with reference to FIGS. 3 and 4. Figure 3
In, the mixed powder 33 in which the carbon fiber is mixed with the fluororesin powder is put into the cylindrical mold 34, and the two punches 3
5a and 35b are pressed from above and below (both shafts) (a single shaft press may be used, but in order to bring the molded body closer to a uniform density), and compression molding is performed. (See FIG. 3A) Here, a metal core 36 is provided on the mold 34. The molded body 37 obtained by pressing has a hollow cylindrical shape. (See Fig. 3 (b))

【0038】通常、フッ素樹脂粉末はかさ密度が低いの
で、圧縮成形により得られた成形体37の高さbは金型
に充填した混合粉の高さaに比べて1/3〜1/5にな
ってしまう。つまり圧縮過程において、フッ素樹脂粉末
が徐々に軸方向に大きく圧縮される過程において、炭素
繊維も移動と回転を行いつつ、最終的に圧縮されるまで
に位置的により安定な状態、すなわちプレスの圧縮方向
に対し垂直な向きに並ぶ。
Usually, since the fluororesin powder has a low bulk density, the height b of the compact 37 obtained by compression molding is ⅓ to ⅕ of the height a of the mixed powder filled in the mold. Become. In other words, during the compression process, the fluororesin powder is gradually and largely compressed in the axial direction, and while the carbon fiber also moves and rotates, it is in a position more stable until it is finally compressed, that is, the compression of the press. Line up in a direction perpendicular to the direction.

【0039】図4は成形体37を焼成した焼成体30を
示す概略図である。図3(b)の成形体37を焼成した
焼成体30の内部のある面38においては炭素繊維39
のほとんどが面38と平行、つまり寝た様な状態にある
ことになる(ただし繊維の軸方向の向きはランダムであ
る)。そして、焼成体30の外周面を切削しシート32
を削り出すと、炭素繊維39の一本一本の軸方向は丁度
シート32の厚さ方向Xと平行な関係にあるものが、理
論上は約半数(厳密にはシート32の厚さ方向に対し±
45 の範囲に入るものが半数近くあると言える)ある
ことになる。(図4(a)参照)こうして作成したシー
ト32から図5のように摩擦材5を打抜き加工により取
り出す。(図4(b)参照)
FIG. 4 is a schematic view showing a fired body 30 obtained by firing the molded body 37. On the inner surface 38 of the fired body 30 obtained by firing the molded body 37 of FIG.
Most of them are parallel to the surface 38, that is, in a lying state (however, the axial direction of the fibers is random). Then, the outer peripheral surface of the fired body 30 is cut to form the sheet 32.
When the carbon fiber 39 is carved out, the axial direction of each carbon fiber 39 is just parallel to the thickness direction X of the sheet 32, but theoretically about half (strictly speaking, in the thickness direction of the sheet 32, To ±
It can be said that almost half of them fall within the range of 45). (See FIG. 4A) The friction material 5 is punched out from the sheet 32 thus created as shown in FIG. (See Fig. 4 (b))

【0040】この結果、摩擦材5には、最終的に摩擦材
5の摩擦面(シート32の表面に平行)に対して、ほぼ
垂直方向に配列した炭素繊維39がほぼ半数存在(配向
性を有する)ことになる。実際上は、炭素繊維はプレス
の圧縮方向に対し垂直な面に角度を有しているものも多
少存在すると思われるが、摩擦材5の摩擦面に対し見た
目では炭素繊維は立ったように見えるものが7〜8割程
度みられる。
As a result, approximately half of the carbon fibers 39 arranged in the direction substantially perpendicular to the friction surface of the friction material 5 (parallel to the surface of the sheet 32) finally exist in the friction material 5 (the orientation is Have). In reality, some carbon fibers may have an angle on a surface perpendicular to the compression direction of the press, but the carbon fibers appear to stand up against the friction surface of the friction material 5. About 70 to 80% can be seen.

【0041】実施例2 実施例1とは炭素繊維の平均長さだけを20μm、50
μm、180μm、350μm、450μmと支えて実
施例1と同条件で摩擦材5を作り、振動波モータで同様
に評価したところ、図5の炭素繊維の長さと摩擦量の関
係を示すようになった。
Example 2 In Example 2, only the average length of carbon fiber was 20 μm and 50
When the friction material 5 was made under the same conditions as in Example 1 while supporting it with μm, 180 μm, 350 μm, and 450 μm, and similarly evaluated with the vibration wave motor, the relationship between the length of the carbon fiber and the friction amount is shown in FIG. It was

【0042】炭素繊維の長さ450μmではフッ素樹脂
部に空隙の多い摩擦材となってしまった。これは炭素繊
維が長いためフッ素樹脂粉末と炭素繊維との混合がうま
くいかず、炭素繊維が均一分散できないためであり、そ
の比重は1.6であった。ただし、フッ素樹脂粉末と炭
素繊維との混合物の理論比重は2.07(後述)であ
る。
When the carbon fiber length is 450 μm, the friction material has many voids in the fluororesin portion. This is because the carbon fiber was long and the fluororesin powder and the carbon fiber were not mixed well, and the carbon fiber could not be uniformly dispersed, and the specific gravity was 1.6. However, the theoretical specific gravity of the mixture of fluororesin powder and carbon fiber is 2.07 (described later).

【0043】一方、炭素繊維の長さ350μm、長さ1
80μmでは摩擦材5の摩耗も実施例1と比べやや劣っ
た結果を示しているが、ほぼ良好で比重は1.9であっ
た。
On the other hand, the carbon fiber has a length of 350 μm and a length of 1.
At 80 μm, the wear of the friction material 5 was slightly inferior to that of Example 1, but was almost good and the specific gravity was 1.9.

【0044】この結果から耐摩耗性を良くするためには
炭素繊維の長さを余り長くすることは適当でない。逆に
比重は2.0ではあるが、長さ20μmの炭素繊維では
抜け易いことから摩耗量は多く、同じく比重2.0では
あるがまた長さ50μmの炭素繊維の抜けが起こり易く
なることから摩耗量は多少多くなった。以上の結果から
見て適当な長さは50μm〜350μm程度が好まし
い。
From these results, it is not appropriate to make the carbon fibers too long in order to improve wear resistance. On the other hand, although the specific gravity is 2.0, carbon fibers having a length of 20 μm are likely to come off, resulting in a large amount of wear, and carbon fibers having a specific gravity of 2.0 but having a length of 50 μm are also likely to come off. The amount of wear increased a little. From the above results, it is preferable that the appropriate length is about 50 μm to 350 μm.

【0045】なお、この例では繊維の太さは13μmで
あるが、太さは数μm〜20μm程度であってもこの結
果とのちがいはないことを確認した。
Although the thickness of the fiber is 13 μm in this example, it was confirmed that this result is not different even if the thickness is several μm to 20 μm.

【0046】実施例3 実施例1において、金型充填後の圧力だけを変え、その
他の条件は同一にして、シート材から摩擦材を作り評価
を行った。圧縮成形時の圧力を変えることでフッ素樹脂
複合材の比重を変えることができ、図6にその比重と評
価による摩擦材の摩耗量の関係を示した。
Example 3 A friction material was made from a sheet material and evaluated in the same manner as in Example 1, except that only the pressure after filling the mold was changed and the other conditions were the same. The specific gravity of the fluororesin composite material can be changed by changing the pressure during compression molding, and FIG. 6 shows the relationship between the specific gravity and the abrasion amount of the friction material by evaluation.

【0047】この関係からわかるように理論比重に対し
80%以下であると摩耗量は多く摩擦材として適当でな
いと思われる。また、この結果から前述の炭素繊維の配
向性だけでなく、摩擦材の耐摩耗性は比重とも関係があ
り炭素繊維がフッ素樹脂にいかに緻密に取り囲まれてい
て炭素繊維が抜けにくいかによることを示しているもの
と思われる。
As can be seen from this relationship, if it is 80% or less with respect to the theoretical specific gravity, the amount of wear is large and it seems that it is not suitable as a friction material. In addition, from this result, not only the orientation of the carbon fiber described above but also the wear resistance of the friction material is related to the specific gravity, and it depends on how closely the carbon fiber is surrounded by the fluororesin and the carbon fiber is difficult to come off. It seems to indicate.

【0048】なお、理論比重の計算は以下のように行っ
た。フッ素樹脂粉末の真比重(2.18)、炭素繊維の
真比重(1.64)で、混合比は80:20であるか
ら、理論比重=(2.18×80+1.64×20)/
100=2.07[g/cm3]となる。
The theoretical specific gravity was calculated as follows. The true specific gravity of the fluororesin powder (2.18) and the true specific gravity of the carbon fiber (1.64), and the mixing ratio is 80:20, so the theoretical specific gravity = (2.18 × 80 + 1.64 × 20) /
It becomes 100 = 2.07 [g / cm 3 ].

【0049】以上の例では、繊維材料として炭素繊維の
例を示したが、その他の繊維状の材料、例えば高分子材
料ではケブラー繊維、無機材料ではアルミナ繊維などで
も配向性に関して同様の効果がみられるが、最も摩耗量
の少なく摩擦係数も安定していて振動波モータにとって
良好なのは炭素繊維である。
In the above examples, carbon fiber was used as the fibrous material, but other fibrous materials, such as Kevlar fiber for polymer material and alumina fiber for inorganic material, have similar effects on orientation. However, carbon fiber is the most suitable for the vibration wave motor because it has the least amount of wear and the stable friction coefficient.

【0050】さらに、実施例ではフッ素樹脂粉末と炭素
繊維を混合したフッ素樹脂複合材について述べたが、さ
らに他の粉末を添加しても良い。例えば入手がし易くて
耐摩耗性の向上が期待できる高耐熱性を有するポリイミ
ド粉末や真空中や高温度下でも潤滑性を有する硫化モリ
ブデン粉末なども摩耗材料としての性質を良好にするこ
とが可能である。
Further, in the embodiment, the fluororesin composite material in which the fluororesin powder and the carbon fiber are mixed is described, but other powder may be added. For example, polyimide powder with high heat resistance, which is easily available and can be expected to improve wear resistance, and molybdenum sulfide powder, which has lubricity even in vacuum or at high temperature, can improve the properties as a wear material. Is.

【0051】また、本発明において、フッ素樹脂粉末と
繊維状の材料の配合割合は、フッ素樹脂粉末は60〜9
8重量%、好ましくは70〜95重量%であり、繊維状
の材料は2〜40重量%、好ましくは5〜30重量%の
範囲が好ましい。この範囲において、実施例1の評価条
件において摩耗量は20μm以下になったので好まし
い。
In the present invention, the mixing ratio of the fluororesin powder and the fibrous material is 60 to 9 for the fluororesin powder.
It is 8% by weight, preferably 70 to 95% by weight, and the fibrous material is preferably in the range of 2 to 40% by weight, preferably 5 to 30% by weight. In this range, the amount of wear was 20 μm or less under the evaluation conditions of Example 1, which is preferable.

【0052】また本発明は、上記の摩擦材を設けた振動
波モータを駆動源として図7のように各種の機器に用い
ることができる。
Further, the present invention can be used in various equipments as shown in FIG. 7 using the vibration wave motor provided with the above-mentioned friction material as a drive source.

【0053】また、図7は、図1に示した振動波モータ
を駆動源とする機器の概略図である。23は大歯車23
aと小歯車23bを有するギアで、大歯車23aが振動
波モータ側のギア20と噛合している。24は被駆動部
材、例えばレンズ鏡筒で、外周部に設けられたギア24
aにギア23の小歯車23bが噛合し、モータの駆動力
により回転する。一方、ギア23にはエンコーダスリッ
ト板25が取り付けられ、ギア23の回転をフォトカッ
プラー26により検出し、例えばオートフォーカスのた
めにモータの回転、停止を制御する。
Further, FIG. 7 is a schematic view of an apparatus using the vibration wave motor shown in FIG. 1 as a drive source. 23 is a large gear 23
A gear having a and a small gear 23b, the large gear 23a meshes with the gear 20 on the vibration wave motor side. Reference numeral 24 denotes a driven member, for example, a lens barrel, and a gear 24 provided on the outer peripheral portion.
The small gear 23b of the gear 23 meshes with a and rotates by the driving force of the motor. On the other hand, an encoder slit plate 25 is attached to the gear 23, the rotation of the gear 23 is detected by the photocoupler 26, and the rotation and stop of the motor are controlled for autofocus, for example.

【0054】機器の具体例としてはカメラなどの光学機
器、プリンター、複写機等の事務機器、パワーウインド
ー、アクティブサスペンション等の自動車関連機器が挙
げられる。
Specific examples of the equipment include optical equipment such as cameras, office equipment such as printers and copying machines, and automobile-related equipment such as power windows and active suspensions.

【0055】[0055]

【発明の効果】以上説明したように、本発明によればフ
ッ素樹脂を主成分とし、繊維状の材料を圧縮成形し成形
体とし、焼成して焼成体とした理論比重の80%以上の
比重を有するフッ素樹脂複合材を円筒状または柱状の外
周部から切削加工によりシート状に削り出して振動波モ
ータの摩擦材として用いることにより、耐摩耗性の優れ
た摩擦材を非常に安価にそして大量に得ることができ
る。
As described above, according to the present invention, a specific gravity of 80% or more of the theoretical specific gravity of a fluororesin as a main component and a fibrous material is compression-molded into a molded body and fired. By using a fluororesin composite material with a cylindrical shape or a columnar outer peripheral part as a sheet by cutting it and using it as a friction material for a vibration wave motor, a friction material with excellent wear resistance can be produced very inexpensively and in large quantities. Can be obtained.

【0056】さらに、本発明によれば各種の繊維状の材
料や他の添加物などをかなり自由に選ぶことが可能であ
り、多種多様の用途に用いられる振動波モータに適した
摩擦材が容易に製造できる特色を有して、振動波モータ
の実用化や用途開発にとって有益な製造方法である。
Further, according to the present invention, various fibrous materials and other additives can be selected quite freely, and a friction material suitable for a vibration wave motor used for various purposes can be easily prepared. It is a manufacturing method that is useful for practical application and application development of vibration wave motors.

【0057】[0057]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の振動波モータの実施形態を示す断面図
である。
FIG. 1 is a cross-sectional view showing an embodiment of a vibration wave motor of the present invention.

【図2】本発明の摩擦材の製造方法を示す説明図であ
る。
FIG. 2 is an explanatory view showing a method for manufacturing a friction material of the present invention.

【図3】本発明におけるフッ素樹脂と繊維状材料を圧縮
成形する方法を示す説明図である。
FIG. 3 is an explanatory view showing a method of compression molding a fluororesin and a fibrous material in the present invention.

【図4】本発明における繊維状材料の配向性の生ずる原
理を示す説明図である。
FIG. 4 is an explanatory diagram showing the principle of the orientation of the fibrous material in the present invention.

【図5】本発明による炭素繊維の長さと摩耗量の関係を
示す図である。
FIG. 5 is a diagram showing the relationship between the length and the amount of wear of carbon fibers according to the present invention.

【図6】本発明による比重と摩耗量の関係を示す図であ
る。
FIG. 6 is a diagram showing a relationship between specific gravity and wear amount according to the present invention.

【図7】本発明の振動波モータの応用例としての機器を
示す概略図である。
FIG. 7 is a schematic view showing a device as an application example of the vibration wave motor of the present invention.

【符号の説明】[Explanation of symbols]

1 振動体 3 金属弾性体 5 摩擦材 30 焼成体 31 切削刃 32 シート 33 混合粉末 34 円筒形状の金型 35a、35b パンチ 36 芯金 37 成形体 38 面 39 炭素繊維 1 vibrating body 3 Metal elastic body 5 Friction material 30 fired body 31 cutting blade 32 sheets 33 Mixed powder 34 Cylindrical mold 35a, 35b punch 36 core 37 molded body 38 sides 39 carbon fiber

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平9−327183(JP,A) 特開 平5−146176(JP,A) 特開 平8−23687(JP,A) 特開 昭62−209236(JP,A) 実開 昭62−195391(JP,U) (58)調査した分野(Int.Cl.7,DB名) H02N 2/00 B29D 31/00 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-9-327183 (JP, A) JP-A 5-146176 (JP, A) JP-A 8-23687 (JP, A) JP-A 62- 209236 (JP, A) Actual development Sho 62-195391 (JP, U) (58) Fields investigated (Int.Cl. 7 , DB name) H02N 2/00 B29D 31/00

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 振動波モータの振動を形成する振動体
と、該振動体に加圧されて接触し前記振動によって前記
振動体と相対移動する接触体との摩擦接触面に用いる摩
擦材の製造方法において、フッ素樹脂粉末と繊維状の材
料を圧縮成形して得られたフッ素樹脂を主成分とする成
形体を焼成してフッ素樹脂複合材を生成した後、切削加
工により前記フッ素樹脂複合材を外周部からシート状に
削り出して成形することを特徴とする摩擦材の製造方
法。
1. A friction material used for a frictional contact surface between a vibrating body that forms vibrations of a vibration wave motor and a contact body that is pressed against the vibrating body and that moves relative to the vibrating body by the vibration. In the method, a fluororesin composite material is produced by firing a molded body containing a fluororesin as a main component obtained by compression molding a fluororesin powder and a fibrous material, and then cutting the fluororesin composite material by cutting. A method for manufacturing a friction material, characterized in that the friction material is formed by cutting out from the outer peripheral portion into a sheet shape.
【請求項2】 前記フッ素樹脂複合材の比重が理論比2. The theoretical specific gravity of the fluororesin composite material
重の80%以上となるように前記圧縮成形を行うことをThe compression molding should be performed so that the weight becomes 80% or more.
特徴とする請求項1に記載の摩擦材の製造方法。The method for manufacturing a friction material according to claim 1, wherein the method is for manufacturing a friction material.
【請求項3】 前記フッ素樹脂複合材が円筒状または
柱状であり、その外周部を切削加工によりシート状に削
り出すことを特徴とする請求項1または2に記載の摩擦
材の製造方法。
3. The method for producing a friction material according to claim 1, wherein the fluororesin composite material has a cylindrical shape or a columnar shape, and an outer peripheral portion of the fluororesin composite material is cut into a sheet shape by cutting.
【請求項4】 前記繊維状の材料は長さが50μm〜
350μmの炭素繊維であることを特徴とする請求項1
から3のいずれかの項に記載の摩擦材の製造方法。
Wherein the material of said fibrous length 50μm~
Claim, characterized in that a 350μm carbon fibers 1
4. The method for manufacturing the friction material according to any one of items 1 to 3 .
【請求項5】 前記シート状に削り出して成形した摩5. A friction member formed by shaving into a sheet shape.
擦材に含有されている繊維状の材料が、摩擦接触面に対The fibrous material contained in the friction material is
しておよそ垂直に配向している請求項1から4のいずれ5. Any one of claims 1 to 4 in which
かの項に記載の摩擦材の製造方法。The method for producing the friction material according to the above paragraph.
JP34956198A 1998-12-09 1998-12-09 Manufacturing method of friction material used for vibration wave motor Expired - Fee Related JP3403100B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP34956198A JP3403100B2 (en) 1998-12-09 1998-12-09 Manufacturing method of friction material used for vibration wave motor
US09/456,291 US6643906B2 (en) 1998-12-09 1999-12-08 Friction member, and vibration wave device and apparatus using friction member
US10/643,998 US6726866B1 (en) 1998-12-09 2003-08-20 Method of making a sintered friction member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34956198A JP3403100B2 (en) 1998-12-09 1998-12-09 Manufacturing method of friction material used for vibration wave motor

Publications (2)

Publication Number Publication Date
JP2000175471A JP2000175471A (en) 2000-06-23
JP3403100B2 true JP3403100B2 (en) 2003-05-06

Family

ID=18404557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34956198A Expired - Fee Related JP3403100B2 (en) 1998-12-09 1998-12-09 Manufacturing method of friction material used for vibration wave motor

Country Status (1)

Country Link
JP (1) JP3403100B2 (en)

Also Published As

Publication number Publication date
JP2000175471A (en) 2000-06-23

Similar Documents

Publication Publication Date Title
KR101413838B1 (en) Motor, lens barrel, camera system and method for manufacturing motor
JPH02197272A (en) Large output oscillatory wave motor
JP3792790B2 (en) Vibration wave motor
US6463642B1 (en) Method of manufacturing a vibration type driving apparatus
JPH02285974A (en) Vibration wave motor
KR910003669B1 (en) Ultrasonic motor
US6726866B1 (en) Method of making a sintered friction member
JP3403100B2 (en) Manufacturing method of friction material used for vibration wave motor
JPH0532991B2 (en)
JP3450733B2 (en) Sliding member, vibration wave driving device and device using the same
JPH05219762A (en) Oscillation wave motor
JP4124891B2 (en) Method for manufacturing friction material for vibration wave motor
KR101531268B1 (en) Ultrasonic motor having lightweight vibrating element
JPS63265574A (en) Ultrasonic motor
JPH01248975A (en) Ultrasonic-wave motor
JPH11318090A (en) Oscillatory driver, its manufacture, and apparatus equipped with the same
JPH01238473A (en) Lining material and ultrasonic drive motor using the same material
JPH04334984A (en) Oscillatory wave motor
JP3160139B2 (en) Vibration wave motor
JPH01206880A (en) Ultrasonic motor
JPH06271776A (en) Composition for forming friction material, method of forming friction material for ultrasonic motor from the composition, and ultrasonic motor member containing the friction material
JPH06343274A (en) Ultrasonic motor
JP3437360B2 (en) Vibration wave drive
Koc et al. Ceramic/metal composite piezoelectric motors
JPH027880A (en) Ultrasonic motor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080229

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090228

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100228

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100228

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140228

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees