JP3399517B2 - Gas laser device that emits ultraviolet light - Google Patents
Gas laser device that emits ultraviolet lightInfo
- Publication number
- JP3399517B2 JP3399517B2 JP34863799A JP34863799A JP3399517B2 JP 3399517 B2 JP3399517 B2 JP 3399517B2 JP 34863799 A JP34863799 A JP 34863799A JP 34863799 A JP34863799 A JP 34863799A JP 3399517 B2 JP3399517 B2 JP 3399517B2
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- main
- laser
- gas
- main discharge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/09—Processes or apparatus for excitation, e.g. pumping
- H01S3/097—Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser
- H01S3/0977—Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser having auxiliary ionisation means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/02—Constructional details
- H01S3/03—Constructional details of gas laser discharge tubes
- H01S3/038—Electrodes, e.g. special shape, configuration or composition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/02—Constructional details
- H01S3/03—Constructional details of gas laser discharge tubes
- H01S3/038—Electrodes, e.g. special shape, configuration or composition
- H01S3/0384—Auxiliary electrodes, e.g. for pre-ionisation or triggering, or particular adaptations therefor
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Optics & Photonics (AREA)
- Lasers (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、紫外線を放出する
ガスレーザ装置に関し、特に、発振効率が高いエキシマ
レーザ装置等の紫外線を放出するガスレーザ装置に関す
るものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas laser device which emits ultraviolet rays, and more particularly to a gas laser device which emits ultraviolet rays such as an excimer laser device having high oscillation efficiency.
【0002】[0002]
【従来の技術】半導体集積回路の微細化、高集積化につ
れ、投影露光装置においては解像力の向上が要請されて
いる。このため、露光用光源から放出される露光光の短
波長化が進められており、次世代の半導体露光用光源と
してArFエキシマレーザ装置及びフッ素レーザ装置等
の紫外線を放出するガスレーザ装置が有力である。2. Description of the Related Art As semiconductor integrated circuits become finer and more highly integrated, projection exposure apparatuses are required to have improved resolution. Therefore, the wavelength of exposure light emitted from the exposure light source is being shortened, and a gas laser device that emits ultraviolet rays such as an ArF excimer laser device and a fluorine laser device is effective as a next-generation semiconductor exposure light source. .
【0003】ArFエキシマレーザ装置においては、フ
ッ素(F2 )ガス、アルゴン(Ar)ガス及びバッファ
ーガスとしてのネオン(Ne)等の希ガスからなる混合
ガス、また、フッ素レーザ装置においては、フッ素(F
2 )ガス及びバッファーガスとしてのヘリウム(He)
等の希ガスからなる混合ガスであるレーザガスが数10
0kPaでレーザチェンバ内に封入され、そのレーザチ
ェンバ内部に所定間隔離間して対向配置された一対の主
放電電極が設けられている。レーザチェンバの内部でこ
の主放電用電極で放電を発生されることにより、レーザ
媒質であるレーザガスが励起される。In the ArF excimer laser device, a mixed gas of fluorine (F 2 ) gas, argon (Ar) gas and a rare gas such as neon (Ne) as a buffer gas, and in the fluorine laser device, fluorine ( F
2 ) Helium (He) as gas and buffer gas
Laser gas, which is a mixed gas consisting of rare gases such as
A pair of main discharge electrodes, which are enclosed in a laser chamber at 0 kPa and are opposed to each other with a predetermined gap, are provided inside the laser chamber. A laser gas, which is a laser medium, is excited by generating a discharge at the main discharge electrode inside the laser chamber.
【0004】効率良くレーザ光を発生させるには、主放
電電極間で一様な放電を発生させることが必要である
が、数100kPaという高圧ガス雰囲気で一様な放電
を発生させるためには、通常、主放電開始前に主放電電
極間の放電空間に存在するレーザガスを予備電離するこ
とが一般的である。In order to efficiently generate a laser beam, it is necessary to generate a uniform discharge between the main discharge electrodes, but in order to generate a uniform discharge in a high pressure gas atmosphere of several 100 kPa, Usually, it is general to pre-ionize the laser gas existing in the discharge space between the main discharge electrodes before starting the main discharge.
【0005】上記したような予備電離を発生させるため
の手段の一つとして、誘電体を介して2つの電極が対向
配置されている予備電離方式がある。その予備電離部の
例が、特開平5−327070号、特許第2,794,
792号、特開平10−242553号、特表平8−5
02145号等に記載されている。何れに記載の予備電
離部も、誘電体で形成される筒体の外部表面と接触する
第1の電極(以下、外電極と呼称する。)と、上記筒体
内部に挿入されている第2の電極(以下、内電極と呼称
する。)とを備えた構成であり、上記外電極と内電極と
の間に電位差を発生させることにより、外電極と誘電体
筒体との間でコロナ放電を発生させ、このとき発生した
紫外光により、上記した主放電電極間の放電空間に存在
するレーザガスを予備電離するものである。なお、上記
予備電離手段においては、他に、誘電体筒体と外電極と
が接触せず、近接している場合や、外電極も誘電体物質
で覆われている場合もある。As one of the means for generating the above-mentioned preionization, there is a preionization method in which two electrodes are arranged so as to face each other with a dielectric material interposed therebetween. Examples of the preionization unit are disclosed in JP-A-5-327070 and JP-A-2,794.
792, JP-A-10-242553, and JP-A-8-5
No. 02145 and the like. The preionization section described in any of the above is a first electrode (hereinafter, referred to as an outer electrode) that comes into contact with the outer surface of the cylindrical body formed of a dielectric material, and a second electrode inserted inside the cylindrical body. And an electrode (hereinafter, referred to as an inner electrode). By generating a potential difference between the outer electrode and the inner electrode, corona discharge is generated between the outer electrode and the dielectric cylinder. Is generated, and the laser gas existing in the discharge space between the main discharge electrodes is preionized by the ultraviolet light generated at this time. In addition, in the above-mentioned preliminary ionization means, the dielectric cylinder and the outer electrode may not be in contact with each other and may be in close proximity to each other, or the outer electrode may be covered with the dielectric substance.
【0006】上記した予備電離方式を採用した紫外線を
放出するガスレーザ装置(以下、単にガスレーザ装置と
する。)の励起回路の構成例を図5に示す。この励起回
路においては、IGBTのような固体スイッチSWを用
いて容量移行型回路と呼ばれる回路構成になっている。
この回路図に従って簡単に動作を説明すると、スイッチ
SWが開いた状態においては、高圧電源HVからの電荷
がコンデンサC1 に溜められる。コンデンサC1 に電荷
が溜まった状態でスイッチSWを閉じると、コンデンサ
C1 の電荷はコンデンサC2 に移行する。コンデンサC
2 に移行した電荷は、磁気スイッチあるいは過飽和イン
ダクタンスと呼ばれる非線形インダクタンスLm を経て
ピーキングコンデンサC3 に移行する。この際、磁気ス
イッチL m の作用により印加電圧のパルス幅が圧縮され
る。なお、磁気スイッチLm の作用は、コンデンサC1
の電荷がコンデンサC2 に移行する間はインダクタンス
が大きく、その磁束密度が大きく飽和するとインダクタ
ンスが急激に減少するもので、効率良くコンデンサC2
の電荷をピーキングコンデンサC3 に移行させる。ピー
キングコンデンサC3 の電圧が高くなり、放電破壊電圧
に達すると、レーザチェンバ1内に対向配置された主放
電電極3と4の間にパルス放電が生じ、レーザガスの励
起が行われる。すなわち、この放電により、図5の太線
で示した放電回路ループを電流が流れる。[0006] The ultraviolet rays adopting the above-mentioned preionization system
Emitting gas laser device (hereinafter simply referred to as gas laser device
To do. 5) shows an example of the configuration of the excitation circuit of FIG. This excitation times
In the road, use solid state switch SW such as IGBT
Moreover, it has a circuit configuration called a capacitance transfer type circuit.
The operation will be briefly described according to this circuit diagram.
When the SW is open, the charge from the high voltage power supply HV
Is the capacitor C1Stored in. Capacitor C1To charge
When the switch SW is closed while the
C1Is the capacitor C2Move to. Capacitor C
2Charge transferred to the magnetic switch or supersaturation
Non-linear inductance L called dactancemThrough
Peaking capacitor C3Move to. At this time,
Itch L mThe pulse width of the applied voltage is compressed by the action of
It The magnetic switch LmThe action of the capacitor C1
Is the capacitor C2Inductance during transition to
Is large and the magnetic flux density is large and saturated, the inductor
The capacitance decreases sharply and the capacitor C can be used efficiently.2
Peaking capacitor C3Move to. Pee
King capacitor C3Voltage increases, and the discharge breakdown voltage
Reach the main chamber, the main
A pulse discharge is generated between the electric electrodes 3 and 4, and the laser gas is excited.
The start is done. That is, the thick line in FIG.
A current flows through the discharge circuit loop indicated by.
【0007】主放電電極3、4と並列にコンデンサC11
とC12、及び、インダクタンスL0からなる分圧回路が
接続されており、後述する図6に示すように、主放電電
極3と4の間に加わるパルス電圧を分圧してその25%
〜75%の範囲に降圧して、主放電電極3、4間の主放
電空間の上流側と下流側に近接して配置されたコロナ予
備電離部15の内電極7と外電極9の間にコロナ放電の
ための電圧を印加するようになっている。この分圧回路
中の分圧比、コンデンサC11、C12の容量、インダクタ
ンスL0 の値を最適に選択して時定数を所望の値にし
て、主放電に対するコロナ予備放電のタイミングを調整
する。この分圧回路の合成容量はピーキングコンデンサ
C3 の10%以下に調整される。A capacitor C 11 is provided in parallel with the main discharge electrodes 3 and 4.
A voltage divider circuit composed of C 12 and C 12 and an inductance L 0 is connected, and the pulse voltage applied between the main discharge electrodes 3 and 4 is divided by 25% as shown in FIG. 6 described later.
Between 75% and 75%, and between the inner electrode 7 and the outer electrode 9 of the corona preionization part 15 arranged close to the upstream side and the downstream side of the main discharge space between the main discharge electrodes 3 and 4. A voltage for corona discharge is applied. The voltage division ratio in the voltage dividing circuit, the capacitances of the capacitors C 11 and C 12 , and the value of the inductance L 0 are optimally selected to set the time constant to a desired value, and the timing of corona preliminary discharge with respect to the main discharge is adjusted. The combined capacitance of this voltage dividing circuit is adjusted to 10% or less of the peaking capacitor C 3 .
【0008】ところで、一般に、上記した放電回路ルー
プが作るインダクタンスが低い程、レーザの発振効率が
向上することが知られている(前田三男編「エキシマレ
ーザ」第64〜65頁、(株)学会出版センター 19
83年8月20日 初版)。By the way, it is generally known that the lower the inductance formed by the discharge circuit loop, the higher the laser oscillation efficiency (Medao Maeda, "Excimer Laser," pages 64-65, Academic Society of Japan). Publishing Center 19
August 20, 1983 first edition).
【0009】[0009]
【発明が解決しようとする課題】上記した放電回路ルー
プの実際の構成例を図6に示す。図6は、ガズレーザ装
置の要部のレーザ発振方向に垂直な断面図であり、図5
と同じ符号を付した構成要素は図5に示した構成要素に
対応している。FIG. 6 shows an actual configuration example of the above-mentioned discharge circuit loop. FIG. 6 is a cross-sectional view of a main part of the gaz laser device perpendicular to the laser oscillation direction.
The constituent elements denoted by the same reference numerals as in FIG. 5 correspond to the constituent elements shown in FIG.
【0010】簡単に説明すると、レーザチェンバ1の上
部壁に放電空間の長手に沿うように絶縁ベース21が気
密に嵌め込まれ、そのレーザチェンバ1内側中央に他方
の主電極(例えばカソード)3が取り付けられ、絶縁ベ
ース21を貫通して電流導入部材23により高圧電源1
0に接続されている。ここで、高圧電源10は、図5の
ピーキングコンデンサC3 より左側の非線形インダクタ
ンスLm を含む回路部分に対応する。レーザチェンバ1
内において主電極3の両側に沿うように一対の通電部材
25が略平行に絶縁ベース21に取り付けられており、
通電部材25先端間には導電性ベース26が張り渡され
ており、その中央であって上部の主電極3に対向する位
置に一方の主電極4(例えばアノード)が取り付けられ
ている。そして、レーザチェンバ1外部には、電流導入
部材23両側に並列接続の多数のコンデンサからなるピ
ーキングコンデンサC3 が接続され、そのピーキングコ
ンデンサC3 は絶縁ベース21を貫通している電流導入
部材24を介して通電部材25に接続されている。ま
た、導電性ベース26の上部の矢印で示したレーザガス
流2の上流側と下流側であって、主電極3、4間の主放
電空間を見込む位置には、誘電体筒体8を介して外電極
9と内電極7が対向配置されてなる予備電離部15が配
置され、外電極9は導電性ベース26に直接接続されて
おり、内電極7は図示しない端子を介して、高圧電源1
0のコンデンサC11とC12の間に接続されている。Briefly, an insulating base 21 is airtightly fitted in the upper wall of the laser chamber 1 along the length of the discharge space, and the other main electrode (for example, cathode) 3 is attached to the center inside the laser chamber 1. The high voltage power source 1 is pierced through the insulating base 21 by the current introducing member 23.
It is connected to 0. Here, the high-voltage power supply 10 corresponds to the circuit portion including the nonlinear inductance L m on the left side of the peaking capacitor C 3 in FIG. Laser chamber 1
Inside, a pair of current-carrying members 25 are attached to the insulating base 21 substantially in parallel along both sides of the main electrode 3,
A conductive base 26 is stretched between the tips of the current-carrying members 25, and one main electrode 4 (for example, an anode) is attached at a position facing the main electrode 3 at the center of the conductive base 26. Outside the laser chamber 1, a peaking capacitor C 3 composed of a large number of capacitors connected in parallel on both sides of the current introducing member 23 is connected, and the peaking capacitor C 3 includes a current introducing member 24 penetrating the insulating base 21. It is connected to the current-carrying member 25 via. Further, the dielectric cylinder 8 is provided at a position on the upstream side and the downstream side of the laser gas flow 2 indicated by the arrow above the conductive base 26 and in which the main discharge space between the main electrodes 3 and 4 is expected. A preionization section 15 in which the outer electrode 9 and the inner electrode 7 are arranged opposite to each other is arranged, the outer electrode 9 is directly connected to the conductive base 26, and the inner electrode 7 is connected to a high voltage power source 1 via a terminal (not shown).
It is connected between zero capacitors C 11 and C 12 .
【0011】この図6の構成において、一点鎖線に囲ま
れた部分が図5に関して説明した放電回路ループであ
り、絶縁ベース21を貫通した電流導入部材23、電流
導入部材23に接続されている主電極3、主電極4、主
電極4が設置されている導電性ベース26、導電性ベー
ス26に接続されている通電部材25、通電部材25と
接続され、絶縁ベース21を貫通した電流導入部材2
4、電流導入部材24と電流導入部材23とが接続され
たピーキングコンデンサC3 から構成されている。In the configuration of FIG. 6, the portion surrounded by the alternate long and short dash line is the discharge circuit loop described with reference to FIG. 5, and the current introducing member 23 penetrating the insulating base 21 and the main portion connected to the current introducing member 23. The electrode 3, the main electrode 4, the conductive base 26 on which the main electrode 4 is installed, the conductive member 25 connected to the conductive base 26, the current introducing member 2 connected to the conductive member 25 and penetrating the insulating base 21.
4. The peaking capacitor C 3 is formed by connecting the current introducing member 24 and the current introducing member 23.
【0012】上記したように、この放電回路ループが作
るインダクタンスが低い程、レーザの発振効率が向上す
る。このインダクタンスは放電回路ループの断面積(図
6の断面の面積)に比例するので、この断面積ができる
だけ小さくなるよう構成する必要がある。すなわち、図
6の一点鎖線に囲まれた電流導入部材23、主電極3、
主電極4、導電性ベース26、通電部材25、電流導入
部材24、ピーキングコンデンサC3 で囲まれる空間の
断面積が小さくなるように構成する必要がある。As described above, the lower the inductance formed by the discharge circuit loop, the higher the laser oscillation efficiency. Since this inductance is proportional to the cross-sectional area of the discharge circuit loop (area of the cross-section in FIG. 6), it is necessary to make the cross-sectional area as small as possible. That is, the current introducing member 23, the main electrode 3, surrounded by the one-dot chain line in FIG.
The cross-sectional area of the space surrounded by the main electrode 4, the conductive base 26, the energizing member 25, the current introducing member 24, and the peaking capacitor C 3 needs to be small.
【0013】しかしながら、電流導入部材23、主電極
3、ピーキングコンデンサC3 と、通常接地されている
レーザチェンバ1とは、電位差が20〜30kV程度と
大きく、これらの距離が近すぎると絶縁破壊が生じる。
したがって、絶縁ベース21の大きさを余り小さくでき
ない。However, the potential difference between the current introducing member 23, the main electrode 3, the peaking capacitor C 3 and the laser chamber 1 which is normally grounded is as large as about 20 to 30 kV, and if these distances are too close, dielectric breakdown occurs. Occurs.
Therefore, the size of the insulating base 21 cannot be made too small.
【0014】また、主電極3、4間距離は、放出される
レーザ光の大きさを規定するが、レーザ光の大きさは用
途に応じてある程度限定され、例えば半導体露光用Ar
Fエキシマレーザの場合は15〜18mmとなるので、
むやみに短くできない。The distance between the main electrodes 3 and 4 defines the size of the emitted laser light, but the size of the laser light is limited to some extent according to the application. For example, Ar for semiconductor exposure is used.
In the case of the F excimer laser, it is 15-18 mm, so
It can't be too short.
【0015】また、導電性ベース26の大きさは、主電
極4の両側に予備電離部15を配置するので、余り小さ
くできない。The size of the conductive base 26 cannot be made too small because the preionization parts 15 are arranged on both sides of the main electrode 4.
【0016】また、導電性ベース26と電流導入部材2
4を繋ぐ通電部材25の位置を予備電離部15側に近づ
ければ、上記放電回路ループの断面積を小さくすること
ができる。しかし、通電部材25は予備電離部15を形
成する外電極9と同電位であるので、通電部材25を予
備電離部15に近づけすぎると、通電部材25が外電極
9と同様に作用することになる。すると、コロナ放電が
主電極3、4間の放電空間と反対側でも発生し、このコ
ロナ放電によって生じる紫外線が放電空間に達しないこ
とになり、放電空間に存在するレーザガスの予備電離に
寄与しない。すなわち、外電極9と誘電体筒体8との間
で発生するコロナ放電への供給エネルギーが上記した余
分なコロナ放電により少なくなり、予備電離が不十分と
なる恐れが生じる。Further, the conductive base 26 and the current introducing member 2
The cross-sectional area of the discharge circuit loop can be reduced by bringing the position of the current-carrying member 25 connecting 4 to the preionization unit 15 side. However, since the current-carrying member 25 has the same potential as the outer electrode 9 forming the preliminary ionization part 15, if the current-carrying member 25 is brought too close to the preliminary ionization part 15, the current-carrying member 25 acts similarly to the outer electrode 9. Become. Then, corona discharge also occurs on the side opposite to the discharge space between the main electrodes 3 and 4, and the ultraviolet rays generated by this corona discharge do not reach the discharge space, and do not contribute to the preliminary ionization of the laser gas existing in the discharge space. That is, the energy supplied to the corona discharge generated between the outer electrode 9 and the dielectric cylinder 8 is reduced by the above-mentioned extra corona discharge, and pre-ionization may be insufficient.
【0017】また、UVアーク予備電離方式において
も、Applied PhysicsB 63巻,1〜
7頁や、特開平3−283785号等に記載されている
ように、通電部材が一対の予備電離用電極の外側(電極
とは反対側)に位置し、かつ、予備電離電極に近づけす
ぎると、予備電離電極の高電圧側との間で放電破壊が発
生するため、余り近づけることができないので、放電回
路ループの断面積を小さくすることはできない。Also in the UV arc preionization system, Applied Physics B, Vol. 63, 1-
As described in page 7, JP-A-3-283785, etc., when the current-carrying member is located outside the pair of electrodes for preionization (on the side opposite to the electrodes) and is too close to the preionization electrodes. Since the discharge breakdown occurs between the preionization electrode and the high voltage side, it cannot be made too close to each other, so that the cross-sectional area of the discharge circuit loop cannot be reduced.
【0018】本発明者らが従来製作したエキシマレーザ
装置の場合、図6の放電回路ループが作るインダクタン
スは最小で10nHであった。In the case of the excimer laser device manufactured by the present inventors in the past, the inductance formed by the discharge circuit loop in FIG. 6 was 10 nH at the minimum.
【0019】本発明は従来技術のこのような問題点を解
決するためになされたものであり、その目的は、紫外線
を放出するガスレーザ装置の励起回路中の放電回路ルー
プの断面積を小さくしてそのインダクタンスをより小さ
くし、レーザ発振効率等の特性を向上させることであ
る。The present invention has been made to solve the above problems of the prior art, and an object thereof is to reduce the cross-sectional area of the discharge circuit loop in the excitation circuit of a gas laser device that emits ultraviolet rays. To reduce the inductance and improve characteristics such as laser oscillation efficiency.
【0020】[0020]
【課題を解決するための手段】上記目的を達成する本発
明の紫外線を放出するガスレーザ装置は、レーザガスが
封入され、このレーザガスを内部で循環させる循環手段
を有するレーザチェンバと、このレーザチェンバ内に所
定間隔離間して配置された一対の主放電電極と、この一
対の主放電電極に並列に接続されたピーキングコンデン
サとからなる放電回路と、誘電体を介して第1電極と第
2電極が対向配置されてなる予備電離手段とを有し、こ
の予備電離手段が一方の主放電電極に沿うようにその両
側に近接して配置されてなる紫外線を放出するガスレー
ザ装置において、前記一方の主放電電極は接地側の主放
電電極であり、前記一方の主放電電極と前記ピーキング
コンデンサとが、前記一方の主放電電極と前記予備電離
手段との間を通る通電部材により接続されていて、前記
予備電離手段は、誘電体物質で覆われた第2電極と、第
2電極の周囲の誘電体物質に当接する第1電極とから構
成され、前記第2電極には高電圧が印加され、前記通電
部材と前記第1電極とが一体化されていることを特徴と
するものである。A gas laser device for emitting ultraviolet rays according to the present invention which achieves the above object, has a laser chamber filled with a laser gas and having a circulation means for circulating the laser gas therein, and a laser chamber inside the laser chamber. A discharge circuit including a pair of main discharge electrodes arranged at a predetermined interval and a peaking capacitor connected in parallel to the pair of main discharge electrodes, and a first electrode and a second electrode facing each other via a dielectric. A gas laser device for emitting ultraviolet rays, wherein the pre-ionization means is disposed, and the pre-ionization means is disposed adjacent to both sides of the one main discharge electrode along the one main discharge electrode. Is a main discharge electrode on the ground side, and the one main discharge electrode and the peaking capacitor pass between the one main discharge electrode and the preionization means. The preionization means are connected by an electric member, and the preionization means includes a second electrode covered with a dielectric substance and a first electrode contacting the dielectric substance around the second electrode. Is applied with a high voltage, and the conducting member and the first electrode are integrated with each other.
【0021】この場合に、その通電部材が開口を設けた
導電板で構成され、その開口は、主放電電極間の主放電
空間を通過するレーザガスが通過し、かつ、予備電離手
段からの紫外線が主放電空間に達するように配置されて
いることが望ましい。In this case, the current-carrying member is composed of a conductive plate having an opening, through which the laser gas passing through the main discharge space between the main discharge electrodes passes and the ultraviolet rays from the preionization means are passed. It is desirable that they are arranged so as to reach the main discharge space.
【0022】[0022]
【0023】本発明においては、一方の主放電電極とピ
ーキングコンデンサとが、一方の主放電電極と予備電離
手段との間を通る通電部材により接続されているので、
励起回路中の放電回路ループの断面積が小さくなり、そ
の放電回路ループのインダクタンスをより小さくするこ
とができるので、紫外線を放出するガスレーザ装置のレ
ーザ発振効率等の特性を向上させることができる。そし
て、その予備電離手段が誘電体物質で覆われた第2電極
と、第2電極の周囲の誘電体物質に当接する第1電極と
から構成され、上記の通電部材とその第1電極とが一体
化されているので、主放電空間に予備電離部を近づける
ことができ、主放電空間に到達する紫外線の強度が強く
なって予備電離が強くなり、レーザ特性を向上させるこ
とができる。In the present invention, the one main discharge electrode and the peaking capacitor are connected by the current-carrying member passing between the one main discharge electrode and the preionization means.
Since the cross-sectional area of the discharge circuit loop in the excitation circuit is reduced and the inductance of the discharge circuit loop can be further reduced, the characteristics such as laser oscillation efficiency of the gas laser device that emits ultraviolet rays can be improved. The preionization means is composed of a second electrode covered with a dielectric substance and a first electrode that abuts the dielectric substance around the second electrode, and the above-mentioned current-carrying member and its first electrode are Since they are integrated, the preliminary ionization portion can be brought close to the main discharge space, the intensity of the ultraviolet rays reaching the main discharge space is increased, and the preliminary ionization is strengthened, so that the laser characteristics can be improved.
【0024】[0024]
【発明の実施の形態】以下、本発明のガスレーザ装置の
実施例について説明する。BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the gas laser device of the present invention will be described below.
【0025】図1は、本発明の第1の実施例のガスレー
ザ装置の要部のレーザ発振方向に垂直な断面図であり、
図2は、その側面図である。この実施例において、励起
回路は、従来と同様に例えば図5に示すような構成のも
のを用いる。なお、図1、図2において、レーザチェン
バ1内に封入されているレーザガスをその中で循環させ
るファン、レーザガスを冷却する熱交換器等は図示を省
いてある。また、図2の側面図においては、予備電離部
15の図示は省いてある。FIG. 1 is a sectional view of a main part of a gas laser device according to a first embodiment of the present invention, which is perpendicular to the laser oscillation direction.
FIG. 2 is a side view thereof. In this embodiment, the excitation circuit has a structure as shown in FIG. 1 and 2, a fan for circulating the laser gas enclosed in the laser chamber 1 therein, a heat exchanger for cooling the laser gas, and the like are omitted from the drawing. Further, in the side view of FIG. 2, the preliminary ionization section 15 is not shown.
【0026】このガスレーザ装置は、レーザチェンバ1
の上部壁に放電空間の長手に沿うように絶縁ベース21
が気密に嵌め込まれ、そのレーザチェンバ1内側中央に
他方の主電極(例えばカソード)3が取り付けられ、絶
縁ベース21を貫通して電流導入部材23により高圧電
源10に接続されている。ここで、高圧電源10は、図
5のピーキングコンデンサC3 より左側の非線形インダ
クタンスLm を含む回路部分に対応する。This gas laser device includes a laser chamber 1
On the upper wall of the insulating base 21 along the length of the discharge space.
Is hermetically fitted, the other main electrode (for example, cathode) 3 is attached to the center inside the laser chamber 1, penetrates the insulating base 21, and is connected to the high-voltage power supply 10 by the current introducing member 23. Here, the high-voltage power supply 10 corresponds to the circuit portion including the nonlinear inductance L m on the left side of the peaking capacitor C 3 in FIG.
【0027】レーザチェンバ1内において主電極3の両
側に沿うように一対の通電部材25が先端に向かうにつ
れて相互に近づくように絶縁ベース21に取り付けられ
ており、通電部材25の先端間とその両側に広がるよう
に導電性ベース26が張り渡されており、一対の通電部
材25の先端間の主電極3に対向する位置の導電性ベー
ス26上には一方の主電極4(例えばアノード)が取り
付けられている。In the laser chamber 1, a pair of current-carrying members 25 are attached to the insulating base 21 along both sides of the main electrode 3 so as to approach each other as they move toward the tips, and between the tips of the current-carrying members 25 and both sides thereof. The conductive base 26 is stretched over so as to spread over the conductive base 26, and one main electrode 4 (for example, an anode) is mounted on the conductive base 26 at a position facing the main electrode 3 between the tips of the pair of current-carrying members 25. Has been.
【0028】また、導電性ベース26の一対の通電部材
25の先端が接続されている位置の両方の外側の上部領
域であって、それぞれの通電部材25を通して主電極
3、4間の主放電空間を見込む位置には、誘電体筒体8
を介して外電極9と内電極7が対向配置されてなる予備
電離部15が配置されており、外電極9は導電性ベース
26に直接接続されており、また、内電極7は図示しな
い端子を介して、高圧電源10のコンデンサC11とC12
の間に接続されている。Further, the main discharge space between the main electrodes 3 and 4 is an upper region outside both of the positions where the tips of the pair of conductive members 25 of the conductive base 26 are connected, and through the respective conductive members 25. Dielectric cylinder 8
A preionization section 15 in which the outer electrode 9 and the inner electrode 7 are opposed to each other is arranged via the outer electrode 9, the outer electrode 9 is directly connected to the conductive base 26, and the inner electrode 7 is a terminal (not shown). Through the capacitors C 11 and C 12 of the high-voltage power supply 10.
Connected between.
【0029】また、レーザチェンバ1外部には、電流導
入部材23両側に並列接続の多数のコンデンサからなる
ピーキングコンデンサC3 が接続され、そのピーキング
コンデンサC3 は絶縁ベース21を貫通している電流導
入部材24を介して通電部材25に接続されている。Outside the laser chamber 1, a peaking capacitor C 3 composed of a large number of capacitors connected in parallel on both sides of the current introducing member 23 is connected, and the peaking capacitor C 3 penetrates the insulating base 21 to introduce the current. It is connected to the current-carrying member 25 via the member 24.
【0030】そして、通電部材25は、図2の側面図か
ら明らかなように、所定間隔で縦に伸びる細い通電部を
除いてくり抜いて開口部27とした導電板で構成されて
おり、この開口部27を通って主電極3、4間の主放電
空間にレーザガス流2が妨げなく流れるようになってお
り、また、予備電離部15でのコロナ放電によって生じ
る紫外線16が開口部27を通過して主電極3、4間の
主放電空間に達するようになっている。As is apparent from the side view of FIG. 2, the current-carrying member 25 is formed of a conductive plate which is hollowed out to form an opening 27 except for the thin current-carrying portions extending vertically at a predetermined interval. The laser gas flow 2 is allowed to flow through the part 27 into the main discharge space between the main electrodes 3 and 4 without interruption, and the ultraviolet rays 16 generated by the corona discharge in the preionization part 15 pass through the opening 27. So as to reach the main discharge space between the main electrodes 3 and 4.
【0031】この図1の構成において、一点鎖線に囲ま
れた部分が図5に関して説明した放電回路ループを構成
しており、絶縁ベース21を貫通した電流導入部材2
3、電流導入部材23に接続されている主電極3、主電
極4、主電極4が設置されている導電性ベース26、導
電性ベース26に接続されている通電部材25、通電部
材25と接続され、絶縁ベース21を貫通した電流導入
部材24、電流導入部材24と電流導入部材23とが接
続されたピーキングコンデンサC3 から構成されてい
る。In the configuration of FIG. 1, the portion surrounded by the alternate long and short dash line constitutes the discharge circuit loop described with reference to FIG. 5, and the current introducing member 2 penetrating the insulating base 21.
3, a main electrode 3 connected to the current introducing member 23, a main electrode 4, a conductive base 26 on which the main electrode 4 is installed, a conductive member 25 connected to the conductive base 26, a conductive member 25 connected The current introducing member 24 penetrates the insulating base 21, and the peaking capacitor C 3 is connected to the current introducing member 24 and the current introducing member 23.
【0032】この実施例と図6の従来技術との相違点
は、導電性ベース26と絶縁ベース21を貫通した電流
導入部材24とに、各端部が接続された通電部材25の
配置にある。図6の従来技術においては、通電部材25
と導電性ベースと21の接続点が予備電離部15の外側
(主電極4と反対側)に配置されているのに対し、本実
施例においては、通電部材25と導電性ベース21との
接続点が主電極4と予備電離部15との間となるように
配置されている。The difference between this embodiment and the prior art shown in FIG. 6 lies in the arrangement of the conducting member 25 whose ends are connected to the conductive base 26 and the current introducing member 24 penetrating the insulating base 21. . In the prior art of FIG. 6, the energizing member 25
While the connection point between the conductive base 21 and the conductive base 21 is arranged outside the preionization part 15 (on the side opposite to the main electrode 4), in the present embodiment, the connection between the conductive member 25 and the conductive base 21 is performed. The dots are arranged so as to be located between the main electrode 4 and the preliminary ionization section 15.
【0033】このように、一方の主電極4と予備電離部
15との間を通電部材25が通るようにすることによ
り、主電極4の両側に予備電離部15を配置することに
より導電性ベース21の大きさを余り小さくできないの
にも係わらず、放電回路ループにおける主電極4から、
導電性ベース26、通電部材25を経由して電流導入部
材24に至る経路を短くすることができ、放電回路ルー
プの断面積をより小さくすることができる。As described above, the conductive member 25 is arranged to pass between the one main electrode 4 and the preionization section 15, and the preionization section 15 is arranged on both sides of the main electrode 4 so that the conductive base is formed. Although the size of 21 cannot be made too small, from the main electrode 4 in the discharge circuit loop,
The path leading to the current introducing member 24 via the conductive base 26 and the current-carrying member 25 can be shortened, and the cross-sectional area of the discharge circuit loop can be made smaller.
【0034】なお、上記したように、予備電離部15で
発生した予備電離用の紫外線16が主放電空間に到達す
るように、通電部材25には図2に示すような開口部2
7が設けられている。As described above, in order that the ultraviolet rays 16 for preionization generated in the preionization section 15 reach the main discharge space, the energizing member 25 has the opening 2 as shown in FIG.
7 is provided.
【0035】ところで、一般に、ガスレーザ装置におい
ては、主電極3、4間で主放電発生後は、その主放電空
間に存在するレーザガスの温度分布等が不均一となり、
そのままでは次回の主放電が不均一となって効率良くレ
ーザ発振をさせることができない。そのため、次回の主
放電が発生する前に、主放電空間に位置するレーザガス
を置換するために、レーザチェンバ1内でレーザガスを
不図示のファンで循環させている。そのレーザガス流を
図1に符号2で示してある。通電部材25の上記開口部
27は、この主放電空間を流れる循環レーザガス流2が
主放電空間へ到達するのを阻害しないという作用も有す
る。開口部27の一枚の金属板における開口率は90%
以上とすると効果的である。Generally, in a gas laser device, after the main discharge is generated between the main electrodes 3 and 4, the temperature distribution of the laser gas existing in the main discharge space becomes non-uniform,
If this is left as it is, the next main discharge will be non-uniform and efficient laser oscillation cannot be achieved. Therefore, before the next main discharge occurs, the laser gas is circulated by a fan (not shown) in the laser chamber 1 in order to replace the laser gas located in the main discharge space. The laser gas flow is indicated by reference numeral 2 in FIG. The opening 27 of the current-carrying member 25 also has an effect of not preventing the circulating laser gas flow 2 flowing in the main discharge space from reaching the main discharge space. The opening ratio of one metal plate of the opening 27 is 90%
The above is effective.
【0036】通電部材25は、複数の薄い平板をレーザ
ガス流2、紫外線16が通過する開口部27を確保する
よう、所定間隔毎に配置して構成しても、一枚の金属板
に開口部27を抜いて設けるように構成してもよいが、
後者の方が以下の点で有利である。Even if the current-carrying member 25 is constructed by arranging a plurality of thin flat plates at predetermined intervals so as to secure the openings 27 through which the laser gas flow 2 and the ultraviolet rays 16 pass, the openings may be formed on a single metal plate. Although it may be configured such that 27 is removed,
The latter is more advantageous in the following points.
【0037】図1、図2の構成では、通電部材25は、
主電極4と予備電離部15との間に配置される。複数の
薄い平板を所定間隔毎に配置して開口部27を確保する
場合、複数の薄い平板の厚みはそれ自体の強度を確保す
るため、ある程度の厚さが必要となる。その際、レーザ
ガス流2の方向と垂直方向に厚くするとレーザガス流2
の妨げとなるので、レーザガス流2の方向と平行な方向
に厚くすることになる。すると、この厚み分だけ主放電
空間から予備電離部15が遠ざかるので、放電部材の厚
みが厚くなるにつれて主放電空間に到達する紫外線16
の強度がその分低下して予備電離が弱くなり、レーザ特
性が低下していくことになる。In the structure shown in FIGS. 1 and 2, the current-carrying member 25 is
It is arranged between the main electrode 4 and the preionization unit 15. When a plurality of thin flat plates are arranged at predetermined intervals to secure the opening 27, the thickness of the plurality of thin flat plates needs to have a certain thickness in order to secure its own strength. At that time, if the thickness is increased in the direction perpendicular to the direction of the laser gas flow 2, the laser gas flow 2
Therefore, the thickness is increased in the direction parallel to the direction of the laser gas flow 2. Then, the preliminary ionization part 15 is moved away from the main discharge space by this thickness, so that the ultraviolet rays 16 that reach the main discharge space as the thickness of the discharge member increases.
Of the laser beam is reduced by that amount, the preionization is weakened, and the laser characteristics are deteriorated.
【0038】一方、後者の場合は、一枚の金属板に開口
部27を抜いて設けた一体構造であるので、レーザガス
流2の方向と平行な方向の厚みを前者に比べて薄くして
も、強度を確保することができる。そのため、前者の場
合に比べ主放電空間に予備電離部15を近づけることが
でき、主放電空間に到達する紫外線16の強度が強くな
って予備電離が強くなり、レーザ特性を向上させること
ができる。On the other hand, in the case of the latter, since it has an integrated structure in which the opening 27 is cut out in one metal plate, even if the thickness in the direction parallel to the direction of the laser gas flow 2 is thinner than that of the former. , The strength can be secured. Therefore, as compared with the former case, the preliminary ionization section 15 can be brought closer to the main discharge space, the intensity of the ultraviolet rays 16 reaching the main discharge space is increased, the preliminary ionization is increased, and the laser characteristics can be improved.
【0039】上記実施例を変形した本発明の第2の実施
例のガスレーザ装置の要部のレーザ発振方向に垂直な断
面図を図3に、図4にその側面図を示す。この実施例の
第1の実施例との相違点は、図1、図2の通電部材25
と、予備電離部15の外電極9を一体化した点にある。
その他は第1の実施例と同じである。FIG. 3 shows a cross-sectional view of a main part of a gas laser device of a second embodiment of the present invention which is a modification of the above embodiment, and is a side view thereof. The difference between this embodiment and the first embodiment is that the current-carrying member 25 shown in FIGS.
And the outer electrode 9 of the preionization unit 15 is integrated.
Others are the same as those in the first embodiment.
【0040】本実施例の場合、通電部材25の側面に、
予備電離部15の誘電体筒体8に近接する位置に外電極
9を構成する直線状の金属部材を溶接等で一体化し、こ
の外電極9が予備電離部15の内電極7の周囲の誘電体
筒体8の外面に当接するように取り付ければよい。In the case of this embodiment, on the side surface of the current-carrying member 25,
A linear metal member forming the outer electrode 9 is integrated by welding or the like at a position close to the dielectric cylinder 8 of the preionization unit 15, and the outer electrode 9 is a dielectric around the inner electrode 7 of the preionization unit 15. It may be attached so as to come into contact with the outer surface of the body cylinder 8.
【0041】この実施例においては、通電部材25と外
電極9とが一体化しているので、第1の実施例より主放
電空間に予備電離部15を近づけることができ、主放電
空間に到達する紫外線16の強度が強くなって予備電離
が強くなり、レーザ特性を向上させることができる。In this embodiment, since the current-carrying member 25 and the outer electrode 9 are integrated, the preliminary ionization section 15 can be brought closer to the main discharge space than in the first embodiment, and reaches the main discharge space. The intensity of the ultraviolet rays 16 becomes stronger and the preliminary ionization becomes stronger, so that the laser characteristics can be improved.
【0042】上記第1の実施例若しくは第2の実施例の
構成を採用することにより、本発明者が製作したガスレ
ーザ装置において、放電回路のインダクタンスを従来の
10nHあったものを6nHとすることができた。By adopting the configuration of the first or second embodiment, in the gas laser device manufactured by the present inventor, the inductance of the discharge circuit which is 10 nH in the conventional case can be set to 6 nH. did it.
【0043】以上、本発明の紫外線を放出するガスレー
ザ装置を実施例に基いて説明してきたが、本発明は上記
実施例に限定されるものではなく種々の変形が可能であ
る。Although the gas laser device for emitting ultraviolet rays according to the present invention has been described above based on the embodiments, the present invention is not limited to the above embodiments and various modifications can be made.
【0044】[0044]
【発明の効果】以上の説明から明らかなように、本発明
の紫外線を放出するガスレーザ装置においては、通電部
材25と導電性ベース26との接続点を主電極4と予備
電離部15との間となるように配置したので、放電回路
ループにおける主電極4から、導電性ベース26、通電
部材25を経由して電流導入部材24に至る経路を短く
することができ、放電回路ループの断面積を小さくする
ことができる。As is apparent from the above description, in the gas laser device for emitting ultraviolet rays according to the present invention, the connection point between the current-carrying member 25 and the conductive base 26 is located between the main electrode 4 and the preionization section 15. Since it is arranged so that the path from the main electrode 4 in the discharge circuit loop to the current introducing member 24 via the conductive base 26 and the current-carrying member 25 can be shortened, the cross-sectional area of the discharge circuit loop can be reduced. Can be made smaller.
【0045】また、通電部材25に開口部27を設ける
ことにより、予備電離用の紫外線16が通電部材25に
遮られることなく、主放電空間に到達でき、また、主放
電空間を流れる循環レーザガス流2の主放電空間への到
達が阻害されない。By providing the opening 27 in the current-carrying member 25, the ultraviolet rays 16 for preionization can reach the main discharge space without being blocked by the current-carrying member 25, and the circulating laser gas flow flowing in the main discharge space can be achieved. 2 does not hinder the main discharge space from reaching.
【0046】特に、通電部材25を一枚の金属板に開口
部27を抜いて設けた一体構造とすれば、レーザガス流
2の方向と平行な方向の厚みを薄くすることができるの
で、主放電空間に予備電離部15を近づけることがで
き、主放電空間に到達する紫外線16の強度が強くなっ
て予備電離が強くなり、レーザ特性を向上させることが
できる。In particular, if the current-carrying member 25 is formed as an integrated structure in which one metal plate is provided with the opening 27 removed, the thickness in the direction parallel to the direction of the laser gas flow 2 can be reduced, so that the main discharge is performed. The preliminary ionization part 15 can be brought closer to the space, the intensity of the ultraviolet rays 16 reaching the main discharge space is increased, and the preliminary ionization is increased, so that the laser characteristics can be improved.
【0047】また、通電部材25と外電極9とを一体化
すれば、主放電空間に予備電離部15を近づけることが
でき、主放電空間に到達する紫外線16の強度が強くな
って予備電離が強くなり、レーザ特性を向上させること
ができる。Further, if the energizing member 25 and the outer electrode 9 are integrated, the preliminary ionization part 15 can be brought closer to the main discharge space, and the intensity of the ultraviolet rays 16 reaching the main discharge space is increased, and the preliminary ionization is performed. It becomes stronger and the laser characteristics can be improved.
【図1】本発明の第1の実施例のガスレーザ装置の要部
のレーザ発振方向に垂直な断面図である。FIG. 1 is a sectional view of a main part of a gas laser device according to a first embodiment of the present invention, which is perpendicular to a laser oscillation direction.
【図2】図1のガスレーザ装置の要部の側面図である。FIG. 2 is a side view of a main part of the gas laser device of FIG.
【図3】本発明の第2の実施例のガスレーザ装置の要部
のレーザ発振方向に垂直な断面図である。FIG. 3 is a sectional view of a main part of a gas laser device according to a second embodiment of the present invention, the cross section being perpendicular to the laser oscillation direction.
【図4】図3のガスレーザ装置の要部の側面図である。4 is a side view of a main part of the gas laser device of FIG.
【図5】ガスレーザ装置の励起回路の一構成例を示す図
である。FIG. 5 is a diagram showing a configuration example of an excitation circuit of a gas laser device.
【図6】従来のガスレーザ装置の要部のレーザ発振方向
に垂直な断面図である。FIG. 6 is a cross-sectional view of a main part of a conventional gas laser device, which is perpendicular to the laser oscillation direction.
SW…固体スイッチ HV…高圧電源 C1 、C2 …コンデンサ Lm …非線形インダクタンス(磁気スイッチ) C3 …ピーキングコンデンサ C11、C12…コンデンサ L0 …インダクタンス 1…レーザチェンバ 2…レーザガス流 3、4…主放電電極 7…内電極 8…誘電体筒体 9…外電極 10…高圧電源 15…コロナ予備電離部 16…紫外線 21…絶縁ベース 23…電流導入部材 24…電流導入部材 25…通電部材 26…導電性ベース 27…開口部SW ... solid state switch HV ... high-voltage power supply C 1, C 2 ... capacitors L m ... nonlinear inductance (magnetic switch) C 3 ... peaking capacitor C 11, C 12 ... capacitor L 0 ... inductance 1 ... laser chamber 2 ... laser gas stream 3, 4 ... Main discharge electrode 7 ... Inner electrode 8 ... Dielectric cylinder 9 ... Outer electrode 10 ... High voltage power supply 15 ... Corona preionization part 16 ... UV ray 21 ... Insulation base 23 ... Current introducing member 24 ... Current introducing member 25 ... Conducting member 26 ... Conductive base 27 ... Opening
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平10−135537(JP,A) 特開 平10−125978(JP,A) 特開 平10−335728(JP,A) 特開 平9−92917(JP,A) 特開 平3−257980(JP,A) 特開 平5−343782(JP,A) 特開 昭61−90485(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01S 3/097 ─────────────────────────────────────────────────── --- Continuation of the front page (56) References JP-A-10-135537 (JP, A) JP-A-10-125978 (JP, A) JP-A-10-335728 (JP, A) JP-A-9- 92917 (JP, A) JP 3-257980 (JP, A) JP 5-343782 (JP, A) JP 61-90485 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H01S 3/097
Claims (2)
を内部で循環させる循環手段を有するレーザチェンバ
と、このレーザチェンバ内に所定間隔離間して配置され
た一対の主放電電極と、この一対の主放電電極に並列に
接続されたピーキングコンデンサとからなる放電回路
と、誘電体を介して第1電極と第2電極が対向配置され
てなる予備電離手段とを有し、この予備電離手段が一方
の主放電電極に沿うようにその両側に近接して配置され
てなる紫外線を放出するガスレーザ装置において、前記一方の主放電電極は接地側の主放電電極であり、 前記一方の主放電電極と前記ピーキングコンデンサと
が、前記一方の主放電電極と前記予備電離手段との間を
通る通電部材により接続されていて、 前記予備電離手段は、誘電体物質で覆われた第2電極
と、第2電極の周囲の誘電体物質に当接する第1電極と
から構成され、前記第2電極には高電圧が印加され、前
記通電部材と前記第1電極とが一体化されていることを
特徴とする紫外線を放出するガスレーザ装置。1. A laser chamber having a laser gas enclosed therein and having a circulation means for circulating the laser gas therein, a pair of main discharge electrodes arranged at a predetermined distance in the laser chamber, and a pair of main discharges. The discharge circuit includes a peaking capacitor connected in parallel to the electrodes, and a preionization unit in which a first electrode and a second electrode are arranged to face each other via a dielectric, and the preionization unit is one main unit. In a gas laser device that emits ultraviolet rays and is arranged in close proximity to both sides of the discharge electrode, the one main discharge electrode is a ground side main discharge electrode, and the one main discharge electrode and the peaking capacitor. Are connected by a current-carrying member that passes between the one main discharge electrode and the preliminary ionization means, and the preliminary ionization means is covered with a second dielectric material. Is composed of a pole, a first electrode in contact with the dielectric material surrounding the second electrode, wherein the second electrode a high voltage is applied, the energization member and the first electrode are integrated A gas laser device that emits ultraviolet rays characterized by the above.
成され、その開口は、前記主放電電極間の主放電空間を
通過するレーザガスが通過し、かつ、前記予備電離手段
からの紫外線が前記主放電空間に達するように配置され
ていることを特徴とする請求項1記載の紫外線を放出す
るガスレーザ装置。2. The current-carrying member is composed of a conductive plate having an opening, through which the laser gas passing through the main discharge space between the main discharge electrodes passes, and ultraviolet rays from the preionization means are passed. The gas laser device for emitting ultraviolet light according to claim 1, wherein the gas laser device is arranged so as to reach the main discharge space.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34863799A JP3399517B2 (en) | 1999-12-08 | 1999-12-08 | Gas laser device that emits ultraviolet light |
KR10-2000-0073414A KR100505085B1 (en) | 1999-12-08 | 2000-12-05 | Gas laser apparatus that emits UV light |
EP00126695A EP1107401B1 (en) | 1999-12-08 | 2000-12-05 | Gas laser device for emission of ultraviolet radiation |
DE60018252T DE60018252T2 (en) | 1999-12-08 | 2000-12-05 | Gas laser device for emitting ultraviolet radiation |
US09/732,017 US6480519B2 (en) | 1999-12-08 | 2000-12-08 | Gas laser device that emits ultraviolet rays |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34863799A JP3399517B2 (en) | 1999-12-08 | 1999-12-08 | Gas laser device that emits ultraviolet light |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001168432A JP2001168432A (en) | 2001-06-22 |
JP3399517B2 true JP3399517B2 (en) | 2003-04-21 |
Family
ID=18398348
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP34863799A Expired - Lifetime JP3399517B2 (en) | 1999-12-08 | 1999-12-08 | Gas laser device that emits ultraviolet light |
Country Status (5)
Country | Link |
---|---|
US (1) | US6480519B2 (en) |
EP (1) | EP1107401B1 (en) |
JP (1) | JP3399517B2 (en) |
KR (1) | KR100505085B1 (en) |
DE (1) | DE60018252T2 (en) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6650679B1 (en) | 1999-02-10 | 2003-11-18 | Lambda Physik Ag | Preionization arrangement for gas laser |
US6456643B1 (en) | 1999-03-31 | 2002-09-24 | Lambda Physik Ag | Surface preionization for gas lasers |
US6466599B1 (en) | 1999-04-07 | 2002-10-15 | Lambda Physik Ag | Discharge unit for a high repetition rate excimer or molecular fluorine laser |
US6757315B1 (en) | 1999-02-10 | 2004-06-29 | Lambda Physik Ag | Corona preionization assembly for a gas laser |
US6570901B2 (en) | 2000-02-24 | 2003-05-27 | Lambda Physik Ag | Excimer or molecular fluorine laser having lengthened electrodes |
US7006546B2 (en) * | 2000-03-15 | 2006-02-28 | Komatsu Ltd. | Gas laser electrode, laser chamber employing the electrode, and gas laser device |
US6834066B2 (en) | 2000-04-18 | 2004-12-21 | Lambda Physik Ag | Stabilization technique for high repetition rate gas discharge lasers |
US6671302B2 (en) | 2000-08-11 | 2003-12-30 | Lambda Physik Ag | Device for self-initiated UV pre-ionization of a repetitively pulsed gas laser |
US7542502B2 (en) * | 2005-09-27 | 2009-06-02 | Cymer, Inc. | Thermal-expansion tolerant, preionizer electrode for a gas discharge laser |
CN100449887C (en) * | 2005-11-23 | 2009-01-07 | 中国科学院电子学研究所 | Corona preionization pulse gas laser |
CN102810810A (en) * | 2012-03-02 | 2012-12-05 | 中国科学院光电研究院 | Single-cavity dual-electrode discharging cavity and quasimolecule laser |
US9048615B1 (en) | 2013-12-02 | 2015-06-02 | Epilog Corporation | Slab gas laser with pre-ionizing cell |
KR102445660B1 (en) | 2018-01-17 | 2022-09-20 | 사이머 엘엘씨 | Apparatus for tuning discharge performance in laser chambers |
JP7273944B2 (en) * | 2019-02-26 | 2023-05-15 | ギガフォトン株式会社 | LASER CHAMBER DEVICE, GAS LASER DEVICE, AND ELECTRONIC DEVICE MANUFACTURING METHOD |
WO2024009662A1 (en) * | 2022-07-05 | 2024-01-11 | ギガフォトン株式会社 | Chamber for gas laser apparatus, gas laser apparatus, and method for manufacturing electronic device |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4342114A (en) * | 1980-02-04 | 1982-07-27 | Raytheon Company | TEA Laser configuration |
US4709373A (en) * | 1985-11-08 | 1987-11-24 | Summit Technology, Inc. | Laser excitation system |
JP2794792B2 (en) | 1989-06-07 | 1998-09-10 | 三菱電機株式会社 | Lateral discharge excitation pulsed laser oscillator |
JPH03145170A (en) * | 1989-10-30 | 1991-06-20 | Nec Corp | Pulse gas laser |
DE4113241C2 (en) * | 1991-04-23 | 1994-08-11 | Lambda Physik Forschung | Pulsed gas discharge laser |
JPH04326584A (en) * | 1991-04-25 | 1992-11-16 | Matsushita Electric Ind Co Ltd | Discharge excitation gas laser device |
JP3281032B2 (en) * | 1992-05-21 | 2002-05-13 | 浜松ホトニクス株式会社 | Discharge excitation type gas laser device |
US5337330A (en) * | 1992-10-09 | 1994-08-09 | Cymer Laser Technologies | Pre-ionizer for a laser |
DE4426723A1 (en) * | 1994-07-22 | 1996-01-25 | Atl Lasertechnik & Accessoires | Sliding discharge preionization for gas lasers |
US5596593A (en) * | 1996-02-09 | 1997-01-21 | Luxar Corporation | Orthogonal RFDC transverse excited gas laser |
JPH10242553A (en) | 1997-02-28 | 1998-09-11 | Komatsu Ltd | Preionization electrode for corona of laser and laser oscillator provided with the electrode |
JP3796038B2 (en) * | 1997-11-18 | 2006-07-12 | 株式会社小松製作所 | Gas laser oscillator |
US6381257B1 (en) * | 1999-09-27 | 2002-04-30 | Cymer, Inc. | Very narrow band injection seeded F2 lithography laser |
-
1999
- 1999-12-08 JP JP34863799A patent/JP3399517B2/en not_active Expired - Lifetime
-
2000
- 2000-12-05 DE DE60018252T patent/DE60018252T2/en not_active Expired - Lifetime
- 2000-12-05 KR KR10-2000-0073414A patent/KR100505085B1/en active IP Right Grant
- 2000-12-05 EP EP00126695A patent/EP1107401B1/en not_active Expired - Lifetime
- 2000-12-08 US US09/732,017 patent/US6480519B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2001168432A (en) | 2001-06-22 |
KR100505085B1 (en) | 2005-07-29 |
EP1107401A1 (en) | 2001-06-13 |
US6480519B2 (en) | 2002-11-12 |
EP1107401B1 (en) | 2005-02-23 |
DE60018252T2 (en) | 2006-01-12 |
DE60018252D1 (en) | 2005-03-31 |
US20010024463A1 (en) | 2001-09-27 |
KR20010062136A (en) | 2001-07-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3399517B2 (en) | Gas laser device that emits ultraviolet light | |
JPH05102580A (en) | Pre-ionizing device of gas pulse laser | |
JP3428632B2 (en) | Corona preionization electrode for gas laser equipment. | |
JP2794792B2 (en) | Lateral discharge excitation pulsed laser oscillator | |
JP3796038B2 (en) | Gas laser oscillator | |
JP3281032B2 (en) | Discharge excitation type gas laser device | |
JP2772147B2 (en) | Pulsed laser electrode | |
JPH05259555A (en) | High repetition pulse laser electrode | |
JP3159528B2 (en) | Discharge pumped excimer laser device | |
JP2753088B2 (en) | Pulse gas laser oscillator | |
JPH05206553A (en) | Pulsed laser electrode | |
JPH05259554A (en) | High repetition pulse laser electrode | |
JP3779031B2 (en) | Corona preionization electrode | |
JP2001320113A (en) | Discharge-excited pump laser device | |
JPS6190481A (en) | Pulse laser oscillator | |
JP4484144B2 (en) | Discharge excitation gas laser device | |
JPH01151276A (en) | Pulse laser electrode | |
JPH0484474A (en) | Laser apparatus | |
JPS63227073A (en) | Highly repetitive pulse laser electrode | |
JPS63229772A (en) | Highly repetitive pulse laser oscillator | |
JP2001177169A (en) | Gas laser device with corona pre-ionizing electrode | |
JPH05335672A (en) | Excimer laser device | |
JPS63217680A (en) | Pulse gas laser device | |
JPH09214021A (en) | Gas laser device | |
JP2001044542A (en) | Corona pre-ionizing electrode for gas laser |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
R150 | Certificate of patent or registration of utility model |
Ref document number: 3399517 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080221 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090221 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090221 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100221 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100221 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110221 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120221 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130221 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130221 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140221 Year of fee payment: 11 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |