JP3402397B2 - Method for producing raw material for producing indium-tin oxide acicular powder - Google Patents

Method for producing raw material for producing indium-tin oxide acicular powder

Info

Publication number
JP3402397B2
JP3402397B2 JP04307194A JP4307194A JP3402397B2 JP 3402397 B2 JP3402397 B2 JP 3402397B2 JP 04307194 A JP04307194 A JP 04307194A JP 4307194 A JP4307194 A JP 4307194A JP 3402397 B2 JP3402397 B2 JP 3402397B2
Authority
JP
Japan
Prior art keywords
indium
producing
raw material
nitrate
tin oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04307194A
Other languages
Japanese (ja)
Other versions
JPH07232920A (en
Inventor
雅也 行延
守一 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP04307194A priority Critical patent/JP3402397B2/en
Publication of JPH07232920A publication Critical patent/JPH07232920A/en
Priority to US08/659,821 priority patent/US5833941A/en
Priority to US08/662,150 priority patent/US5849221A/en
Priority to US08/662,145 priority patent/US5820843A/en
Priority to US09/199,443 priority patent/US6511614B1/en
Application granted granted Critical
Publication of JP3402397B2 publication Critical patent/JP3402397B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】この発明は、透明導電膜を形成す
るのに用いる導電インクの導電フィラーに最適なインジ
ウムー錫酸化物針状粉末の製造に使用する原料の製造方
法に関する。 【0002】 【従来の技術】透明導電膜を導電インクの塗布によって
得る塗布法においては、インクの導電フィラーとして、
インジウムー錫酸化物(ITO)、錫ーアンチモン酸化
物(ATO)等の酸化物系のフィラーが用いられてい
る。中でもITOはATOに比べて抵抗値が低いために
最も優れている。 【0003】導電インクにおいては、導電フィラーの含
有量が少ないほど好ましい。その理由は、インクの成分
の一つである透明樹脂に比べて、フィラーである酸化物
の光吸収がはるかに大きいからである。したがって、樹
脂に対してできるだけ少量の酸化物フィラーを用いて低
抵抗値の膜が得られれば、膜の光線透過率を向上でき
る。 【0004】このような導電フィラーとしては、針状ま
たはりん片状のものが得られれば、球状、粒状の導電フ
ィラーに比べて少量の添加で低抵抗値の膜が得られ、コ
スト面、膜強度、耐候性等の面で優れた膜が得られるこ
とになる。 【0005】しかし、無機酸化物、水酸化物等のコロイ
ド溶液を凍結し、コロイド溶液の溶媒の間に酸化物微粒
子や水酸化物粒子を析出させ、乾燥して脱溶媒し、水酸
化物の場合はさらに焙焼してりん片状の酸化物を得る方
法(特開昭62−3003号公報参照)、針状の蓚酸錫
を加熱分解して針状錫酸化物を得る方法(特開昭56−
120519号公報参照)があるが、針状で高アスペク
ト比を有するITO粉末は得られていない。 【0006】 【発明が解決しようとする課題】この発明は、従来のこ
のような実情に鑑み、透明導電膜を得るための導電イン
クの導電フィラーとして好適なインジウムー錫酸化物針
状粉末の原料として用いることのできる、長径が5μm
以上で短径に対する長径の比が5以上のインジウムー錫
酸化物針状粉末製造用原料の製造方法を提案しようとす
るものである。 【0007】 【課題を解決するための手段】この発明に係るインジウ
ムー錫酸化物針状粉末製造用原料の製造方法は、インジ
ウムイオンと硝酸イオンとを含有する水溶液に、硝酸リ
チウムまたは、硝酸リチウムを含有する硝酸塩を加えた
後、加熱濃縮して高粘度スラリーを生成せしめ、該スラ
リーから針状粉末を分離することを要旨とするものであ
る。 【0008】 【作用】この発明で用いるインジウムイオン(I
3+)と硝酸イオン(NO )を含む水溶液は、イ
ンジウムメタルを硝酸に溶解して得られるが、酸化イン
ジウムまたはインジウム(III)塩の水溶液にアルカ
リを加えて生成するゲル状の白色の沈殿で溶液中ではI
n(OH)で表される水酸化インジウムを硝酸に溶解
してもよい。インジウム、硝酸の濃度に特別の制限はな
いが、インジウム濃度があまり低いと、つまり硝酸およ
び水が多いと、加熱して濃縮するときに時間とエネルギ
ーを多く必要とするので好ましくない。 【0009】水溶液中のインジウムと硝酸のモル比は、
硝酸がインジウムに比べて過剰に存在すると、濃縮工程
で硝酸の揮発に時間がかかり好ましくない。したがっ
て、その比率は硝酸インジウム[In(NO]の
モル比の硝酸/インジウム=3程度がよい。この比率
は、インジウムを硝酸に溶解した液に、水酸化インジウ
ムおよび/または酸化インジウムを溶解してコントロー
ルすることができる。 【0010】インジウムイオンと硝酸イオンと硝酸リチ
ウムまたは、硝酸リチウムを含む硝酸塩を含有する水溶
液を加熱濃縮していくと、液温が130〜180℃程度
まで上昇していく過程で系内から水および硝酸が蒸発
し、次第に濃厚なスラリーとなり、塩基性硝酸塩と考え
られる微細な針状結晶が水溶液中に生成してくる。この
針状結晶の分析値は、通常In55〜68重量%、NO
5〜23重量%程度である。この発明ではこのよう
な針状結晶の正確な化学組成を確定できないので、イン
ジウムー錫酸化物針状粉末製造用原料と称する。 【0011】インジウムイオンと硝酸イオンを含有する
水溶液をそのまま加熱濃縮しても同様な針状結晶を得る
ことが可能であるが、前記水溶液に硝酸リチウムまた
は、硝酸リチウムを含む硝酸塩を加えた方が、系内のイ
ンジウム量当りの針状結晶の収率が高くなる。例えば、
前記水溶液に硝酸リチウムまたは、硝酸リチウムを含む
硝酸塩を添加した場合、系内のインジウムのうちの約4
0〜60%を針状結晶として回収できるが、未添加の場
合、約10〜30%程度(通常は15〜20%)しか針
状結晶を回収できず、残りの90〜70%のインジウム
分は繰返して使用することとなる。 【0012】なお、硝酸リチウムと供用して用いる硝酸
塩としては、硝酸ナトリウム、硝酸カリウム、硝酸カル
シウム、硝酸マグネシウム、硝酸アンモニウム等がある
が、これらに限るものではない。 【0013】この発明において、硝酸リチウムまたは、
硝酸リチウムを含む硝酸塩の添加が有効である理由につ
いては、硝酸インジウムと硝酸リチウムの親和性による
ものと考えられる。 【0014】以上のようにして、加熱濃縮により、濃厚
液中に針状粉末のシンジウムー錫酸化物針状粉末製造用
原料を析出させることができるが、濃厚液はシロップ状
であり、冷却すると高粘度となり、最終的には固化す
る。高粘度スラリーの固形分濃度は5〜30重量%程度
が適当である。濃縮しすぎてスラリー濃度を高くしすぎ
ると、針状形が失われ、アスペクト比が小さくなるので
好ましくない。 【0015】得られる針状粉末のインジウムー錫酸化物
針状粉末製造用原料の粒子の大きさは、長径5μm以
上、アスペクト比5以上、条件によっては20以上のも
のも得られる。長径、アスペクト比は濃縮条件で変化す
る。 【0016】インジウムー錫酸化物針状粉末製造用原料
を含む高粘度スラリーから針状粉末を分離する方法とし
ては、該高粘度スラリーを多量の水、またはアルカリを
含む多量の水に入れ、該スラリーの濃厚液だけを希釈し
た後濾別し、洗浄、乾燥する方法を用いることができ
る。なお、濾別後の洗浄は、純水とアルコールで行うの
が好ましい。 【0017】また、高粘度スラリーを減圧濾過、加圧濾
過、遠心濾過等によってスラリーから濃厚液をできるだ
け分離してから、濾過ケーキを多量の水、またはアルカ
リを含む多量の水に入れ、濾過ケーキに付着している濃
厚液を希釈した後、濾別し、洗浄、乾燥してインジウム
ー錫酸化物針状粉末製造用原料の針状粉末を得てもよ
い。濾過を速やかに行うためには100℃以上、好まし
くは150〜180℃の温度で行うのがよく、温度が低
いと濃厚液の粘度が高く濾過に時間がかかる。 【0018】この場合、高粘度スラリーの濾過により得
られる濃厚濾液はそのまま繰返し使用することができ
る。濃厚濾液を水で希釈した液は、アルカリで中和して
水酸化物として回収し硝酸に溶解するか、そのままで工
程に繰返すことができる。 【0019】スラリーまたは濾過ケーキを多量の水また
はアルカリを含む多量の水と混合したものを、そのまま
長時間、例えば1日程度放置しておくと、加水分解を受
け、針状が微細な粒状の水酸化インジウムに変化してし
まうので、速やかに濾別することが好ましい。 【0020】スラリーまたは濾過ケーキを多量の水を入
れるのは、少量の水ではインジウムー錫酸化物針状粉末
製造用原料が液に溶解してしまうからである。スラリー
または濾過ケーキに対して40重量倍程度以上の水であ
れば溶解を防ぐことができる。一方、アルカリを含む
水、例えばアンモニアを含む水を用いると、水に比べて
用いる液量を少なくできるが、あまり濃いアルカリ水を
用いると濃厚液が中和され水酸化物が析出し、インジウ
ムー錫酸化物針状粉末製造用原料との分離ができなくな
るので、水酸化物が析出しない程度の濃度に限定され
る。 【0021】濾別後の洗浄は水で行うが、この後にアン
モニア水等のアルカリ水で洗浄してもよい。例えば、ア
ンモニア水で洗浄すると、インジウムー錫酸化物針状粉
末製造用原料中の硝酸が除去され、InとO、OHおよ
び/またはHO等との組成になる水酸化インジウムと
考えられる針状粉末となるため、後で仮焼するときにN
Oxの発生がなく好ましい。また、アルカリ水による洗
浄によっても、針状形態は全く変化せず長径5μm以
上、アスペクト比5以上の針状粉末が得られる。 【0022】上記のインジウムー錫酸化物針状粉末製造
用原料やインジウムー錫水酸化物針状粉末は、大気中や
真空中、不活性ガス中で300℃以上、好ましくは50
0℃以上の温度で30分ないし1時間程度仮焼すること
により、長径5μm以上で短径に対する長径の比が5以
上のインジウム酸化物針状粉末とすることができる。 【0023】この発明で得られるインジウムー錫酸化物
針状粉末製造用原料(第一原料)や、インジウム酸化物
針状粉末(第二原料)は、錫塩の溶液、例えば塩化第一
錫や塩化第二錫の溶液と混合した後、アルカリにより中
和し、固液分離して乾燥し、大気中で700℃以上、例
えば1200℃で1時間程度仮焼し、必要に応じてエタ
ノールガスを含む窒素ガス雰囲気で300〜400℃で
30分程度仮焼する還元処理を行うことによって、針状
の形態を完全に保ったままでインジウムー錫酸化物(I
TO)針状粉末とすることができる。 【0024】 【実施例】 実施例1 インジウムメタルを硝酸に溶解して得たIn440g/
l、NO 770g/l、液比重1.87の液10g
に硝酸リチウム20gと水20gを加え、撹拌しながら
ホットスターラー上で加熱し濃縮を行った。濃縮に伴い
液温が上昇し、白煙が発生して液量が次第に減少し、液
温約139℃まで加熱した時点で液が濁りはじめ、非常
に濃いスラリーとなった。その後、液温約161℃で加
熱を停止した。このスラリーの重量は26.6gで、2
3.4gの硝酸および水等が濃縮中に揮発除去された。
スラリーをゆっくり冷却した後、該スラリー全量に30
0mlの水を加えて撹拌し、スラリー中の濃厚液を水で
希釈した後、ただちに濾別し、純粋およびエタノールで
順次に洗浄し、120℃で乾燥してインジウムー錫酸化
物針状粉末製造用原料1.75gを得た(液中のインジ
ウムのうち46.2%が針状結晶として回収された)。
得られた針状粉末の分析値は、In62.1重量%、N
12.5重量%、Li<0.01重量%であっ
た。このものの結晶構造を示す電子顕微鏡写真を図1に
示す。 【0025】実施例2 インジウムメタルを硝酸に溶解して得たIn440g/
l、NO 770g/l、液比重1.87の液10g
に硝酸リチウム10g、硝酸ナトリウム10gおよび水
20gを加え、撹拌しながらホットスターラー上で加熱
し濃縮を行った。濃縮に伴い液温が上昇し、白煙が発生
して液量が次第に減少し、液温約147℃まで加熱した
時点で液が濁りはじめ、非常に濃いスラリーとなった。
その後、液温約180℃で加熱を停止した。このスラリ
ーの重量は25.5gで、24.5gの硝酸および水等
が濃縮中に揮発除去された。スラリーをゆっくり冷却し
た後、該スラリー全量に300mlの水を加えて撹拌
し、スラリー中の濃厚液を水で希釈した後、ただちに濾
別し、純粋およびエタノールで順次に洗浄し、120℃
で乾燥してインジウムー錫酸化物針状粉末製造用原料
1.5gを得た(液中のインジウムのうち39.1%が
針状結晶として回収された)。得られた針状粉末の分析
値は、In61.3重量%、NO 11.3重量%、
Li<0.01重量%、Na0.01重量%であった。
このものの結晶構造を示す電子顕微鏡写真を図2に示
す。 【0026】比較例1 前記実施例1で硝酸リチウム20gの代りに、(a)硝
酸ナトリウム20g、(b)硝酸カリウム20g、
(c)硝酸カルシウム20g、(d)硝酸アンモニウム
20g、(e)硝酸ナトリウム10gと硝酸カリウム1
0gのいずれか一種を用いた以外は、実施例1と同様に
処理した。その結果、(a)〜(e)のいずれの場合に
も、針状結晶は得られないか、得られても0.2g以下
と極めて低い値であった。 【0027】 【発明の効果】以上説明したごとく、この発明方法によ
れば、透明導電膜を得るための導電インクの導電フィラ
ーとして好適なアスペクト比を有し低抵抗なインジウム
ー錫酸化物針状粉末の原料となるインジウムー錫酸化物
針状粉末製造用原料を提供できる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used for producing an indium-tin oxide needle powder which is most suitable for a conductive filler of a conductive ink used to form a transparent conductive film. The present invention relates to a method for producing a raw material. In a coating method of obtaining a transparent conductive film by applying a conductive ink, a conductive filler of the ink is used as a conductive filler.
Oxide-based fillers such as indium-tin oxide (ITO) and tin-antimony oxide (ATO) are used. Among them, ITO is the best because it has a lower resistance value than ATO. [0003] In a conductive ink, the content of the conductive filler is preferably as small as possible. The reason is that the light absorption of the oxide as the filler is much larger than that of the transparent resin which is one of the components of the ink. Therefore, if a film having a low resistance value can be obtained using as little oxide filler as possible with respect to the resin, the light transmittance of the film can be improved. If such a conductive filler is obtained in the form of needles or scaly, a film having a low resistance value can be obtained by adding a small amount of the filler compared to a spherical or granular conductive filler. A film excellent in strength, weather resistance and the like can be obtained. However, a colloid solution such as an inorganic oxide or a hydroxide is frozen, oxide fine particles or hydroxide particles are precipitated between the solvents of the colloid solution, dried and desolvated to form a hydroxide. In such a case, roasting is further performed to obtain a scaly oxide (see Japanese Patent Application Laid-Open No. 62-3003), and acicular tin oxalate is thermally decomposed to obtain an acicular tin oxide (Japanese Unexamined Patent Application Publication No. 56-
No. 120519), but an acicular ITO powder having a high aspect ratio has not been obtained. SUMMARY OF THE INVENTION In view of the above circumstances, the present invention provides a raw material for acicular powder of indium-tin oxide suitable as a conductive filler for a conductive ink for obtaining a transparent conductive film. Can be used, the major axis is 5 μm
An object of the present invention is to propose a method for producing a raw material for producing acicular powder of indium-tin oxide having a ratio of a major axis to a minor axis of 5 or more. [0007] The method for producing a raw material for producing acicular powder of indium-tin oxide according to the present invention is characterized in that lithium nitrate or lithium nitrate is added to an aqueous solution containing indium ions and nitrate ions. The gist of the present invention is to add a nitrate contained and then heat and concentrate to produce a high-viscosity slurry, and to separate the acicular powder from the slurry. The indium ion (I) used in the present invention
An aqueous solution containing n 3+ ) and nitrate ions (NO 3 ) is obtained by dissolving indium metal in nitric acid, and is a gel-like white color formed by adding an alkali to an aqueous solution of indium oxide or indium (III) salt. I in the solution by precipitation
Indium hydroxide represented by n (OH) 3 may be dissolved in nitric acid. There are no particular restrictions on the concentrations of indium and nitric acid. However, if the indium concentration is too low, that is, if there is a large amount of nitric acid and water, it is not preferable because heating and concentration require a lot of time and energy. The molar ratio of indium to nitric acid in the aqueous solution is
If nitric acid is present in excess of indium, volatilization of nitric acid in the concentration step takes time, which is not preferable. Therefore, the ratio is preferably about 3 in molar ratio of indium nitrate [In (NO 3 ) 3 ] to nitric acid / indium. This ratio can be controlled by dissolving indium hydroxide and / or indium oxide in a solution of indium dissolved in nitric acid. When an aqueous solution containing indium ions, nitrate ions, lithium nitrate or a nitrate containing lithium nitrate is heated and concentrated, water and water are removed from the system in the process of raising the temperature of the solution to about 130 to 180 ° C. The nitric acid evaporates and gradually becomes a thick slurry, and fine needle-like crystals considered as basic nitrates are generated in the aqueous solution. The analysis value of this needle-like crystal is usually 55 to 68% by weight of In, NO
3 - 5 to 23 by weight% of. In the present invention, since the exact chemical composition of such acicular crystals cannot be determined, it is referred to as a raw material for producing indium-tin oxide acicular powder. Although it is possible to obtain similar needle-like crystals by directly heating and concentrating an aqueous solution containing indium ions and nitrate ions, it is better to add lithium nitrate or a nitrate containing lithium nitrate to the aqueous solution. As a result, the yield of needle crystals per indium amount in the system is increased. For example,
When lithium nitrate or a nitrate containing lithium nitrate is added to the aqueous solution, about 4% of indium in the system is added.
0 to 60% can be recovered as needle-like crystals, but when not added, only about 10 to 30% (usually 15 to 20%) can recover needle-like crystals, and the remaining 90 to 70% of indium content can be recovered. Will be used repeatedly. The nitrates used in combination with lithium nitrate include, but are not limited to, sodium nitrate, potassium nitrate, calcium nitrate, magnesium nitrate, and ammonium nitrate. In the present invention, lithium nitrate or
The reason why the addition of nitrate containing lithium nitrate is effective is considered to be due to the affinity between indium nitrate and lithium nitrate. As described above, the raw material for producing acicular powder of acicular powder, acicular powder, can be precipitated in the concentrated liquid by heat concentration, but the concentrated liquid is syrup-like, It becomes viscous and eventually solidifies. The solid concentration of the high viscosity slurry is suitably about 5 to 30% by weight. If the concentration of the slurry is too high and the concentration of the slurry is too high, the needle shape is lost and the aspect ratio decreases, which is not preferable. The particle size of the raw material for producing the indium-tin oxide acicular powder of the acicular powder obtained may be as long as 5 μm or more, the aspect ratio is 5 or more, and 20 or more depending on the conditions. The major axis and the aspect ratio change depending on the concentration conditions. As a method for separating the acicular powder from the high-viscosity slurry containing the raw material for producing indium-tin oxide acicular powder, the high-viscosity slurry is put into a large amount of water or a large amount of water containing an alkali, After diluting only the concentrated solution, the solution is filtered, washed and dried. The washing after the filtration is preferably performed with pure water and alcohol. After separating the concentrated solution from the slurry as much as possible by filtration under reduced pressure, filtration under pressure, centrifugal filtration or the like, the high-viscosity slurry is put into a large amount of water or a large amount of alkali-containing water. After diluting the concentrated liquid adhering to the substrate, it may be filtered off, washed and dried to obtain an acicular powder as a raw material for producing an indium-tin oxide acicular powder. In order to perform the filtration promptly, the filtration is preferably performed at a temperature of 100 ° C. or higher, preferably 150 to 180 ° C. When the temperature is low, the viscosity of the concentrated liquid is high and the filtration takes time. In this case, the thick filtrate obtained by filtering the high viscosity slurry can be used repeatedly as it is. A solution obtained by diluting the concentrated filtrate with water can be neutralized with an alkali, recovered as a hydroxide and dissolved in nitric acid, or can be repeated as it is. If the slurry or the filter cake is mixed with a large amount of water or a large amount of water containing an alkali, and left as it is for a long time, for example, for about one day, it is hydrolyzed and the needles become fine granular. Since it changes into indium hydroxide, it is preferable to quickly separate by filtration. The reason why a large amount of water is added to the slurry or the filter cake is that a small amount of water dissolves the raw material for producing indium-tin oxide needle powder into the liquid. Water can be prevented from dissolving if the water is at least about 40 times the weight of the slurry or the filter cake. On the other hand, when water containing alkali, for example, water containing ammonia, is used, the amount of liquid used can be reduced as compared with water.However, when too much alkaline water is used, the concentrated solution is neutralized and hydroxide is precipitated, and indium-tin is removed. Since the separation from the raw material for producing acicular oxide powder cannot be performed, the concentration is limited to such a degree that hydroxide is not precipitated. Washing after filtration is carried out with water, but may be followed by washing with alkaline water such as ammonia water. For example, washing with ammonia water removes nitric acid in the raw material for producing indium-tin oxide acicular powder, and acicular indium hydroxide considered to have a composition of In and O, OH, and / or H 2 O, etc. Since it becomes a powder, it becomes N
Ox is not generated, which is preferable. The needle-like morphology does not change at all even by washing with alkaline water, and needle-like powder having a major axis of 5 μm or more and an aspect ratio of 5 or more is obtained. The raw material for producing acicular powder of indium-tin oxide and acicular powder of indium-tin hydroxide are prepared at 300 ° C. or higher, preferably 50 ° C., in the atmosphere, in a vacuum, or in an inert gas.
By calcining at a temperature of 0 ° C. or more for about 30 minutes to 1 hour, acicular powder of indium oxide having a major axis of 5 μm or more and a ratio of the major axis to the minor axis of 5 or more can be obtained. The raw material for producing indium-tin oxide acicular powder (first raw material) and the indium oxide acicular powder (second raw material) obtained by the present invention are used as a tin salt solution such as stannous chloride or chloride. After mixing with a solution of stannic acid, the mixture is neutralized with an alkali, solid-liquid separated, dried, and calcined in air at 700 ° C. or higher, for example, at 1200 ° C. for about 1 hour, and contains ethanol gas as necessary. By performing a reduction treatment by calcining at 300 to 400 ° C. for about 30 minutes in a nitrogen gas atmosphere, indium-tin oxide (I
TO) needle-like powder. Example 1 Indium metal obtained by dissolving indium metal in nitric acid 440 g /
l, NO 3 - 770g / l , liquid of liquid specific gravity 1.87 10g
To the mixture were added 20 g of lithium nitrate and 20 g of water, and the mixture was heated and concentrated on a hot stirrer with stirring. The liquid temperature increased with the concentration, white smoke was generated, and the liquid amount gradually decreased. When the liquid temperature was heated to about 139 ° C., the liquid began to become cloudy and became a very thick slurry. Thereafter, the heating was stopped at a liquid temperature of about 161 ° C. The weight of this slurry was 26.6 g and 2
3.4 g of nitric acid and water were volatilized and removed during the concentration.
After cooling the slurry slowly, 30
0 ml of water was added and stirred. The concentrated liquid in the slurry was diluted with water, immediately filtered, washed sequentially with pure and ethanol, and dried at 120 ° C. to produce indium-tin oxide needle powder. 1.75 g of a raw material was obtained (46.2% of indium in the liquid was recovered as needle crystals).
The analysis value of the obtained acicular powder was 62.1% by weight of In, N
O 3 - 12.5% by weight was Li <0.01 wt%. An electron micrograph showing the crystal structure of this is shown in FIG. Example 2 In440 g / In obtained by dissolving indium metal in nitric acid
l, NO 3 - 770g / l , liquid of liquid specific gravity 1.87 10g
To the mixture were added 10 g of lithium nitrate, 10 g of sodium nitrate and 20 g of water, and the mixture was heated and concentrated on a hot stirrer with stirring. The liquid temperature increased with the concentration, white smoke was generated, and the liquid amount gradually decreased. When the liquid temperature was heated to about 147 ° C., the liquid began to become cloudy and became a very thick slurry.
Thereafter, the heating was stopped at a liquid temperature of about 180 ° C. The weight of this slurry was 25.5 g, and 24.5 g of nitric acid and water were volatilized and removed during the concentration. After the slurry was slowly cooled, 300 ml of water was added to the whole amount of the slurry and stirred. The concentrated liquid in the slurry was diluted with water, immediately filtered, washed with pure and ethanol sequentially, and washed at 120 ° C.
To obtain 1.5 g of a raw material for producing indium-tin oxide needle powder (39.1% of indium in the liquid was recovered as needle crystals). Analysis of the resulting acicular powder, In61.3 wt%, NO 3 - 11.3 wt%,
Li <0.01 wt% and Na 0.01 wt%.
An electron micrograph showing the crystal structure of this is shown in FIG. Comparative Example 1 In place of 20 g of lithium nitrate in Example 1, (a) 20 g of sodium nitrate, (b) 20 g of potassium nitrate,
(C) 20 g of calcium nitrate, (d) 20 g of ammonium nitrate, (e) 10 g of sodium nitrate and potassium nitrate 1
The same treatment as in Example 1 was performed, except that any one of 0 g was used. As a result, in any of the cases (a) to (e), needle-like crystals were not obtained, or even if they were obtained, the value was as extremely low as 0.2 g or less. As described above, according to the method of the present invention, a low resistance indium-tin oxide acicular powder having an aspect ratio suitable as a conductive filler of a conductive ink for obtaining a transparent conductive film. And a raw material for producing indium-tin oxide needle-like powder, which is a raw material of the present invention.

【図面の簡単な説明】 【図1】この発明の実施例1におけるインジウムー錫酸
化物針状粉末製造用原料の結晶構造を示す電子顕微鏡写
真である。 【図2】同上の実施例2におけるインジウムー錫酸化物
針状粉末製造用原料の結晶構造を示す電子顕微鏡写真で
ある。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an electron micrograph showing a crystal structure of a raw material for producing indium-tin oxide needle powder in Example 1 of the present invention. FIG. 2 is an electron micrograph showing a crystal structure of a raw material for producing acicular powder of indium-tin oxide in Example 2 of the same.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C01G 19/00 H01B 1/00 C09K 11/08 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int. Cl. 7 , DB name) C01G 19/00 H01B 1/00 C09K 11/08

Claims (1)

(57)【特許請求の範囲】 【請求項1】 インジウムイオンと硝酸イオンとを含有
する水溶液に、硝酸リチウムまたは、硝酸リチウムを含
有する硝酸塩を加えた後、加熱濃縮して高粘度スラリー
を生成せしめ、該スラリーから針状粉末を分離すること
を特徴とするインジウムー錫酸化物針状粉末製造用原料
の製造方法。
(57) [Claims 1] Lithium nitrate or nitrate containing lithium nitrate is added to an aqueous solution containing indium ions and nitrate ions, and then heated and concentrated to produce a high viscosity slurry. A method for producing a raw material for producing indium-tin oxide acicular powder, comprising separating acicular powder from the slurry.
JP04307194A 1993-04-05 1994-02-17 Method for producing raw material for producing indium-tin oxide acicular powder Expired - Fee Related JP3402397B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP04307194A JP3402397B2 (en) 1994-02-17 1994-02-17 Method for producing raw material for producing indium-tin oxide acicular powder
US08/659,821 US5833941A (en) 1993-04-05 1996-06-07 Raw material for producing powder of indium-tin oxide aciculae and method of producing the raw material, powder of indium-tin oxide aciculae and method of producing the powder, electroconductive paste and light-transmitting electroconductive film
US08/662,150 US5849221A (en) 1993-04-05 1996-06-12 Raw material for producing powder of indium-tin oxide aciculae and method of producing the raw material, powder of indium-tin oxide aciculae and method of producing the powder, electroconductive paste and light-transmitting electroconductive film
US08/662,145 US5820843A (en) 1993-04-05 1996-06-12 Raw material for producing powder of indium-tin oxide aciculae and method of producing the raw material, powder of indium-tin oxide aciculae and method of producing the powder, electroconductive paste and light-transmitting electroconductive film
US09/199,443 US6511614B1 (en) 1993-04-05 1999-02-19 Raw material for producing powder of indium-tin oxide aciculae and method of producing the raw material, powder of indium-tin oxide aciculae and method of producing the powder, electroconductive paste and light-transmitting electroconductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04307194A JP3402397B2 (en) 1994-02-17 1994-02-17 Method for producing raw material for producing indium-tin oxide acicular powder

Publications (2)

Publication Number Publication Date
JPH07232920A JPH07232920A (en) 1995-09-05
JP3402397B2 true JP3402397B2 (en) 2003-05-06

Family

ID=12653631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04307194A Expired - Fee Related JP3402397B2 (en) 1993-04-05 1994-02-17 Method for producing raw material for producing indium-tin oxide acicular powder

Country Status (1)

Country Link
JP (1) JP3402397B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6908574B2 (en) 2001-08-13 2005-06-21 Dowa Mining Co., Ltd. Tin-containing indium oxides, a process for producing them, a coating solution using them and electrically conductive coatings formed of them
JP4678598B2 (en) * 2005-01-19 2011-04-27 三菱マテリアル株式会社 Method for producing indium tin oxide fiber body
JP6060680B2 (en) * 2012-12-27 2017-01-18 三菱マテリアル株式会社 ITO powder

Also Published As

Publication number Publication date
JPH07232920A (en) 1995-09-05

Similar Documents

Publication Publication Date Title
EP0828690B1 (en) Spheroidally agglomerated basic cobalt (ii) carbonate and spheroidally agglomerated cobalt (ii) hydroxide, process for their production and their use
JP2638271B2 (en) Production method of copper fine powder
US5401441A (en) Preparation of metal oxide conductive powders
JPH05201731A (en) Hyperfine particle low resistant tin dope indium oxide powder and production thereof
JP3429985B2 (en) Method for producing silver powder composed of hexagonal plate-like crystal silver particles
JP3402397B2 (en) Method for producing raw material for producing indium-tin oxide acicular powder
JP4253721B2 (en) Tin-doped indium oxide powder and method for producing the same
CN108977675A (en) A kind of method that anti-charging precipitating-baking inphases prepare low sulfur content rare earth oxide
JPH02145422A (en) Production of fine copper oxide powder
JP3453783B2 (en) Method for producing acicular powder of indium-tin oxide
JP3508153B2 (en) Raw material for producing indium-tin oxide needle powder and method for producing the same
JP3820018B2 (en) Method for producing granular silver powder
JP3303421B2 (en) Method for producing acicular powder of indium-tin oxide
JP2963296B2 (en) Method for producing conductive fine powder
US2535999A (en) Method for producing cathode coating compositions
US3717584A (en) Method for preparing rare earth oxide phosphors
JPS60186416A (en) Production of sn-doped in2o3 powder having low electrical resistance
JP2776573B2 (en) Production method of indium oxide-tin oxide fine powder
JP3838615B2 (en) Tin-doped indium oxide powder and method for producing the same
JPH0526725B2 (en)
JPH0635329B2 (en) Method for producing zirconium oxide powder
JP3166013B2 (en) Method for producing high-purity amorphous zinc stannate powder
JPH0283212A (en) Synthesis of lanthanide-alkaline earth metal-copper-oxygen type superconductor material
JPH04321523A (en) Production of tricobalt tetroxide
CN116062784A (en) Preparation method of high-purity calcium fluoride

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees