JP3402785B2 - Manufacturing method of hydrogen storage alloy electrode - Google Patents

Manufacturing method of hydrogen storage alloy electrode

Info

Publication number
JP3402785B2
JP3402785B2 JP22368494A JP22368494A JP3402785B2 JP 3402785 B2 JP3402785 B2 JP 3402785B2 JP 22368494 A JP22368494 A JP 22368494A JP 22368494 A JP22368494 A JP 22368494A JP 3402785 B2 JP3402785 B2 JP 3402785B2
Authority
JP
Japan
Prior art keywords
electrode
battery
fluororesin
hydrogen storage
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22368494A
Other languages
Japanese (ja)
Other versions
JPH0888003A (en
Inventor
孝樹 藤原
隆明 池町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP22368494A priority Critical patent/JP3402785B2/en
Publication of JPH0888003A publication Critical patent/JPH0888003A/en
Application granted granted Critical
Publication of JP3402785B2 publication Critical patent/JP3402785B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、可逆的に水素を吸蔵及
び放出する水素吸蔵合金を負極材料に用いた水素吸蔵合
金電極の製造方法に関する。 【0002】 【従来の技術】従来から用いられている蓄電池として
は、ニッケル−カドミウム蓄電池、鉛蓄電池等がある。
しかし、近年、これらの電池より軽量かつ高容量で高エ
ネルギー密度が得られ、しかもクリーンな蓄電池となる
ことから負極に水素吸蔵合金を用いた金属水素化物蓄電
池が特に注目されている。 【0003】水素吸蔵合金電極の製造方法としては、特
開昭61−66366号公報及び特開昭61−6637
2号公報に、水素吸蔵合金粉末にポリテトラフルオロエ
チレン(以下PTFEという)を結着剤として添加し、
均一に混練した混合物を圧延の後、集電体の両面に配置
して圧着し、乾燥して所定の電極を得る方法が開示され
ている。 【0004】そして、前記水素吸蔵合金からなる負極は
公知のニッケル正極と組み合わされ、これら正負極の間
にセパレータを介して捲回し、電池外装缶に収納後、電
解液を注液し、封口することにより、金属水素化物蓄電
池が作製される。この金属水素化物蓄電池では、密閉化
するために、負極容量を正極容量より大きく設計されて
いる。これは、充電時に正極から発生した酸素ガスを負
極で水に還元し、電池内圧の上昇を抑制するためであ
る。 【0005】この時の反応は以下のようになる。 【0006】電池を充電していくと、まず容量の小さい
正極が満充電となり、更に充電を続けると過充電状態と
なって、(1)式のように正極から酸素ガスが発生す
る。 【0007】 4OH- → 2H2O + O2 + 4e- (1) 正極より発生した酸素ガスは下記(2)、(3)式に示
すような反応より負極で消費される。 【0008】 O2 + 2H2O + 4e- → 4OH- (2) 4MH + O2 → 4M + 2H2O (3) (3)式で生じた水は、負極表面が親水性であると、負
極表面が濡れた状態となり、酸素ガスの負極表面への拡
散を阻害し、酸素ガスの負極での消費速度が遅くなる。
このため、電池内圧が上昇し、安全弁が作動して、電池
内のガスを放出すると同時に電解液も電池外に漏出す
る。その結果、セパレータ中の電解液が枯渇するいわゆ
るセパレータのドライアウト化が生じ、電池のサイクル
特性が低下するという問題があった。 【0009】このような問題を解決する方法として、水
素吸蔵合金表面を撥水性処理することが提案されてい
る。この撥水性処理により、酸素ガス、電解液および水
素吸蔵合金表面の、いわゆる気液固の3相界面が形成さ
れ、酸素ガス消費反応が円滑になることが知られてい
る。 【0010】例えば、特開昭61−118963号公報
のように、水素吸蔵合金電極の一部に撥水性層を設ける
ことや、特開昭62−139255号公報のように、水
素吸蔵合金電極をフッ素樹脂ディスパージョンに浸漬す
ることにより、水素吸蔵合金電極を撥水性処理するこ
と、特開平5−159799号公報のようにエステル類
で水素吸蔵合金電極を撥水性処理することが提案されて
いる。 【0011】このなかで、フッ素樹脂による撥水性処理
は、フッ素樹脂粉末やフッ素樹脂ディスパージョンの取
扱が容易なことやフッ素樹脂自体が耐アルカリ性に優
れ、劣化しにくいことから、撥水性処理剤として有望視
されている。 【0012】フッ素樹脂を含む溶液を用いて水素吸蔵合
金電極表面に撥水性処理を施す方法としては、水素吸蔵
合金電極をフッ素樹脂ディスパージョンに浸漬する方法
あるいはフッ素樹脂ディスパージョンを塗着する方法が
知られている。 【0013】 【発明が解決しようとする課題】しかしながら、このよ
うな浸漬あるいは塗着などによる撥水性処理は、表面処
理溶液が合金粒子間の隙間である電極の空孔に入り込
む。空孔は数μm〜数十μmと小さいため、毛細管現象
により、電極内部まで処理液が入る。 【0014】このような撥水性処理電極を乾燥させる
と、溶媒は徐々に蒸発するがフッ素樹脂が凝縮されなが
ら空孔内に残存する。従って、電極内部の空孔内に残存
したフッ素樹脂によって、乾燥後の撥水性処理極板の内
部の空孔が被覆されるかまたは閉塞される。このような
電極を用いて電池を作製し、充放電すると、フッ素樹脂
で閉塞された部分に存在する合金は充放電に関与せず、
電極反応が不均一になるため、充放電サイクル特性が良
くないという問題があった。 【0015】本発明は、前記問題点に鑑みてなされたも
のであり、負極での酸素ガス消費能力が良好で、かつ充
放電サイクル特性の優れた金属水素化物蓄電池を提供し
ようとすることを課題とする。 【0016】 【課題を解決するための手段】水素吸蔵合金を負極材料
に用いた水素吸蔵合金電極の製造方法において、フッ素
樹脂を界面活性剤によって水中に分散させたフッ素樹脂
の水性ディスパージョンと有機溶剤との混合溶液に前記
負極表面を浸漬若しくはこの混合溶液を前記負極表面に
塗着する工程を有することを特徴とする。 【0017】 【作用】正極から発生した酸素ガスを負極表面で円滑に
反応させるためには、負極表面に撥水性を付与し、酸素
ガス、電解液、電極の気液固の3相界面を形成させるこ
とが重要である。 【0018】本発明では、負極表面に撥水性を付与する
ために、フッ素樹脂を界面活性剤によって水中に分散さ
せたフッ素樹脂の水性ディスパージョンと有機溶剤との
混合溶液に前記負極表面を浸漬若しくは前記溶液を塗着
している。 【0019】フッ素樹脂は疎水性であるため、水溶液中
では外部から撹拌などの強制力を加えない限り、分散せ
ず、すぐに沈降する。長期間放置するとその沈殿物は容
器に付着したりするので好ましくない。そこで、フッ素
樹脂を分散させる方法としては、特に界面活性剤を用
い、その働きにより高分子ミセルを形成し、分散させる
方法が一般的に知られている。このようなものとしては
フッ素樹脂の水性ディスパージョンがあげられる。これ
は、フッ素樹脂が水溶液中で界面活性剤の働きで、均一
に分散しているので、電極表面に撥水性処理を施し易
い。しかし、フッ素樹脂の水性ディスパージョンを用い
て撥水性処理を行うと、この溶液はフッ素樹脂同士が凝
集しておらず、粘性が低いために電極内部にも溶液が浸
透する。 【0020】従って、乾燥時に電極の空孔をフッ素樹脂
が閉塞し、電極反応にとって不都合である。 【0021】本発明では、界面活性剤によって水中に分
散させたフッ素樹脂の水性ディスパージョンに有機溶剤
を混合させると、均一に分散しているフッ素樹脂同士を
凝集させることができる。従って、電極を構成する合金
粒子間の隙間にフッ素樹脂が入り込みにくくなり、電極
表面の合金粒子上に付着する。また、溶液がゲル化する
ことにより溶液の粘性が上がり、電極内部に溶液が浸透
しにくくなる。 【0022】従って、電極表面に確実に撥水性を付与で
き、かつ、電極の空孔をフッ素樹脂が閉塞せず、均一な
充放電反応が進行する。 【0023】本発明では溶媒として、水と有機溶媒との
混合溶媒を用いる。望ましくは水溶性の有機溶媒がよ
く、例えばアルコール類などがあげられる。これは、親
水性と疎水性のバランスがとれて水と混ざり合う。 【0024】アルコール類などの水溶性の溶媒では高分
子ミセルを形成しない。従って、このような有機溶媒を
フッ素樹脂の分散した水溶液、例えば界面活性剤により
高分子ミセルを形成した溶液に添加すると、アルコール
類は水と混ざり合うが、アルコール中ではミセルを形成
しないので、その部分に含まれるフッ素樹脂は分散でき
ず、フッ素樹脂同士が引き合って凝集する。更に、溶液
がゲル化し、溶液の粘性が上がる。このような表面処理
溶液を用いると粘性が大きいため溶液が電極の空孔内部
に入り込まず、フッ素樹脂が電極表面に付着する。 【0025】一方、シクロヘキサンやヘプタンのように
疎水性の有機溶媒を水と混合して用いると、撹拌しても
水と疎水性溶媒が分離している。しかし、フッ素樹脂を
含むディスパージョンと疎水性溶媒とを撹拌混合すると
界面活性剤の働きにより、水と疎水性溶媒を混じり合わ
せることができる。この場合においても、メカニズムは
明らかではないが、フッ素樹脂が高分子ミセルを形成で
きず、フッ素樹脂同士が凝集している。さらに、親水性
溶媒と同様に、溶媒がゲル化し、溶液の粘性が上がる。
このような表面処理溶液を用いると粘性が大きいため溶
液が電極の空孔内部に入り込まず、フッ素樹脂が電極表
面に付着する。 【0026】 【実施例】 (実施例1)図1は本発明の一例を示す円筒型ニッケル
−水素化物アルカリ蓄電池の断面図である。図1に示す
ように、ニッケル活物質を備えた正極1と、水素吸蔵合
金粉末を含む負極2と、これら正負両極1、2間に介挿
されたセパレータ3とから成る電極群4は渦巻き状に巻
回されている。この電極群4は負極端子兼用の外装缶6
内に配置されており、この外装缶6と前記負極2とは負
極集電体5により外装缶6の底面部に電気的に接続され
ている。 【0027】一方、外装缶6の上部には、ガスケット1
1を介在させて、中央部に透孔を有する封口板12が設
置され、この封口板12に正極端子13が装着されてい
る。 【0028】この中央部に透孔を有する封口板12には
弁板8、押さえ板9が載置され、前記押さえ板9はスプ
リング10で押圧する構造となっている。また、正極端
子13と正極板1は正極集電体7及び前記封口板12を
介して接続されている。 【0029】そして、前記弁板8、押さえ板9、コイル
スプリング10は、電池内圧が上昇したときに矢印A方
向に押されて、弁板部に間隙が生じて内部のガスを大気
中に放出できるように構成されている。 【0030】ここで、前記円筒型ニッケル−水素化物ア
ルカリ蓄電池を、以下のように作製した。 【0031】まず、市販のMm(ミッシュメタル:希土
類元素の混合物)、ニッケル、コバルト、アルミニウ
ム、及びマンガンを元素比で1.0:3.2:1.0:
0.2:0.6の割合となるように秤量した後、アルゴ
ンガス雰囲気中の高周波誘導炉内で溶融し、更にこの溶
湯を冷却することによりMm1.0Ni3.2Co1.0Al0.2
Mn0.6で示される水素吸蔵合金鋳塊を作製した。次
に、この水素吸蔵合金鋳塊を機械的に粉砕して平均粒径
50μmの水素吸蔵合金粉末を作製した。 【0032】前記合金粉末に、結着剤として、ポリエチ
レンオキサイド1wt%添加し、分散媒としての適量の
水とを加えて混練してスラリーを作製した後、このスラ
リーをパンチングメタルから成る導電性支持体の両面に
塗布し、さらに乾燥、圧延を行いベース電極を作製し
た。 【0033】次に、表面処理溶液として、15重量%の
PTFEディスパージョン(商品名:テフロン30−
J、三井デュポンフロロケミカル社製)とエタノール
を、体積比で1:1に混合したものを作製し、この表面
処理溶液に前記ベース電極を浸漬後、乾燥し、エタノー
ルを除去して本発明電極aを作製した。 【0034】そして、前記表面処理をした水素吸蔵合金
からなる負極2と、公知の焼結式ニッケル正極1とを、
不織布からなるセパレータ3を介して渦巻状に巻き取っ
て電極群4を作製し、外装缶6に挿入し、30wt%の
水酸化カリウム水溶液を外装缶6内に注液した後、外装
缶6の封口を行い密閉し、公称容量1000mAhの本
発明電池Aを作製した。 【0035】(実施例2)表面処理溶液として、エタノ
ールの代わりにシクロヘキサンを用いた以外は、前記実
施例1と同様にして本発明電極b及び本発明電池Bを作
製した。 【0036】(比較例1)実施例1のベース電極を7.
5重量%のPTFEディスパージョン(商品名:テフロ
ン30−J、三井デュポンフロロケミカル社製)に浸漬
した以外は、前記実施例1と同様にして比較電池Cを作
製した。 【0037】(比較例2)表面処理を全く施していない
実施例1のベース電極を負極として用いた以外は、前記
実施例1と同様にして比較電池Dを作製した。 【0038】(実験1)前記本発明電池A、B及び比較
電池C、Dの各5セルについての電池内部圧力を測定
し、その平均値を表1に示す。 【0039】尚、この実験では、各電池A、B、C、D
を0.1C(100mA)で充電した後、0.2C(2
00mA)で放電するという充放電サイクルを10回繰
り返し、活性化させた。その後、外装缶の底部に圧力セ
ンサーを取り付け、1C(1000mA)で90分間充
電した時の電池内部圧力を測定した。 【0040】 【表1】 【0041】表1から、本発明電池A、Bは比較電池
C、Dよりも充電時の電池内部圧力が低いことが認めら
れた。 【0042】これは、本発明電池A及びBでは、PTF
E樹脂を付着させているので、水素吸蔵合金電極表面の
撥水性が高く、電極表面近傍での合金表面、電解液及び
酸素ガスの気液固の3相界面が形成され、過充電時に正
極から生じる酸素ガスの消費反応が円滑に進む。従っ
て、PTFE樹脂で全く表面処理していない比較電池D
よりも電池内部圧力が格段に低減されている。 【0043】また、比較電池Cでは、PTFE樹脂で表
面処理をしているので酸素ガスの消費能力が良好であ
る。しかし、本発明のようにフッ素樹脂が凝集されてい
ないので、電極の空孔内にフッ素樹脂が入り込み、空孔
内に残存したフッ素樹脂が、電極の空孔内を閉塞する。
このように電極の空孔内を閉塞すると、水素吸蔵合金の
一部が充放電反応に関与せず、充電をしていくと本発明
電池Aよりも速く満充電に達し、更に充電していくと過
充電状態となり、負極から水素ガスが発生するために、
本発明電池A及びBより内部圧力が大きくなっている。 【0044】(実験2)前記本発明電池A及びB、比較
電池C及びDについて、充放電サイクル特性を調べ、そ
の結果を図2に示す。尚、実験条件は、0.5C(50
0mAh)で2.5時間充電した後、0.5C(500
mAh)で放電し、電池電圧が1.0Vに達した時点で
放電を終了させるというサイクルを繰り返し、電池の放
電容量が初期容量の60%に達した時点のサイクル数を
サイクル寿命とした。 【0045】図2から明らかなように、本発明電池A及
びBは、比較電池C及びDと比較して、充放電サイクル
特性が向上していることが認められる。 【0046】この原因は、本発明電池A及びBと比較電
池Dとを比較すると、水素吸蔵合金電極の表面が撥水性
処理されており、前記実験1に示したように酸素ガス消
費が円滑に行われるので、充電時における電池内部圧力
が低下し、安全弁作動による電解液の電池外の漏出がな
いためと考えられる。 【0047】次に、本発明電池A及びBと比較電池Cと
を比較すると、フッ素樹脂が合金表面に付着し、電極細
孔内を閉塞しないので、充放電反応が、平面方向、深さ
方向とも均一に進行するので、サイクル寿命が改良され
たと考えられる。 【0048】本実施例では、親水性の有機溶剤としてエ
タノールを用いたが、他のアルコール類、例えば、メタ
ノール、ブタノール等を用いても同様の効果が得られ
る。 【0049】また、疎水性の有機溶剤として、本実施例
では、シクロヘキサンを用いたがこれに限らず、ヘプタ
ン等でも同様の効果が得られる。 【0050】 【発明の効果】本発明によれば、水素吸蔵合金表面近傍
において酸素ガス、電解液及び水素吸蔵合金電極が混在
する気液固の3相界面が形成され、負極での酸素ガス消
費が円滑に行われ、電池内圧の低減化が図れる。 【0051】従って、電池内圧の上昇に起因する安全弁
の作動を防止できるので、電解液の漏出による電池性能
の劣化を抑制することができる。 【0052】更に、フッ素樹脂が電極の空孔を閉塞しな
いので、合金の一部が充放電反応に関与しないことがな
く、充放電反応が均一となり、電池の充放電サイクル特
性を向上させることができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a hydrogen storage alloy electrode using a hydrogen storage alloy which reversibly stores and releases hydrogen as a negative electrode material. [0002] Conventional storage batteries include nickel-cadmium storage batteries and lead storage batteries.
However, in recent years, metal hydride storage batteries using a hydrogen storage alloy for the negative electrode have attracted particular attention because they are lighter, have higher capacities, have higher energy densities than these batteries, and are clean storage batteries. As a method for producing a hydrogen storage alloy electrode, Japanese Patent Application Laid-Open No. 61-66366 and Japanese Patent Application Laid-Open No. 61-6637
No. 2, adding polytetrafluoroethylene (hereinafter referred to as PTFE) as a binder to the hydrogen storage alloy powder,
A method is disclosed in which a uniformly kneaded mixture is rolled, then placed on both sides of a current collector, pressed and dried to obtain a predetermined electrode. A negative electrode made of the above-mentioned hydrogen storage alloy is combined with a known nickel positive electrode, wound between a positive electrode and a negative electrode with a separator interposed therebetween, stored in a battery outer can, injected with an electrolytic solution, and sealed. Thus, a metal hydride storage battery is manufactured. In this metal hydride storage battery, the capacity of the negative electrode is designed to be larger than the capacity of the positive electrode in order to seal the battery. This is because oxygen gas generated from the positive electrode during charging is reduced to water at the negative electrode to suppress an increase in battery internal pressure. The reaction at this time is as follows. [0006] As the battery is charged, the positive electrode having a small capacity is first fully charged, and when the battery is further charged, the battery is in an overcharged state, and oxygen gas is generated from the positive electrode as shown in equation (1). 4OH → 2H 2 O + O 2 + 4e (1) Oxygen gas generated from the positive electrode is consumed at the negative electrode by a reaction represented by the following formulas (2) and (3). [0008] O 2 + 2H 2 O + 4e - → 4OH - (2) 4MH + O 2 → 4M + 2H 2 O (3) (3) water generated by the equation, the negative electrode surface is a hydrophilic, The negative electrode surface becomes wet, impeding diffusion of oxygen gas to the negative electrode surface, and the consumption rate of oxygen gas at the negative electrode is reduced.
For this reason, the internal pressure of the battery increases, the safety valve operates, and the gas in the battery is released, and at the same time, the electrolyte leaks out of the battery. As a result, the electrolyte in the separator is depleted, so-called dry-out of the separator occurs, and there is a problem that the cycle characteristics of the battery deteriorate. As a method for solving such a problem, it has been proposed to treat the surface of the hydrogen storage alloy with water repellency. It is known that this water-repellent treatment forms a so-called gas-liquid-solid three-phase interface on the surface of the oxygen gas, the electrolytic solution and the hydrogen storage alloy, and the oxygen gas consumption reaction becomes smooth. For example, a water-repellent layer is provided on a part of a hydrogen-absorbing alloy electrode as disclosed in Japanese Patent Application Laid-Open (JP-A) No. 61-118963. It has been proposed that the hydrogen-absorbing alloy electrode be subjected to a water-repellent treatment by immersion in a fluororesin dispersion, and that the hydrogen-absorbing alloy electrode be subjected to a water-repellent treatment with an ester as disclosed in JP-A-5-159799. Among these, the water-repellent treatment with a fluororesin is used as a water-repellent treatment agent because the fluororesin powder and the fluororesin dispersion are easy to handle and the fluororesin itself has excellent alkali resistance and is hardly deteriorated. Promising. As a method of performing water repellency treatment on the surface of a hydrogen storage alloy electrode using a solution containing a fluororesin, a method of dipping the hydrogen storage alloy electrode in a fluororesin dispersion or a method of applying a fluororesin dispersion is used. Are known. However, in such a water-repellent treatment such as immersion or coating, the surface treatment solution enters pores of the electrode, which are gaps between the alloy particles. Since the pores are as small as several μm to several tens of μm, the processing liquid enters the inside of the electrode by capillary action. When such a water-repellent electrode is dried, the solvent gradually evaporates, but the fluorine resin remains in the pores while being condensed. Therefore, the pores inside the water-repellent treated electrode plate after drying are covered or closed by the fluororesin remaining in the pores inside the electrode. When a battery is manufactured using such an electrode and charged and discharged, the alloy present in the portion closed with the fluororesin does not participate in charging and discharging,
Since the electrode reaction becomes non-uniform, there is a problem that the charge / discharge cycle characteristics are not good. The present invention has been made in view of the above problems, and an object of the present invention is to provide a metal hydride storage battery having a good oxygen gas consuming capacity at a negative electrode and excellent charge / discharge cycle characteristics. And In a method for manufacturing a hydrogen storage alloy electrode using a hydrogen storage alloy as a negative electrode material, an aqueous dispersion of a fluorine resin in which a fluorine resin is dispersed in water with a surfactant and an organic solvent are used. A step of immersing the surface of the negative electrode in a mixed solution with a solvent or applying the mixed solution to the surface of the negative electrode. In order for oxygen gas generated from the positive electrode to react smoothly on the negative electrode surface, water repellency is imparted to the negative electrode surface to form a three-phase interface between the oxygen gas, the electrolytic solution and the gas-liquid solid of the electrode. It is important that In the present invention, in order to impart water repellency to the negative electrode surface, the negative electrode surface is immersed in a mixed solution of an aqueous dispersion of a fluororesin dispersed in water with a surfactant and an organic solvent or an organic solvent. The solution has been applied. Since the fluororesin is hydrophobic, it does not disperse and immediately settles out in an aqueous solution unless an external force such as stirring is applied. If left for a long time, the precipitate adheres to the container, which is not preferable. Therefore, as a method of dispersing the fluororesin, a method of forming and dispersing polymer micelles by the use of a surfactant, in particular, is generally known. Examples of such a material include an aqueous dispersion of a fluororesin. This is because the fluororesin is uniformly dispersed in the aqueous solution by the action of the surfactant, so that the water repellency treatment can be easily performed on the electrode surface. However, when the water-repellent treatment is performed using an aqueous dispersion of a fluororesin, the solution permeates into the inside of the electrode because the fluororesins do not aggregate with each other and has low viscosity. Therefore, the pores of the electrode are blocked by the fluorine resin during drying, which is inconvenient for the electrode reaction. In the present invention, when an organic solvent is mixed with an aqueous dispersion of a fluororesin dispersed in water with a surfactant, the uniformly dispersed fluororesins can be aggregated. Therefore, it becomes difficult for the fluororesin to enter the gaps between the alloy particles constituting the electrode, and adhere to the alloy particles on the electrode surface. In addition, the gelation of the solution increases the viscosity of the solution, making it difficult for the solution to penetrate inside the electrode. Accordingly, water repellency can be surely imparted to the electrode surface, and the pores of the electrode are not blocked by the fluororesin, whereby a uniform charge / discharge reaction proceeds. In the present invention, a mixed solvent of water and an organic solvent is used as the solvent. Desirable are water-soluble organic solvents, such as alcohols. It mixes with water with a balance of hydrophilicity and hydrophobicity. Water-soluble solvents such as alcohols do not form polymeric micelles. Therefore, when such an organic solvent is added to an aqueous solution in which a fluororesin is dispersed, for example, a solution in which polymer micelles are formed by a surfactant, alcohols are mixed with water, but do not form micelles in alcohol. The fluororesin contained in the portion cannot be dispersed, and the fluororesins attract each other and aggregate. Furthermore, the solution gels and the viscosity of the solution increases. When such a surface treatment solution is used, since the viscosity is large, the solution does not enter the pores of the electrode, and the fluororesin adheres to the electrode surface. On the other hand, when a hydrophobic organic solvent such as cyclohexane or heptane is used by mixing with water, the water and the hydrophobic solvent are separated even when the mixture is stirred. However, when the dispersion containing the fluororesin and the hydrophobic solvent are stirred and mixed, water and the hydrophobic solvent can be mixed together by the action of the surfactant. Also in this case, although the mechanism is not clear, the fluororesin cannot form polymer micelles, and the fluororesins are aggregated. Further, like the hydrophilic solvent, the solvent gels and the viscosity of the solution increases.
When such a surface treatment solution is used, since the viscosity is large, the solution does not enter the pores of the electrode, and the fluororesin adheres to the electrode surface. (Embodiment 1) FIG. 1 is a sectional view of a cylindrical nickel-hydride alkaline storage battery showing an example of the present invention. As shown in FIG. 1, an electrode group 4 including a positive electrode 1 provided with a nickel active material, a negative electrode 2 containing a hydrogen storage alloy powder, and a separator 3 interposed between the positive and negative electrodes 1 and 2 has a spiral shape. It is wound around. The electrode group 4 includes an outer can 6 also serving as a negative electrode terminal.
The outer can 6 and the negative electrode 2 are electrically connected to the bottom surface of the outer can 6 by a negative electrode current collector 5. On the other hand, a gasket 1
1, a sealing plate 12 having a through hole in the center is installed, and a positive electrode terminal 13 is mounted on the sealing plate 12. A valve plate 8 and a holding plate 9 are placed on a sealing plate 12 having a through hole in the center, and the holding plate 9 is configured to be pressed by a spring 10. The positive electrode terminal 13 and the positive electrode plate 1 are connected via the positive electrode current collector 7 and the sealing plate 12. When the internal pressure of the battery rises, the valve plate 8, the holding plate 9, and the coil spring 10 are pushed in the direction of arrow A, and a gap is formed in the valve plate to release the gas inside to the atmosphere. It is configured to be able to. Here, the cylindrical nickel-hydride alkaline storage battery was manufactured as follows. First, commercially available Mm (mixture of misch metal: rare earth element), nickel, cobalt, aluminum, and manganese in an element ratio of 1.0: 3.2: 1.0:
After weighing so as to have a ratio of 0.2: 0.6, the mixture was melted in a high-frequency induction furnace in an argon gas atmosphere, and the molten metal was cooled to obtain Mm 1.0 Ni 3.2 Co 1.0 Al 0.2
A hydrogen storage alloy ingot represented by Mn 0.6 was produced. Next, the hydrogen storage alloy ingot was mechanically pulverized to produce a hydrogen storage alloy powder having an average particle size of 50 μm. To the alloy powder, 1 wt% of polyethylene oxide was added as a binder, and an appropriate amount of water as a dispersion medium was added and kneaded to prepare a slurry. The slurry was then subjected to a conductive support made of punching metal. It was applied to both sides of the body, dried and rolled to produce a base electrode. Next, a 15% by weight PTFE dispersion (trade name: Teflon 30-) was used as a surface treatment solution.
J, manufactured by Du Pont-Mitsui Fluorochemicals Co., Ltd.) and ethanol at a volume ratio of 1: 1 to prepare a mixture. The base electrode was immersed in this surface treatment solution, dried, and ethanol was removed to remove the electrode of the present invention. a was produced. Then, the negative electrode 2 made of the surface-treated hydrogen-absorbing alloy and the known sintered nickel positive electrode 1 were
The electrode group 4 is produced by spirally winding it through a nonwoven fabric separator 3, inserted into an outer can 6, and a 30 wt% aqueous potassium hydroxide solution is injected into the outer can 6. The battery A of the present invention having a nominal capacity of 1000 mAh was produced by closing the container. Example 2 An electrode b of the present invention and a battery B of the present invention were produced in the same manner as in Example 1 except that cyclohexane was used instead of ethanol as the surface treatment solution. (Comparative Example 1)
Comparative Battery C was prepared in the same manner as in Example 1 except that the battery was immersed in a 5% by weight PTFE dispersion (trade name: Teflon 30-J, manufactured by Du Pont-Mitsui Fluorochemicals). Comparative Example 2 A comparative battery D was prepared in the same manner as in Example 1 except that the base electrode of Example 1 having no surface treatment was used as a negative electrode. (Experiment 1) The internal pressures of the batteries of each of the batteries A and B of the present invention and the comparative batteries C and D were measured, and the average value is shown in Table 1. In this experiment, each battery A, B, C, D
After charging at 0.1 C (100 mA), 0.2 C (2
A charge / discharge cycle of discharging at 00 mA) was repeated 10 times to activate. Thereafter, a pressure sensor was attached to the bottom of the outer can, and the internal pressure of the battery when charged at 1 C (1000 mA) for 90 minutes was measured. [Table 1] From Table 1, it was confirmed that the batteries A and B of the present invention had lower battery internal pressure during charging than the comparative batteries C and D. This is because the batteries A and B of the present invention have a PTF
Since the E-resin is attached, the water repellency of the surface of the hydrogen storage alloy electrode is high, and a three-phase interface between the alloy surface and the electrolyte and oxygen gas is formed near the electrode surface. The generated oxygen gas consumption reaction proceeds smoothly. Therefore, the comparative battery D which was not surface-treated at all with the PTFE resin
The internal pressure of the battery is significantly reduced. Further, in the comparative battery C, the surface treatment with the PTFE resin is performed, so that the oxygen gas consumption ability is good. However, since the fluororesin is not aggregated as in the present invention, the fluororesin enters the pores of the electrode, and the fluororesin remaining in the pores blocks the pores of the electrode.
When the pores of the electrode are closed as described above, a part of the hydrogen storage alloy does not participate in the charge / discharge reaction, and as the battery is charged, it reaches a full charge faster than the battery A of the present invention, and is further charged. And overcharge state, and hydrogen gas is generated from the negative electrode,
The internal pressure is higher than that of the batteries A and B of the present invention. (Experiment 2) The charge / discharge cycle characteristics of the batteries A and B of the present invention and the comparative batteries C and D were examined, and the results are shown in FIG. The experimental conditions were 0.5C (50
0 mAh) for 2.5 hours and then 0.5 C (500
(mAh), the cycle of terminating the discharge when the battery voltage reached 1.0 V was repeated, and the cycle number when the discharge capacity of the battery reached 60% of the initial capacity was defined as the cycle life. As is apparent from FIG. 2, it is recognized that the batteries A and B of the present invention have improved charge / discharge cycle characteristics as compared with the comparative batteries C and D. The reason for this is that when the batteries A and B of the present invention are compared with the comparative battery D, the surface of the hydrogen storage alloy electrode is subjected to a water-repellent treatment, and the oxygen gas consumption is smooth as shown in the above Experiment 1. This is considered to be because the internal pressure of the battery at the time of charging is reduced and the electrolyte does not leak out of the battery due to the operation of the safety valve. Next, when the batteries A and B of the present invention are compared with the comparative battery C, since the fluororesin adheres to the surface of the alloy and does not block the pores of the electrode, the charge / discharge reaction proceeds in the plane direction and the depth direction. It is considered that the cycle life was improved because the both proceeded uniformly. In this embodiment, ethanol is used as the hydrophilic organic solvent. However, similar effects can be obtained by using other alcohols such as methanol and butanol. In this embodiment, cyclohexane is used as the hydrophobic organic solvent. However, the present invention is not limited to this, and the same effect can be obtained with heptane or the like. According to the present invention, a gas-liquid-solid three-phase interface in which oxygen gas, an electrolytic solution, and a hydrogen storage alloy electrode coexist is formed near the surface of the hydrogen storage alloy, and oxygen gas consumption at the negative electrode And the internal pressure of the battery can be reduced. Accordingly, since the operation of the safety valve caused by the increase in the internal pressure of the battery can be prevented, deterioration of the battery performance due to leakage of the electrolyte can be suppressed. Further, since the fluororesin does not block the pores of the electrode, a part of the alloy does not participate in the charge / discharge reaction, the charge / discharge reaction becomes uniform, and the charge / discharge cycle characteristics of the battery can be improved. it can.

【図面の簡単な説明】 【図1】本発明の一実施例に係るニッケル−水素化物ア
ルカリ蓄電池の断面図である。 【図2】本発明電池A及びB、比較電池C及びDにおけ
るサイクル特性を示すグラフである。 【符号の説明】 1.正極 2.負極 3.セパレータ 4.電極群 5.負極集電体 6.外装缶 7.正極集電体 8.弁板 9.押さえ板 10.スプリング 11.ガスケット 12.封口板 13.正極端子
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a sectional view of a nickel-hydride alkaline storage battery according to one embodiment of the present invention. FIG. 2 is a graph showing cycle characteristics of batteries A and B of the present invention and comparative batteries C and D. [Explanation of Codes] Positive electrode2. Negative electrode3. Separator 4. Electrode group5. Negative electrode current collector 6. Outer can 7. Positive electrode current collector8. Valve plate 9. Holding plate 10. Spring 11. Gasket12. Sealing plate 13. Positive terminal

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平1−206562(JP,A) 特開 昭62−139255(JP,A) 特開 平1−206563(JP,A) 特開 昭55−3121(JP,A) 特開 昭55−93675(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/26 ──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-1-206562 (JP, A) JP-A-62-139255 (JP, A) JP-A-1-206563 (JP, A) JP-A 55-205 3121 (JP, A) JP-A-55-93675 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 4/26

Claims (1)

(57)【特許請求の範囲】 【請求項1】 水素吸蔵合金を負極材料に用いた水素吸
蔵合金電極の製造方法において、フッ素樹脂を界面活性
剤によって水中に分散させたフッ素樹脂の水性ディスパ
ージョンと有機溶剤との混合溶液に前記負極表面を浸漬
若しくはこの混合溶液を前記負極表面に塗着する工程を
有することを特徴とする水素吸蔵合金電極の製造方法。
(1) An aqueous dispersion of a fluororesin in which a fluororesin is dispersed in water by a surfactant in a method for producing a hydrogen storage alloy electrode using the hydrogen storage alloy as a negative electrode material. A method of dipping the surface of the negative electrode in a mixed solution of water and an organic solvent, or applying the mixed solution to the surface of the negative electrode.
JP22368494A 1994-09-19 1994-09-19 Manufacturing method of hydrogen storage alloy electrode Expired - Fee Related JP3402785B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22368494A JP3402785B2 (en) 1994-09-19 1994-09-19 Manufacturing method of hydrogen storage alloy electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22368494A JP3402785B2 (en) 1994-09-19 1994-09-19 Manufacturing method of hydrogen storage alloy electrode

Publications (2)

Publication Number Publication Date
JPH0888003A JPH0888003A (en) 1996-04-02
JP3402785B2 true JP3402785B2 (en) 2003-05-06

Family

ID=16802031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22368494A Expired - Fee Related JP3402785B2 (en) 1994-09-19 1994-09-19 Manufacturing method of hydrogen storage alloy electrode

Country Status (1)

Country Link
JP (1) JP3402785B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4179648B2 (en) * 1997-07-08 2008-11-12 三洋電機株式会社 Polytetrafluoroethylene dispersion, method for producing the same, and method for producing a hydrogen storage alloy electrode using the dispersion
JP3491089B2 (en) * 1997-09-03 2004-01-26 日本電池株式会社 Electrochemical battery
CN1323444C (en) * 2005-08-30 2007-06-27 包头稀土研究院 Method for improving magnesium-based hydrogen-storage electrode capacity attenuation for nickel-hydrogen battery
JP2011096619A (en) * 2009-02-12 2011-05-12 Sanyo Electric Co Ltd Negative electrode for alkaline storage battery, fabrication method thereof, and alkaline storage battery

Also Published As

Publication number Publication date
JPH0888003A (en) 1996-04-02

Similar Documents

Publication Publication Date Title
JP3429741B2 (en) Paste positive electrode for alkaline storage batteries and nickel-metal hydride storage batteries
JP3402785B2 (en) Manufacturing method of hydrogen storage alloy electrode
US6740450B2 (en) Hydrogen-absorbing alloy for battery, method for producing the same, and alkaline storage battery using the same
JP3183414B2 (en) Hydrogen storage alloy electrode and alkaline secondary battery using the same
JPH11162468A (en) Alkaline secondary battery
JP3567021B2 (en) Alkaline secondary battery
JP4179648B2 (en) Polytetrafluoroethylene dispersion, method for producing the same, and method for producing a hydrogen storage alloy electrode using the dispersion
JP3895985B2 (en) Nickel / hydrogen storage battery
JP3895984B2 (en) Nickel / hydrogen storage battery
JP4859354B2 (en) A hydrogen storage alloy electrode for an alkaline storage battery, an alkaline storage battery using the electrode, and a method for producing the electrode.
JP3490825B2 (en) Nickel electrode for alkaline storage battery
JP3229672B2 (en) Metal hydride storage battery
JPH11135112A (en) Positive electrode for alkaline storage battery
JPH08287906A (en) Hydrogen storage alloy electrode
JP7032968B2 (en) Negative electrode for nickel-metal hydride secondary battery and nickel-metal hydride secondary battery
JP2023136835A (en) Nickel hydrogen secondary battery
JPH09213363A (en) Manufacture of alkali storage battery
JP3459472B2 (en) Hydrogen storage alloy electrode for sealed alkaline storage battery and method for producing the same
JP2022182856A (en) Hydrogen storage alloy negative electrode and nickel hydrogen secondary battery including the same
JP4120762B2 (en) Nickel electrode and nickel metal hydride storage battery using the same
JP2001202956A (en) Active material for nickel electrode of alkaline battery, alkaline battery and initial chemical processing method of alkaline battery
JPH103940A (en) Nickel-metal hydride storage battery and its manufacture
JP2001266860A (en) Nickel hydrogen storage battery
JPH03295177A (en) Sealed alkaline storage battery
JP3267156B2 (en) Nickel hydride rechargeable battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090228

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090228

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100228

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 8

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 8

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 8

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 8

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140228

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees