JP3397339B2 - Image forming device - Google Patents

Image forming device

Info

Publication number
JP3397339B2
JP3397339B2 JP13774392A JP13774392A JP3397339B2 JP 3397339 B2 JP3397339 B2 JP 3397339B2 JP 13774392 A JP13774392 A JP 13774392A JP 13774392 A JP13774392 A JP 13774392A JP 3397339 B2 JP3397339 B2 JP 3397339B2
Authority
JP
Japan
Prior art keywords
charging
voltage
image
charged
image forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13774392A
Other languages
Japanese (ja)
Other versions
JPH05307315A (en
Inventor
孝男 本田
正 石川
正憲 村松
勇 佐藤
真 柳田
文弘 荒平
毅 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP13774392A priority Critical patent/JP3397339B2/en
Priority to EP93303334A priority patent/EP0568352B1/en
Priority to DE69321755T priority patent/DE69321755T2/en
Publication of JPH05307315A publication Critical patent/JPH05307315A/en
Priority to US08/662,280 priority patent/US5636009A/en
Priority to HK98115381A priority patent/HK1014059A1/en
Application granted granted Critical
Publication of JP3397339B2 publication Critical patent/JP3397339B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Exposure Or Original Feeding In Electrophotography (AREA)
  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)
  • Control Or Security For Electrophotography (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、接触帯電方式を用いた
画像形成装置に関し、特に接触帯電部材に交流が重畳さ
れていない直流を印加して帯電を行う画像形成装置に関
する。より詳しくは、被帯電体(像担持体)としての感
光体と、感光体と接触する帯電部材に直流を印加して帯
電を行う帯電手段と、帯電手段により帯電された感光体
を画像露光し静電像を形成する露光手段と、を有する画
像形成装置に関する。 さらには、感光体上の静電像を現
像する現像手段と、感光体上の現像像を転写材に転写す
る転写手段と、転写後の転写材を加熱定着する定着手段
と、を有する画像形成装置に関する。
BACKGROUND OF THE INVENTION The present invention uses a contact charging system.
Regarding the image forming apparatus, especially when an alternating current is superposed on the contact charging member.
The present invention relates to an image forming apparatus for charging by applying direct current . More specifically, the feeling as an object to be charged (image bearing member)
Apply a direct current to the photoconductor and the charging member in contact with the photoconductor.
Charging means for charging and a photoconductor charged by the charging means
And an exposure means for exposing the image to form an electrostatic image.
The present invention relates to an image forming apparatus. In addition, the electrostatic image on the photoconductor
Image development means and transfer the developed image on the photoconductor to the transfer material
Transfer means and fixing means for heating and fixing the transfer material after transfer
And an image forming apparatus having:

【0002】[0002]

【0003】[0003]

【0004】[0004]

【従来の技術】前記のような画像形成装置において、被
帯電体としての像担持体面を帯電処理する手段機器とし
ては従来よりコロナ放電装置が広く利用されている。
2. Description of the Related Art In the image forming apparatus as described above, a corona discharge device has been widely used as a device for charging the surface of an image bearing member as a member to be charged.

【0005】コロナ放電装置は像担持体等の被帯電体面
を所定の電位に均一に帯電処理する手段として有効であ
る。しかし、高圧電源を必要とし、コロナ放電のために
好ましくないオゾンが発生するなどの問題点を有してい
る。
The corona discharge device is effective as a means for uniformly charging the surface of a member to be charged such as an image carrier to a predetermined potential. However, there is a problem that a high voltage power source is required and undesirable ozone is generated due to corona discharge.

【0006】このようなコロナ放電装置に対して、前記
のように電圧を印加した帯電部材を被帯電体面に接触さ
せて被帯電体面を帯電処理する接触式帯電装置は、電源
の低圧化が図れ、オゾンの発生量が少ない等の長所を有
していることから、例えば画像形成装置に於いてコロナ
放電装置にかえて感光体・誘電体等の像担持体、その他
の被帯電体面の帯電処理手段として注目され、その実用
化研究が進められている。
In contrast to such a corona discharge device, the contact type charging device for charging the surface of the body to be charged by bringing the charging member to which a voltage is applied into contact with the surface of the body to be charged as described above can reduce the power supply voltage. In addition, since it has advantages such as a small amount of ozone generated, for example, in an image forming apparatus, instead of a corona discharge device, an image carrier such as a photoconductor or a dielectric is charged, and other charging surfaces of an object to be charged are charged. It has attracted attention as a means, and research for its practical application is underway.

【0007】例えば、本出願人が先に提案(特願昭62-5
1492号・同62-230334 号など)したように、接触式帯電
装置に於いて直流電圧を帯電部材に印加したときの被帯
電体の帯電開始電圧の2倍以上のピーク間電圧を有する
振動電界(交互電界、時間とともに電圧値が周期的に変
化する電界(電圧))を帯電部材と被帯電体との間に形
成すること、更には表層に高抵抗層を設けた帯電部材を
用いることにより、被帯電体の帯電均一性、感光体等の
被帯電体表面のピンホール・傷等によるリーク防止等を
図ることができる。
For example, the applicant of the present invention first proposed (Japanese Patent Application No. 62-5
No. 1492 and No. 62-230334), an oscillating electric field having a peak-to-peak voltage that is more than twice the charging start voltage of the member to be charged when a DC voltage is applied to the charging member in the contact type charging device. By forming (alternating electric field, electric field (voltage) whose voltage value periodically changes with time) between the charging member and the body to be charged, and further by using a charging member having a high resistance layer on the surface layer. It is possible to achieve uniform charging of the charged body and prevention of leakage due to pinholes, scratches, etc. on the surface of the charged body such as the photoconductor.

【0008】また、帯電部材として導電性繊維毛ブラシ
あるいは導電性弾性ローラ等の導電性部材(導電性電位
維持部材)を被帯電体と接触させ、外部から直流電圧を
印加することにより被帯電体表面に電荷を直接注入して
被帯電体表面を所定の電位に帯電させるものもある。
Further, a conductive member (conductive potential maintaining member) such as a conductive fiber bristle brush or a conductive elastic roller as a charging member is brought into contact with the member to be charged, and a DC voltage is applied from the outside to the member to be charged. There is also one in which electric charge is directly injected into the surface to charge the surface of the body to be charged to a predetermined potential.

【0009】図20は接触式帯電装置の一例の概略構成
の横断面図である。
FIG. 20 is a cross-sectional view of a schematic structure of an example of the contact type charging device.

【0010】1は被帯電体である。本例では回転ドラム
型の電子写真感光体(以下、感光体と記す)である。本
例の該感光体1はアルミニウム等の導電性基層1bと、
その外面に形成した光導電層1aとを基本構成層とする
ものである。
Reference numeral 1 is a body to be charged. In this example, it is a rotary drum type electrophotographic photosensitive member (hereinafter referred to as a photosensitive member). The photoreceptor 1 of this example includes a conductive base layer 1b such as aluminum,
The photoconductive layer 1a formed on the outer surface is used as a basic constituent layer.

【0011】2は帯電部材である。本例はローラタイプ
である(以下帯電ローラと記す)。該帯電ローラ2は中
心の芯金2cと、その外周に形成した導電層2bと、更
にその外周に形成した抵抗層2aとからなる。
Reference numeral 2 is a charging member. This example is a roller type (hereinafter referred to as a charging roller). The charging roller 2 is composed of a central cored bar 2c, a conductive layer 2b formed on the outer periphery thereof, and a resistance layer 2a formed on the outer periphery thereof.

【0012】帯電ローラ2は芯金2cの両端部を不図示
の軸受部材に回転自由に軸受させて、ドラム型の感光体
1に並行に配置して不図示の押圧手段で感光体1面に対
して所定の押圧力をもって圧接され、感光体1の回転駆
動に伴い従動回転する。ギア等を取り付け、モータから
駆動力を伝達させて強制回転駆動させることも可能であ
る。
In the charging roller 2, both ends of the core metal 2c are rotatably supported by bearing members (not shown), and the charging roller 2 is disposed in parallel with the drum type photosensitive member 1 and is pressed on the surface of the photosensitive member 1 by pressing means (not shown). The photoconductor 1 is pressed against it with a predetermined pressing force, and is driven to rotate as the photoconductor 1 is rotationally driven. It is also possible to attach a gear or the like and transmit the driving force from the motor for forced rotation driving.

【0013】3は帯電ローラ2に対するバイアス印加電
源である。この電源3と帯電ローラ2の芯金2cとが電
気的に接続されていて電源3により帯電ローラ2に対し
て所定のバイアスが印加される。このバイアスとしては
直流電圧のみの印加でもよいが、前述のように交流電圧
に直流電圧を重畳した振動電圧を印加するのが好まし
い。
Reference numeral 3 denotes a bias applying power source for the charging roller 2. The power source 3 and the core metal 2c of the charging roller 2 are electrically connected, and a predetermined bias is applied to the charging roller 2 by the power source 3. Although only a DC voltage may be applied as the bias, it is preferable to apply an oscillating voltage in which the DC voltage is superimposed on the AC voltage as described above.

【0014】そして、被帯電体たる感光体1が回転駆動
されると、該感光体1に圧接され且つバイアス電圧が印
加された帯電部材としての帯電ローラ2により感光体1
の外周面が所定の極性・電位に帯電処理される。
When the photosensitive member 1 as the member to be charged is rotationally driven, the photosensitive member 1 is pressed by the photosensitive member 1 and is charged by the charging roller 2 as a charging member to which a bias voltage is applied.
The outer peripheral surface is charged with a predetermined polarity and potential.

【0015】感光体1の周囲・周辺には後述する図1の
ように、上記の帯電手段としての帯電ローラ2の他に露
光手段・現像手段・転写手段・クリーニング手段、画像
定着手段等の所要の作像プロセス機器が配設されて画像
形成機構が構成されていて画像形成が実行されるが、こ
の図にはそれ等のプロセス機器を省略してある。
As shown in FIG. 1, which will be described later, in addition to the charging roller 2 as the charging means, an exposing means, a developing means, a transferring means, a cleaning means, an image fixing means and the like are required around and around the photosensitive member 1. The image forming process equipment is provided and the image forming mechanism is configured to execute image formation, but these process equipments are omitted in this figure.

【0016】[0016]

【発明が解決しようとする課題】上記のような画像形成
装置は画像形成回数が増加するにつれて感光体の外周面
がクリーニング手段のクリーニングブレードや現像剤等
により削られる。そして感光体の厚み(層厚、膜厚)が
減少することによる等価容量変化により帯電特性が変化
する。
In the image forming apparatus as described above, the outer peripheral surface of the photoconductor is scraped by the cleaning blade of the cleaning means or the developer as the number of times of image formation increases. Then, the charging characteristic changes due to a change in equivalent capacitance due to a decrease in the thickness (layer thickness, film thickness) of the photoconductor.

【0017】特に、帯電手段が接触方式の直流電圧印加
の場合には、感光体の容量変化に大きく影響を受ける。
即ち、画像形成使用回数が増え、感光体の膜厚が減少す
ると、帯電ローラに流れる直流電流が増加し感光体の外
周面の表面電位は上昇する。また感光体の膜厚が減少し
て表面電位が上昇すると、現像コントラストが増加し現
像画像濃度が上昇するのと同時に、白画像の電位に対し
て充分な逆コントラストが得られず、現像剤で薄く現像
されて「かぶり」画像となる障害があった。
In particular, when the charging means applies a contact type DC voltage, it is greatly affected by the change in the capacity of the photoconductor.
That is, when the number of times image formation is used increases and the film thickness of the photoconductor decreases, the direct current flowing through the charging roller increases and the surface potential of the outer peripheral surface of the photoconductor rises. Also, when the film thickness of the photoconductor is reduced and the surface potential is increased, the development contrast is increased and the development image density is increased, and at the same time, sufficient reverse contrast cannot be obtained for the potential of the white image. There was a problem in that it was thinly developed to give a "fog" image.

【0018】即ち、感光体の膜厚が減少すると、表面電
位が上昇しかつそれにつれて表面電位の明部電位も上昇
する。また感光体感度は膜厚減少に応じて低下するため
に白原稿に対応する表面電位即ち明部電位が充分に電位
降下しない。以上の2つの現象により明部電位は大きく
上昇し、そのため黒原稿と白原稿との表面電位コントラ
ストが狭くなり、現像時に充分な現像コントラストを得
ようとすると白画像の電位に対して十分な逆コントラス
トが得られず、明部電位部が現像剤で薄く現像されて
「かぶり」画像となる障害があった。
That is, when the film thickness of the photoconductor is decreased, the surface potential is increased and the bright portion potential of the surface potential is also increased accordingly. Further, since the sensitivity of the photoconductor decreases as the film thickness decreases, the surface potential corresponding to the white original, that is, the light portion potential does not drop sufficiently. Due to the above-mentioned two phenomena, the potential of the bright part is greatly increased, and the surface potential contrast between the black original and the white original is narrowed. The contrast was not obtained, and there was a problem that the light potential portion was thinly developed with the developer to form a “fog” image.

【0019】それを現像バイアスや露光用ランプ電圧
(=光像照射の露光量)でかぶらないように調整する場
合でも、調整巾を充分に広く確保しておく必要があるた
め、調整範囲が広範囲で電源等のコストアップ要因とな
っていた。
Even when it is adjusted so as not to be covered by the developing bias or the exposure lamp voltage (= the exposure amount of the light image irradiation), it is necessary to secure a wide adjustment range, so that the adjustment range is wide. Therefore, it was a factor of increasing the cost of power supplies.

【0020】更に、適正な画像形成条件を自動制御で算
出する構成の画像形成装置においては、感光体の表面電
位が変化するために適性画像形成条件の調整最適化が困
難で、画像形成回数が特定回数を越えると徐々にかぶり
画像を発生する傾向にあった。
Further, in an image forming apparatus having a structure in which an appropriate image forming condition is calculated by automatic control, it is difficult to optimize and adjust the appropriate image forming condition because the surface potential of the photoconductor changes, and the number of image forming times is increased. After a certain number of times, the fog image tended to be gradually generated.

【0021】この現象を回避するためには、感光体の表
面電位を検出する表面電位センサ等が必要であり、装置
としては大幅なコストアップと複雑化及び大型化となっ
てしまい、小型で低価格な画像形成装置を開発する上で
大きな障害となっていた。
In order to avoid this phenomenon, a surface potential sensor or the like for detecting the surface potential of the photoconductor is required, which greatly increases the cost, complicates and enlarges the apparatus, and is small and low in size. This has been a major obstacle in developing a high-priced image forming apparatus.

【0022】また、帯電部材2の抵抗層2aの抵抗値は
環境湿度や耐久の進行等の要因により変動しやすい。そ
のために感光体の表面電位が変動し、画像濃度や画質を
安定して形成することを阻害する因子の一つとなってい
た。
The resistance value of the resistance layer 2a of the charging member 2 is likely to change due to factors such as environmental humidity and progress of durability. Therefore, the surface potential of the photoconductor fluctuates, which is one of the factors that hinder stable formation of image density and image quality.

【0023】更に加えて、感光体のピンホールに対する
濃度むら等に対処する場合は、定電流を流したときの電
圧を検知し、帯電部材の抵抗変動に対する電圧補正を行
う方法が適していたが、耐久による感光体の膜厚変化に
対しては電圧の検知範囲が広すぎて検知装置が高価で大
型化するのと同時に定電流装置と定電圧装置の両方を備
えなければならず、小型化と低価格に対しては障害とな
っていた。
In addition, in order to deal with the uneven density of the photoconductor with respect to the pinhole, a method of detecting the voltage when a constant current is applied and correcting the voltage due to the resistance variation of the charging member is suitable. , The detection range of voltage is too wide for the change in the thickness of the photoconductor due to durability, and the detection device is expensive and large in size. And it was an obstacle to low prices.

【0024】本発明は接触帯電方式を用いた画像形成装
置に関し、特に接触帯電部材に交流が重畳されていない
直流を印加して帯電を行う画像形成装置について上記の
ような問題点を解消する、すなわち、耐久による感光体
の膜厚変化、帯電部材の耐久変化、帯電部材の抵抗層の
環境変動に拘らず、帯電不足がなく、常に充分な画像濃
度と画質を維持させることを目的としている。
The present invention is an image forming apparatus using a contact charging system.
In regard to the arrangement, no alternating current is superposed on the contact charging member.
An image forming apparatus that applies a direct current to charge an image forming apparatus eliminates the above-mentioned problems , that is, a photoconductor due to durability.
Film thickness change, charging member durability change, charging member resistance layer
Regardless of environmental changes, there is no shortage of charge and there is always sufficient image density.
The purpose is to maintain the degree and image quality .

【0025】[0025]

【課題を解決するための手段】本発明は下記の構成を特
徴とする画像形成装置である。
The present invention is an image forming apparatus having the following configuration.

【0026】(1)被帯電体に該被帯電体面を帯電処理
する工程、帯電処理された被帯電体面に画像情報を含ん
だ光像を照射する工程を含む作像プロセスを適用して画
像形成を実行する画像形成装置であり、 該被帯電体の帯
電処理手段は、直流電圧のみを印加した帯電部材を被帯
電体に当接させて被帯電体面を帯電する接触式帯電装置
であり、 該帯電部材が被帯電体の非画像形成領域に対応
しているときに該帯電部材を直流定電圧制御し、そのと
きの直流電流量を検知し、該帯電部材が被帯電体の画像
形成領域に対応しているときは上記検知した直流電流量
に応じて、被帯電体層厚の減少があっても常にほぼ一定
の被帯電体表面電位が確保されるべく、上記検知した直
流電流量の増加と共に直流電圧出力を低下させるように
補正をかけた補正直流電圧で該帯電部材を直流定電圧制
御するようにした、ことを特徴とする画像形成装置。
(1) Charging the surface of the body to be charged
Image information is included on the surface of the charged body
Applying an image formation process that includes the step of irradiating a dark image
An image forming apparatus for performing image formation, wherein a belt of the charged body
The electric treatment means is a charging member to which only a DC voltage is applied.
Contact-type charging device that charges the surface of the body to be charged by contacting it with an electric body
And the charging member corresponds to the non-image forming area of the body to be charged.
The charging member is controlled at a constant DC voltage while
The amount of direct current is detected, and the charging member displays an image of the body to be charged.
DC current detected above when it corresponds to the formation area
Therefore, even if the thickness of the layer to be charged decreases, it is almost constant.
In order to secure the surface potential of the charged body of
As the amount of flowing current increases, the DC voltage output decreases
Corrected DC voltage is applied to the charging member to regulate the DC constant voltage.
An image forming apparatus characterized by being controlled .

【0027】(2)画像定着装置の定着ローラ温度が特
定温度以下にて画像形成装置を稼働準備状態としたとき
のみ、前記帯電部材が被帯電体の非画像形成領域に対応
しているときに該帯電部材を直流定電圧制御し、そのと
きの直流電流量を検知し、該帯電部材が被帯電体の画像
形成領域に対応しているときは、上記の補正直流電圧で
該帯電部材を直流定電圧制御するようにしたことを特徴
とする(1)に記載の画像形成装置。
(2) The temperature of the fixing roller of the image fixing device is special.
When the image forming device is ready for operation below a certain temperature
Only the charging member corresponds to the non-image forming area of the body to be charged
The charging member is controlled at a constant DC voltage while
The amount of direct current is detected, and the charging member displays an image of the body to be charged.
If it corresponds to the formation area,
The image forming apparatus described in (1) is characterized in that the charging member is controlled by a constant DC voltage .

【0028】(3)帯電部材は表層に高抵抗層を有する
導電性帯電部材であることを特徴とする(1)もしくは
(2)に記載の画像形成装置。
(3) The charging member has a high resistance layer on its surface.
The image forming apparatus according to (1) or (2), which is a conductive charging member .

【0029】(4)帯電部材が被帯電体の画像形成領域
に対応しているときは上記検知した直流電流量に応じて
光像照射の露光量を補正する制御をも行うことを特徴と
する(1)ないし(3)のいずれかに記載の画像形成装
置。
(4) The charging member is the image forming area of the body to be charged.
When it is compatible with the
The image forming apparatus according to any one of (1) to (3), which also performs control for correcting an exposure amount of light image irradiation .

【0030】[0030]

【0031】[0031]

【0032】[0032]

【0033】[0033]

【0034】[0034]

【0035】[0035]

【0036】[0036]

【作用】前述したように、接触帯電を行う場合、被帯電
体である感光層の膜厚が変わると帯電開始電圧が変わっ
てしまう。直流で帯電する場合印加電圧と帯電開始電圧
の差分が帯電電位となるため感光層の膜厚の違いが帯電
電位に大きく影響してしまう。そこで、本発明では上記
のように、帯電部材が被帯電体の非画像形成領域に対応
しているときに帯電部材を直流定電圧制御し、そのとき
の直流電流量を検知し、帯電部材が被帯電体の画像形成
領域に対応しているときは上記検知した直流電流量に応
じて、被帯電体層厚の減少があっても常にほぼ一定の被
帯電体表面電位が確保されるべく、上記検知した直流電
流量の増加と共に直流電圧出力を低下させるように補正
をかけた補正直流電圧で帯電部材を直流定電圧制御する
構成にする。これにより、印加電圧と帯電開始電圧の差
分をほぼ一定に保つことができる。より具体的には、画
像形成回数が増加して画像形成装置の被帯電体である
光体の厚みが減少することによる感光体の容量変化があ
っても、その都度、感光体の厚みに対する容量に応じた
電圧−電流特性を検知することにより、その時の最適な
補正印加電圧を帯電部材に印加することができる。また
感光体に対し最適な補正露光を行なうことができる。
[Function] As described above, when contact charging is performed, the charged
When the film thickness of the photosensitive layer, which is the body, changes, the charging start voltage also changes. When charging with direct current, the difference between the applied voltage and the charging start voltage is the charging potential, and therefore the difference in the film thickness of the photosensitive layer greatly affects the charging potential. Therefore, in the present invention, as described above, the charging member corresponds to the non-image forming area of the member to be charged.
DC voltage control of the charging member during
The amount of DC current in the
When it corresponds to the area, it corresponds to the detected DC current amount.
On the other hand, even if the thickness of the layer to be charged is reduced, it is almost constant.
In order to secure the surface potential of the charged body,
Corrected to decrease the DC voltage output as the flow rate increases
The charging member is configured to control the DC constant voltage with the corrected DC voltage . As a result, the difference between the applied voltage and the charging start voltage can be kept substantially constant. More specifically, even if there is a change in the capacity of the photoconductor due to a decrease in the thickness of the photoconductor that is a charged body of the image forming apparatus due to an increase in the number of times of image formation, the photoconductor is changed in each case. By detecting the voltage-current characteristic according to the capacitance with respect to the body thickness, the optimum correction applied voltage at that time can be applied to the charging member. In addition, optimum correction exposure can be performed on the photoconductor.

【0037】それによると、感光体の厚みが減少するに
つれて非画像部定電圧印加時の検知電流量が増加し、そ
の増加量に応じて画像部印加電圧値に電圧減少補正を加
え、また露光用ランプ電圧の増加補正を加えるため、常
に最適状態の帯電処理と画像形成が実行される。
According to this, as the thickness of the photosensitive member decreases, the amount of detected current when the non-image area constant voltage is applied increases, and the voltage decrease correction is applied to the image area applied voltage value according to the increase amount, and the exposure is performed. Since the increase correction of the lamp voltage for use is added, the charging process and the image formation in the optimum state are always executed.

【0038】また、帯電部材の抵抗層の環境湿度変動や
耐久変動で抵抗値が上昇した場合には、検知電流量が減
少し、画像部印加電圧値に電圧増加補正を加え、また露
光用ランプ電圧低下補正または一定電圧とするため、帯
電不足が無く、常に充分な画像濃度と画質を得ることが
できる。
When the resistance value of the resistance layer of the charging member increases due to environmental humidity fluctuations and durability fluctuations, the amount of detected current decreases, voltage increase correction is applied to the image area applied voltage value, and the exposure lamp is used. Since the voltage drop is corrected or the voltage is set to a constant voltage, sufficient charge density and image quality can always be obtained without insufficient charging.

【0039】[0039]

【実施例】【Example】

【0040】〈実施例1〉(図1〜図10) (1)画像形成装置例 図1は本発明に従う画像形成装置の一例の概略構成を示
している。
<Embodiment 1> (FIGS. 1 to 10) (1) Example of image forming apparatus FIG. 1 shows a schematic configuration of an example of an image forming apparatus according to the present invention.

【0041】1は被帯電体としての像担持体であり、本
例のものはアルミニウム等の導電性基体層1bと、その
外周面に形成した光導電層1aを基本構成層とするドラ
ム型の電子写真感光体である。支軸1dを中心に図面上
時計方向に所定の周速度(プロセススピード)をもって
回転駆動される。
Reference numeral 1 denotes an image bearing member as a member to be charged, and this embodiment is of a drum type having a conductive base layer 1b such as aluminum and a photoconductive layer 1a formed on the outer peripheral surface thereof as a basic constituent layer. It is an electrophotographic photoreceptor. It is rotationally driven around the support shaft 1d at a predetermined peripheral speed (process speed) in the clockwise direction in the drawing.

【0042】2はこの感光体1面に接して感光体面を所
定の極性・電位に一様に一次帯電処理する接触帯電部材
であり、本例はローラタイプのもの(帯電ローラ)であ
る。帯電ローラ2は中心芯金2cと、その外周に形成し
た導電層2bと、更にその外周に順次形成した2層の抵
抗層2a2 ・2a1 とから成り、芯金2cの両端部を不
図示の軸受部材に回転自由に軸受させてドラム型の感光
体1に並行に配置して不図示の押圧手段で感光体1面に
対して所定の押圧力をもって圧接され、感光体1の回転
駆動に伴い従動回転する。
Numeral 2 is a contact charging member which is in contact with the surface of the photosensitive member 1 to uniformly perform a primary charging process on the surface of the photosensitive member to a predetermined polarity and potential. In this example, a contact type charging member is a roller type (charging roller). The charging roller 2 is composed of a central core metal 2c, a conductive layer 2b formed on the outer periphery thereof, and two resistance layers 2a 2 and 2a 1 sequentially formed on the outer periphery thereof, and both ends of the core metal 2c are not shown. The bearing member is rotatably rotatably arranged in parallel with the drum type photoconductor 1 and is pressed against the surface of the photoconductor 1 by a pressing means (not shown) with a predetermined pressing force to rotate the photoconductor 1. Along with the rotation.

【0043】而して、電源3から摺動接点3aを介して
芯金2cに所定の直流(DC)バイアスが印加されるこ
とで回転感光体1の周面が所定の極性・電位に接触帯電
(一次帯電)される。
Then, a predetermined direct current (DC) bias is applied from the power source 3 to the cored bar 2c through the sliding contact 3a so that the peripheral surface of the rotary photosensitive member 1 is contact-charged to a predetermined polarity and potential. (Primary charging).

【0044】帯電部材2で均一に帯電処理を受けた感光
体1面は次いで露光手段10により目的画像情報の露光
L(原稿画像の結像スリット露光、レーザービーム走査
露光など)を受けることで、その周面に目的の画像情報
に対応した静電潜像が形成される。
The surface of the photosensitive member 1 which has been uniformly charged by the charging member 2 is then subjected to the exposure L of the target image information (exposure slit exposure of the original image, laser beam scanning exposure, etc.) by the exposure means 10. An electrostatic latent image corresponding to the target image information is formed on the peripheral surface.

【0045】本例装置における露光手段10は、公知の
原稿台固定−光学系移動型の原稿画像結像スリット露光
手段である。該露光手段10において、20は固定の原
稿台ガラス、Oは該原稿台ガラス上に画像面下向きで載
置セットされた原稿、21は原稿押え板、22は原稿照
明ランプ(露光用ランプ)、23はスリット板、24〜
26は移動第1〜第3ミラー、27は結像レンズ、28
は固定ミラーである。ランプ22・スリット板23・移
動第1ミラー24は原稿台ガラス20の下面を一端側か
ら他端側へ所定の速度Vで、また移動第2・第3ミラー
25・26はV/2の速度で移動駆動されて原稿台ガラ
ス20上の下向き原稿面が一端辺側から他端辺側に走査
されて原稿画像が回転感光体1面に結像スリット露光L
される。
The exposing means 10 in the apparatus of this embodiment is a known original table fixed-optical system moving type original image forming slit exposing means. In the exposure means 10, 20 is a fixed original platen glass, O is an original document placed and set on the original platen glass with the image surface facing downward, 21 is an original pressing plate, 22 is an original illumination lamp (exposure lamp), 23 is a slit plate, 24 to
26 is a movable first to third mirror, 27 is an imaging lens, 28
Is a fixed mirror. The lamp 22, the slit plate 23, and the moving first mirror 24 move the lower surface of the original platen glass 20 from one end to the other end at a predetermined speed V, and the moving second and third mirrors 25 and 26 have a speed V / 2. Is moved and driven, and the downward document surface on the document table glass 20 is scanned from one end side to the other end side, and a document image is imaged on the surface of the rotary photoconductor 1 by slit exposure L.
To be done.

【0046】感光体1面の形成潜像は次いで現像手段1
1によりトナー画像として順次に可視像化されていく。
このトナー画像は、次いで、転写手段12により不図示
の給紙手段部から感光体1の回転と同期どりされて適正
なタイミングをもって感光体1と転写手段12との間の
転写部へ搬送された転写材14の面に順次に転写されて
いく。本例の転写手段12は転写ローラであり、転写材
14の裏からトナーと逆極性の帯電を行なうことで感光
体1面側のトナー画像が転写材14の表面側に転写され
ていく。
The latent image formed on the surface of the photosensitive member 1 is then developed by the developing means 1.
By 1, the toner images are sequentially visualized.
The toner image is then conveyed from the sheet feeding section (not shown) by the transfer section 12 to the transfer section between the photoreceptor 1 and the transfer section 12 at an appropriate timing in synchronization with the rotation of the photosensitive body 1. The images are sequentially transferred onto the surface of the transfer material 14. The transfer unit 12 in this example is a transfer roller, and the toner image on the surface of the photosensitive member 1 is transferred to the surface of the transfer material 14 by charging the transfer material 14 from the back with a polarity opposite to that of the toner.

【0047】トナー画像の転写を受けた転写材14は感
光体1面から分離されて不図示の像定着手段へ搬送され
て像定着を受け、画像形成物として出力される。或いは
裏面にも像形成するものでは転写部への再搬送手段へ搬
送される。
The transfer material 14 to which the toner image has been transferred is separated from the surface of the photosensitive member 1 and conveyed to an image fixing means (not shown) to be subjected to image fixing and output as an image formed product. Alternatively, when the image is formed on the back side, the image is conveyed to the re-conveying unit to the transfer unit.

【0048】像転写後の感光体1面はクリーニング手段
13で転写残りトナー等の付着汚染物の除去を受けて清
浄面化され、更に除電露光装置15により除電されて、
繰り返して作像に供される。
After the image transfer, the surface of the photosensitive member 1 is cleaned by the cleaning means 13 to remove adhering contaminants such as toner remaining after transfer, and is further discharged by the discharging exposure device 15.
It is repeatedly used for image formation.

【0049】(2)帯電部材2の各種形態例 ローラタイプの帯電部材2は面移動駆動される被帯電体
としての感光体1に従動回転させてもよいし、非回転の
ものとさせてもよいし、感光体1の面移動方向に順方向
又は逆方向に所定の周速度をもって積極的に回転駆動さ
せるようにしてもよい。
(2) Various Examples of Charging Member 2 The roller-type charging member 2 may be driven to rotate according to the photosensitive member 1 as a charged member to be surface-moved and may be non-rotating. Alternatively, the photosensitive member 1 may be positively rotationally driven in the forward or reverse direction of the surface moving direction at a predetermined peripheral speed.

【0050】帯電部材2はローラタイプ以外にも、ブレ
ード状タイプ・ブロック状タイプ・ロッド状タイプ・ベ
ルト状タイプなどの形態に構成できる。
Besides the roller type, the charging member 2 can be constructed in a blade type, a block type, a rod type, a belt type or the like.

【0051】図2の(a)はブレード状タイプとしたも
のの一例の横断面模型図を示している。この場合、感光
体1面に当接されるブレード状帯電部材2の向きは感光
体1面の面移動方向に順方向又は逆方向のどちらでもよ
い。
FIG. 2A shows a schematic cross-sectional view of an example of the blade type. In this case, the direction of the blade-shaped charging member 2 contacting the surface of the photoconductor 1 may be either forward or reverse to the surface movement direction of the surface of the photoconductor 1.

【0052】図2の(b)はブロック状もしくはロッド
状としたものの一例の横断面模型図を示している。
FIG. 2B shows a schematic cross-sectional view of an example of a block or rod shape.

【0053】各タイプの帯電部材2において、2cは導
電性の芯金部材、2bは導電層、2aは抵抗層を示して
いる。
In each type of charging member 2, 2c is a conductive core metal member, 2b is a conductive layer, and 2a is a resistance layer.

【0054】ブロック状もしくはロッド状としたもの
は、回転可能としたローラタイプのものにおいては芯金
部材2cに対してバイアス電圧を印加するために必要と
する給電用摺動接点3aなしに芯金部材2cに対して電
源3に通じるリード線を直接に接続することができ、給
電用摺動接点3aから発生する可能性のある電気ノイズ
がなくなるという利点とともに、省スペース化、さらに
は被帯電体面のクリーニングブレードを兼用させる構成
のものとすることも可能である。
The block-shaped or rod-shaped roller is a rotatable roller type, and the core metal is provided without the power supply sliding contact 3a necessary for applying a bias voltage to the core metal member 2c. The lead wire leading to the power source 3 can be directly connected to the member 2c, and the electric noise that may be generated from the power feeding sliding contact 3a can be eliminated, and the space can be saved. It is also possible to adopt a configuration in which the cleaning blade of 1 is also used.

【0055】(3)シーケンス 図3は図1の装置の動作シーケンス例である。本例は2
枚連続プリントの場合を示している。
(3) Sequence FIG. 3 shows an example of the operation sequence of the apparatus shown in FIG. This example is 2
The case of continuous printing on one sheet is shown.

【0056】.プリント(コピー)開始信号にもとづ
き、それまでスタンバイ状態にある装置の感光体1(以
下、ドラムと記す)の回転駆動が開始されて前回転期間
が開始される。このドラム1の回転開始と同時に除電露
光15がONとなり、区間A1においてドラム1の一周
面以上が除電される。
.. Based on the print (copy) start signal, the rotation drive of the photosensitive member 1 (hereinafter, referred to as a drum) of the apparatus which has been in the standby state until then is started to start the pre-rotation period. At the same time when the rotation of the drum 1 is started, the static elimination exposure 15 is turned on, and static electricity is discharged from one peripheral surface or more of the drum 1 in the section A1.

【0057】.次に接触帯電部材である帯電ローラ2
に対する一次帯電バイアスであるDCバイアスがONと
なる。
.. Next, the charging roller 2 which is a contact charging member
The DC bias, which is the primary charging bias for, turns on.

【0058】.この一次帯電バイアスは始めに区間B
1で定電圧制御され、その間にDC電流の検知がなさ
れ、次に該検知したDC電流に対応した帯電ローラDC
定電圧制御がなされる。
.. This primary charging bias begins with section B
1, constant voltage control is performed, DC current is detected during that period, and then charging roller DC corresponding to the detected DC current is detected.
Constant voltage control is performed.

【0059】画像形成が始まるまでがドラム1の前回転
期間であり、その間のドラム1面は非画像形成領域面で
あり、従って帯電ローラ2はドラム1の非画像形成領域
面に対応している前回転期間の区間B1において帯電ロ
ーラDC定電圧制御がなされ、このときのDC電流の検
知と一次電圧補正(帯電ローラ2に対する一次帯電バイ
アス補正)がなされる。
The period before the image formation starts is the pre-rotation period of the drum 1, and the surface of the drum 1 during that period is the surface of the non-image forming area. Therefore, the charging roller 2 corresponds to the surface of the non-image forming area of the drum 1. The charging roller DC constant voltage control is performed in the section B1 of the pre-rotation period, and the DC current at this time is detected and the primary voltage correction (primary charging bias correction for the charging roller 2) is performed.

【0060】.一次補正電圧で帯電ローラDC定電圧
制御が始まったら画像露光(原稿画像の結像スリット露
光)による1枚目の画像形成が行なわれる。帯電ローラ
2はドラム1の画像形成領域面に対応しており、該ドラ
ム1面をDC定電圧制御状態にて帯電処理している。
.. When the charging roller DC constant voltage control is started with the primary correction voltage, the first image is formed by image exposure (image forming slit exposure of the original image). The charging roller 2 corresponds to the image forming area surface of the drum 1, and the surface of the drum 1 is charged under the DC constant voltage control state.

【0061】.1枚目のプリントについての画像形成
が終了し、次の2枚目のプリントについての画像形成が
開始されるまでの間の所謂紙間のドラム面は非画像形成
領域面であり、本実施例ではこの紙間でも再び帯電ロー
ラ2のDC定電圧制御・DC電流検知・DC定電圧制御
を実行させている。
.. A so-called drum surface between sheets until the image formation for the first print is completed and the image formation for the next second print is started is a non-image formation area surface. Then, the DC constant voltage control, the DC current detection, and the DC constant voltage control of the charging roller 2 are executed again during this sheet interval.

【0062】即ち、1枚目のプリントが終了したら一次
帯電バイアスを紙間の区間B2において再び帯電ローラ
DC定電圧制御となし、DC電流検知を実行させ、次い
でその検知DC電流に応じた帯電ローラ定電圧制御を実
行させて2枚目のプリントについての画像形成を実行さ
せている。
That is, when the printing of the first sheet is completed, the primary charging bias is set to the charging roller DC constant voltage control again in the section B2 between the sheets, the DC current is detected, and then the charging roller corresponding to the detected DC current is used. The constant voltage control is executed and the image formation for the second print is executed.

【0063】3枚以上の連続プリントのときも各紙間に
おいて同様に帯電ローラDC定電圧制御・DC電流検知
・DC定電圧制御のシーケンスを行なう。
Even when three or more sheets are continuously printed, the sequence of the charging roller DC constant voltage control, DC current detection, and DC constant voltage control is similarly performed between each sheet.

【0064】.最終枚目のプリントの画像形成が終了
したらドラム1は後回転期間に入り、この後回転期間の
区間A2においてドラム1の一周面以上の除電露光15
がなされて除電され、ドラム1の回転と除電露光がOF
Fとなり、装置は次のプリント開始信号の入力までスタ
ンバイ状態に入る。
.. When the image formation of the final print is completed, the drum 1 enters the post-rotation period, and in the section A2 of the post-rotation period, the static elimination exposure 15 on one circumferential surface or more of the drum 1 is performed.
Is removed and the charge is removed, and the rotation of the drum 1 and the charge removal exposure are OF
The status becomes F, and the apparatus enters the standby state until the next print start signal is input.

【0065】上記の構成において、耐久によってドラム
表面が削れて感光体膜厚が薄くなった場合には帯電ロー
ラ2がドラム1の非画像形成領域面に対応しているとき
になされているDC定電圧制御期間B1やB2の検知D
C電流が高くなり、その検知DC電流に応じた低下補正
電圧での帯電ローラDC定電圧制御のもとでドラム1の
画像形成領域面に対する帯電処理が帯電ローラ2により
なされて画像形成が実行される。
In the above structure, when the surface of the drum is scraped due to the durability and the film thickness of the photoconductor becomes thin, the DC constant which is made when the charging roller 2 corresponds to the surface of the non-image forming area of the drum 1 is determined. Detection D of voltage control period B1 or B2
The C current becomes high, and the charging roller 2 performs a charging process on the image forming area surface of the drum 1 under the constant voltage control of the charging roller DC with a decrease correction voltage according to the detected DC current, and image formation is executed. It

【0066】また、低湿環境にて特に帯電ローラ2の抵
抗が上がり、上記期間B1やB2の帯電ローラDC定電
圧制御の検知DC電流が低くなる。その検知DC電流に
応じた増加補正電圧での帯電ローラDC定電圧制御のも
とでドラム1の画像形成領域面に対する帯電処理が帯電
ローラ2によりなされて画像形成が実行されるので、帯
電ローラ2の環境での抵抗変動にかかわらずドラム1の
帯電電位は一定化される。
Further, especially in a low humidity environment, the resistance of the charging roller 2 rises , and the detected DC current of the charging roller DC constant voltage control in the above periods B1 and B2 becomes low. Since the charging roller 2 performs the charging process on the image forming area surface of the drum 1 under the constant voltage control of the charging roller DC with the increased correction voltage according to the detected DC current, the charging roller 2 performs the image formation. The charging potential of the drum 1 is made constant regardless of the resistance fluctuation in the environment.

【0067】(4)電圧補正方法 次に、直流電源3を用いて最適な帯電を行なう方法につ
いて説明する。
(4) Voltage Correction Method Next, a method of performing optimal charging using the DC power supply 3 will be described.

【0068】まず、帯電ローラ2に直流電源により直流
電圧を印加する場合の帯電メカニズムについて説明す
る。
First, the charging mechanism when a DC voltage is applied to the charging roller 2 by a DC power source will be described.

【0069】感光体1としては負極性のOPC感光ドラ
ムを用いた。具体的には感光体層としてアゾ顔料をCG
L層(キャリア発生層)とし、その上にヒドラゾンと樹
脂を混合したものをCTL層(キャリア輸送層)として
24μmの厚さに積層した負極性有機半導体層(OPC
層)とし、このOPC感光ドラム1を回転駆動させ、そ
の表面に帯電ローラ2を接触させ、該帯電ローラ2に直
流電圧VDCを印加して暗所でOPC感光ドラム1に接触
させて帯電を行なわせるものとし、帯電ローラ2通過後
の帯電されたOPC感光ドラム1の表面電位VD と、帯
電ローラ2に対する印加直流電圧VDCとの関係を測定し
た。
As the photosensitive member 1, a negative polarity OPC photosensitive drum was used. Specifically, an azo pigment is used as a CG for the photoconductor layer.
A negative polarity organic semiconductor layer (OPC) in which an L layer (carrier generation layer) and a mixture of hydrazone and a resin thereon are laminated as a CTL layer (carrier transport layer) to a thickness of 24 μm
Layer), the OPC photosensitive drum 1 is rotationally driven, the charging roller 2 is brought into contact with the surface of the OPC photosensitive drum 1, and a DC voltage V DC is applied to the charging roller 2 to bring the OPC photosensitive drum 1 into contact with the charging roller 2 in a dark place for charging. The relationship between the surface potential V D of the charged OPC photosensitive drum 1 after passing through the charging roller 2 and the DC voltage V DC applied to the charging roller 2 was measured.

【0070】図4の(a)の24μmの直線グラフはそ
の測定結果を示すものである。印加直流電圧VDCに対し
て帯電は図4の(a)のようにドラム膜厚ごとに閾値を
有し、特定電圧から帯電が開始し、その帯電開始電圧以
上の絶対値の電圧印加に対しては、得られる表面電位V
D はグラフ上傾き1の直線的な関係が得られた。
The line graph of 24 μm in FIG. 4A shows the measurement result. For the applied DC voltage V DC , the charging has a threshold value for each drum film thickness as shown in FIG. 4A, the charging starts from a specific voltage, and the absolute value equal to or higher than the charging start voltage is applied. The obtained surface potential V
For D, a linear relationship with a slope of 1 was obtained on the graph.

【0071】ここで、帯電開始電圧は以下に示すように
定義する。即ち、電位が0の像担持体に対して帯電部材
へ直流電圧のみを印加してそれを徐々に大きくしていっ
た時、その印加直流電圧に対する像担持体たる感光体の
表面電位のグラフを書いてみる。この時、DC電位を1
00Vごとに取っていくが、表面電位0に対して表面電
位が現れた時を第1の点として100Vごとに10点と
る。この10点より統計学でいう最小2乗法で直線を書
き、この直線上で表面電位0のときの印加直流電圧の値
を帯電開始電圧とする。図4のグラフの直線は上記最小
2乗法により作成したものである。
Here, the charging start voltage is defined as follows. That is, when only a DC voltage is applied to the charging member to the image carrier having a potential of 0 and the voltage is gradually increased, a graph of the surface potential of the photoreceptor as an image carrier with respect to the applied DC voltage is shown. I will write it. At this time, set the DC potential to 1
It is taken every 00V, but when the surface potential appears with respect to the surface potential 0, the first point is set to 10 points every 100V. A straight line is drawn from these 10 points by the least-squares method in statistics, and the value of the applied DC voltage when the surface potential is 0 on this straight line is the charging start voltage. The straight line in the graph of FIG. 4 is created by the above least square method.

【0072】即ち、帯電ローラ2への直流印加電圧をV
DCとし、OPC感光ドラム1表面に得られる表面電位を
D 、帯電開始電圧をVTHとすると、 VD =VDC−VHT ‥‥‥(1) の関係がある。
That is, the DC voltage applied to the charging roller 2 is V
And DC, a relationship of the surface potential V D obtained OPC photosensitive drum 1 surface and the charge starting voltage is V TH, V D = V DC -V HT ‥‥‥ (1).

【0073】上記の(1)式はパッシェン(Paschen) の
法則を用いて導出できる。
The above equation (1) can be derived by using Paschen's law.

【0074】図5に帯電ローラ2とOPC感光体層及び
その両者の接触部の微視的空間Zの形成する等価回路を
示す。帯電ローラ2の総抵抗Rr が小さい場合、感光体
層1aに流れる電流ID により生じる電圧降下ID Rr
はVDCに比べて十分に小さいので無視できる。まず、R
r を無視すると、空間Zにかかる電圧Vgは以下の式で
表される。
FIG. 5 shows an equivalent circuit formed by the charging roller 2 and the OPC photosensitive layer and the microscopic space Z at the contact portion between them. When the total resistance R r of the charging roller 2 is small, the voltage drop I D Rr caused by the current I D flowing in the photoconductor layer 1a
Is sufficiently smaller than V DC and can be ignored. First, R
Ignoring r , the voltage Vg applied to the space Z is expressed by the following equation.

【0075】 Vg= VDC・Z/(LS /KS +Z) ‥‥‥(2) VDC:印加電圧 Z :空隙 LS :感光体層厚み KS :感光体層比誘電率 一方、空隙Zにおける放電現象はパッシェンの法則によ
り、Z=8μ以上では放電破壊電圧Vbは次の1次式
(3)及び(4)で近似できる。
Vg = V DC · Z / (L S / K S + Z) (2) V DC : Applied voltage Z: Void L S : Photoconductor layer thickness K S : Photoconductor layer relative permittivity On the other hand, According to Paschen's law, the discharge phenomenon in the air gap Z can be approximated by the following linear expressions (3) and (4) when Z = 8 μ or more.

【0076】 Vb=312+6.2Z (Vb>0の場合) ‥‥‥(3) Vb=−(312+6.2Z)(Vb<0の場合) ‥‥‥(4) Vb<0であるから(2)・(4)式をグラフに書く
と、図6のグラフのようになる。横軸は空隙距離Z、縦
軸は空隙破壊電圧を示し、下に凸の曲線がパッシェン
の曲線、上に凸の曲線・・が夫々Zをパラメータ
とした空隙電圧Vgの特性を示す。
Vb = 312 + 6.2Z (when Vb> 0) (3) Vb = − (312 + 6.2Z) (when Vb <0) (4) Since Vb <0, (2) ) ・ (4) is written in the graph as shown in Fig.6. The horizontal axis represents the air gap distance Z, and the vertical axis represents the air gap breakdown voltage. The downward convex curve represents the Paschen's curve, and the upward convex curve represents the characteristics of the void voltage Vg with Z as a parameter.

【0077】パッシェンの曲線と、曲線〜が交点
を有するとき放電が生ずるものであり、放電が開始する
点においてはVg=Vbとして得られるZに関する2次
方程式の判別式が0になる。このときが放電開始限界で
あるから、VDC=VTHとなる。
Discharge occurs when the Paschen's curve and the curve ~ intersect, and the discriminant of the quadratic equation relating to Z obtained as Vg = Vb becomes 0 at the point where the discharge starts. Since this time is the discharge start limit, V DC = V TH .

【0078】パッシェンの法則は空隙での放電現象に関
するものであるが、上記帯電ローラ2を用いた帯電過程
においても帯電部のすぐ近傍で微少ながらオゾンの発生
(コロナ放電に比較して10-2〜10-3)が認められ、
帯電ローラによる帯電が放電現象に関係しているものと
考えられる。従ってVDCによりVD を制御するために
は、 VDC=VR +VTH ‥‥‥(5) VR :目標表面電位 を用い、電位目標値VR を設定して(5)式によりVTH
を求めて加えればVD をVR に近づけることができる。
Although Paschen's law relates to the discharge phenomenon in the air gap, even in the charging process using the charging roller 2, a slight amount of ozone is generated in the immediate vicinity of the charging portion (10 -2 as compared with corona discharge). -10 -3 ) is recognized,
It is considered that the charging by the charging roller is related to the discharge phenomenon. In order to control the V D by V DC is therefore, V DC = V R + V TH ‥‥‥ (5) V R: using the target surface potential, V by set the potential target value V R (5) formula TH
V D can be brought close to V R by adding and seeking.

【0079】ここで、(5)式からわかるように閾値電
圧VTHは、 D=LS /KS ‥‥‥(6) により決定されるわけであるが、このとき感光体層の比
誘電率KS は感光体周囲の温度・湿度等による影響を受
けて変化し、また感光体層の厚みLS は耐久により減少
する方向に変化する。
As can be seen from the equation (5), the threshold voltage V TH is determined by D = L S / K S (6). At this time, the relative dielectric constant of the photosensitive layer is determined. The rate K S changes under the influence of the temperature and humidity around the photoconductor, and the thickness L S of the photoconductor layer changes in the direction of decreasing due to durability.

【0080】従って周囲環境や耐久状況で、表面電位V
D は閾値電圧VTHの変化に伴い、変動することになる。
換言すればKS 及びLS の値を知れば、表面電位VD
適正値とするための直流電圧値VDCを求めることができ
る。
Therefore, the surface potential V
D changes with the change of the threshold voltage V TH .
In other words, if the values of K S and L S are known, the DC voltage value V DC for making the surface potential V D an appropriate value can be obtained.

【0081】ここで、感光ドラム1と帯電ローラ2によ
り形成される静電容量CP は図7の(a)・(b)に示
すように両者1・2の当接部のニップnにより形成され
ており、ニップ部での当接面積をSP とすると図4の等
価回路から CP =SP ×KS /LS =S/D ‥‥‥(7) となる。
Here, the electrostatic capacity C P formed by the photosensitive drum 1 and the charging roller 2 is formed by the nip n between the contact portions of the both 1 and 2 as shown in FIGS. 7 (a) and 7 (b). Assuming that the contact area at the nip portion is S P , C P = S P × K S / L S = S / D (7) from the equivalent circuit of FIG.

【0082】つまりCP ∝1/Dである。従ってCP
求めれば適正な直流電圧VDCを(5)式により求めるこ
とができる。
That is, C P ∝1 / D. Therefore, if C P is obtained, an appropriate DC voltage V DC can be obtained by the equation (5).

【0083】本実施例では、ドラム(感光体)のCP
特定する代わりに、簡易的に図7に示すようにドラムの
電荷輸送層(CT層)の膜厚(前述のLs )によって放
電インピーダンスが変化することによる帯電特性の変化
を測定し、感光体CP の変化を推定し印加電圧を補正す
る方法をとっている。
In this embodiment, instead of specifying C P of the drum (photoreceptor), the thickness (L s ) of the charge transport layer (CT layer) of the drum is simply used as shown in FIG. The method of measuring the change of the charging characteristic due to the change of the discharge impedance, estimating the change of the photoconductor C P , and correcting the applied voltage is adopted.

【0084】図7の(a)は、帯電ローラ2への印加電
圧とドラム表面電位の関係をドラムCT層厚ごとに測定
したものである。また同様にそのときの直流電流量を図
7の(b)に示してある。この図からわかるように、ド
ラムCT層厚によって帯電特性、電圧電流特性及び放電
開始電圧が変化することが読み取れる。
FIG. 7A shows the relationship between the voltage applied to the charging roller 2 and the drum surface potential measured for each drum CT layer thickness. Similarly, the amount of direct current at that time is shown in FIG. As can be seen from this figure, it can be read that the charging characteristics, the voltage-current characteristics, and the discharge starting voltage change depending on the drum CT layer thickness.

【0085】この特性を任意電圧の定電圧印加時のドラ
ムCT層厚に対してのドラム表面電位と直流電流として
表したものが図8(a)・(b)である。CT層厚に応
じてのドラム表面電位と直流電流の関係が読み取れる。
CT層厚が薄くなるにつれてドラム表面電位(黒電位V
D と白電位VL )と直流電流量が上昇することがわか
る。つまり、特定な定電圧印加時の直流電流量を測定す
ることでドラムCP に応じた表面電位を推定することが
可能なことがわかる。
FIGS. 8A and 8B show this characteristic as the drum surface potential and the DC current with respect to the drum CT layer thickness when a constant voltage of an arbitrary voltage is applied. The relationship between the drum surface potential and the direct current depending on the CT layer thickness can be read.
As the CT layer becomes thinner, the drum surface potential (black potential V
It can be seen that D and the white potential V L ) and the amount of direct current increase. That is, it is understood that the surface potential corresponding to the drum C P can be estimated by measuring the amount of direct current when a specific constant voltage is applied.

【0086】図9は、以上の関係からドラムCT層厚変
化によるCP 変化があっても、ドラム表面電位を制御す
るための検知電流量とそのときの補正電圧出力に関する
図である。検知電流量の増加と共に電圧出力を低下させ
るように補正をかける。この補正をかけた実験結果を図
10の(a)・(b)に示す。
From the above relationship, FIG. 9 is a diagram relating to the detected current amount for controlling the drum surface potential and the correction voltage output at that time even if the C P changes due to the drum CT layer thickness change. Correction is performed so that the voltage output decreases as the detected current amount increases. The experimental results with this correction are shown in (a) and (b) of FIG.

【0087】横軸に画像形成回数として耐久枚数をと
り、その時どきのドラム表面電位の変化を示している。
従来の特定定電圧印加のみの場合の表面電位推移はLで
表されるが、本発明の定電圧印加時の直流電流量を検知
し、その電流量に応じて印加電圧を補正して定電圧印加
すると、Mで表されるように耐久枚数が増えても常に一
定のドラム表面電位が確保できる。
The horizontal axis represents the number of durable images as the number of times of image formation, and shows the change of the drum surface potential at each time.
The surface potential transition in the case of applying only a specific constant voltage in the related art is represented by L, but the amount of direct current at the time of applying the constant voltage of the present invention is detected, and the applied voltage is corrected according to the amount of the current to apply the constant voltage. Then, as indicated by M, a constant drum surface potential can always be secured even if the number of durable sheets increases.

【0088】この実験には、前述したOPC感光ドラム
を使用した。また図1に示した画像形成装置において耐
久テストを行った。
The above-mentioned OPC photosensitive drum was used in this experiment. A durability test was conducted on the image forming apparatus shown in FIG.

【0089】帯電ローラ2は、図1に層構成模型を示し
たように、芯金2cの上にEPDM等の104 〜105
Ωcmの導電ゴム層2bを設け、その上にヒドリンゴム
等からなる107 〜109 Ωcm程度の中抵抗層2a2
を設け、その上にトレジン(注:帝国化学(株)の商
標)等のナイロン系物質からなる107 〜1010Ωcm
のブロッキング層2a1 を表層として設けた、硬度がA
sker−C測定で50°〜70°程度のものを用い
た。そしてこの帯電ローラ2を感光ドラム1に総圧16
00gで当接させ、従動回転させて帯電を行った。
As shown in the layer structure model in FIG. 1, the charging roller 2 has 10 4 to 10 5 made of EPDM or the like on the core metal 2c.
The conductive rubber layer 2b of the [Omega] cm is provided, the resistance layer 2a 2 in the order of 10 7 to 10 9 [Omega] cm made of hydrin or the like thereon
Is provided, and 10 7 to 10 10 Ωcm made of nylon-based material such as resin (Note: trademark of Teikoku Kagaku Co., Ltd.)
With a blocking layer 2a 1 as a surface layer having a hardness of A
The one having a sker-C measurement of about 50 ° to 70 ° was used. The charging roller 2 is applied to the photosensitive drum 1 with a total pressure of 16
It was contacted at 00 g and was driven to rotate for charging.

【0090】帯電部材の抵抗層の環境湿度変動や耐久変
動で、抵抗値が上昇した場合には検知電流量が減少し、
画像部印加電圧値に電圧増加補正を加えるため、帯電不
足が無く、常に充分な画像濃度と画質を得ることができ
る。
When the resistance value rises due to environmental humidity fluctuations and durability fluctuations of the resistance layer of the charging member, the detected current amount decreases,
Since the voltage increase correction is applied to the image portion applied voltage value, sufficient charge density and image quality can always be obtained without insufficient charging.

【0091】[0091]

【0092】〈実施例2〉(図11) 図11のシーケンスは前述図3のシーケンスとの対比に
おいて、ドラム1の前回転期間の区間B1だけにおいて
帯電ローラ2のDC定電圧制御・DC電流検知を実行さ
せ、連続プリントにおける紙間でのDC定電圧制御・D
C電流検知は行なわないようにした例である。
<Embodiment 2> (FIG. 11) In comparison with the sequence of FIG. 3, the sequence of FIG. 11 is DC constant voltage control / DC current detection of the charging roller 2 only in the section B1 of the pre-rotation period of the drum 1. DC constant voltage control between sheets in continuous printing
In this example, C current detection is not performed.

【0093】区間B1で検知したDC電流に応じた帯電
ローラ定電圧制御が連続プリントでの各画像形成時にな
される。
The charging roller constant voltage control according to the DC current detected in the section B1 is performed at the time of forming each image in continuous printing.

【0094】ただしその検知DC電流及び補正電圧は次
のプリント開始時のドラム前回転期間の区間B1で更新
される。
However, the detected DC current and the correction voltage are updated in the section B1 of the pre-drum rotation period at the start of the next printing.

【0095】〈実施例3〉(図12) 図12のシーケンスは、画像形成装置に電源を投入した
とき実行される、画像定着装置昇温等のためのドラム前
多回転期間(装置ウォームアップ期間)に帯電ローラ2
のDC定電圧制御・DC電流検知を行なわせている。
<Embodiment 3> (FIG. 12) The sequence of FIG. 12 is a multi-rotation period before the drum for increasing the temperature of the image fixing device (device warm-up period) which is executed when the image forming apparatus is powered on. ) To the charging roller 2
DC constant voltage control and DC current detection are performed.

【0096】装置はウォームアップ終了後、ドラムの回
転・除電露光がOFFとなり、プリント開始信号が入力
されるまでスタンバイ状態となる。
After the warm-up is completed, the apparatus is in a standby state until the drum rotation / charge elimination exposure is turned off and a print start signal is input.

【0097】プリント開始信号が入力された後の各画像
形成サイクルにおける帯電ローラの一次帯電バイアスは
上記ドラム前多回転期間のDC定電圧制御で検知された
DC電流に応じた補正電圧でDC定電圧制御されて画像
形成が実行される。
The primary charging bias of the charging roller in each image forming cycle after the print start signal is input is a DC constant voltage which is a correction voltage corresponding to the DC current detected by the DC constant voltage control in the pre-drum multi-rotation period. Image formation is performed under control.

【0098】上記検知されたDC電流及び補正電圧は画
像形成装置の電源が切られるまで保持される。
The detected DC current and correction voltage are held until the image forming apparatus is powered off.

【0099】また、この検知を行うタイミングをほぼ一
日に一回、朝一番だけとすることも画像濃度安定のため
には有効である。例えば、画像形成装置の紙づまりを処
理するために短時間だけでも装置の電源を切った場合
に、電源再投入時に再度電流検知が行われ補正電圧が更
新されることになる。つまり、電源を切る前後で検知電
流の検知精度によって補正電圧値が異なることが有り得
る。短時間で補正電圧が少しでも異なると、装置使用者
には相当の違和感があるため、画像形成時に濃度調整値
を再設定し直すこととなる。
It is also effective to stabilize the image density that the detection is performed almost once a day, only in the morning. For example, if the power of the image forming apparatus is turned off for a short time in order to deal with a paper jam of the image forming apparatus, the current is detected again and the correction voltage is updated when the power is turned on again. That is, the correction voltage value may differ before and after the power is turned off depending on the detection accuracy of the detection current. If the correction voltage changes even a little in a short time, the user of the apparatus will feel a lot of discomfort, and the density adjustment value will be reset when the image is formed.

【0100】これに対して画像形成装置の操作性能を向
上させるために、朝一で装置を使用可能状態に立ち上げ
るときにのみ、帯電ローラ定電圧印加、電流検知、補正
定電圧制御を行なわせて、その使用日にはその補正定電
圧を保持したままとする。
On the other hand, in order to improve the operation performance of the image forming apparatus, the charging roller constant voltage application, the current detection, and the correction constant voltage control are performed only when the apparatus is brought into a usable state in the morning. , The corrected constant voltage is maintained on the day of use.

【0101】朝一番を判断する方法として実用試験の結
果が有効だったものは、画像形成装置の電源を投入した
ときに画像定着装置の定着ローラ検知温度が特定温度以
下の場合を朝一番とする方法である。ここでの特定温度
は30℃〜130℃の間、特に100℃程度に設定する
のが最も有効だった。
As a method of determining the first morning, when the result of the practical test is effective, the first case when the fixing roller detection temperature of the image fixing device is equal to or lower than the specific temperature when the power of the image forming device is turned on is the first morning. Is the way. It was most effective to set the specific temperature here between 30 ° C and 130 ° C, especially about 100 ° C.

【0102】〈実施例4〉(図13) 帯電ローラ2のDC定電圧制御におけるDC電流検知を
1回しか行わない場合は、DC電流を検知する瞬間に帯
電部材たる帯電ローラ2が周方向で抵抗むらを有してい
た場合に次のような障害がある。即ち、たまたま抵抗の
低い部分で電流を検知したようなときは、高電流が検知
されるために補正後の定電圧値は低くなり、画像形成時
の帯電電位が低下することとなる。そして正規現像であ
れば、画像濃度低下となり、反転現像であれば画像濃度
の上昇及びかぶり現象となるような画像障害を生じる。
<Embodiment 4> (FIG. 13) When the DC current detection in the DC constant voltage control of the charging roller 2 is performed only once, the charging roller 2 as the charging member moves in the circumferential direction at the moment when the DC current is detected. There are the following obstacles when there is uneven resistance. That is, when a current is detected by a portion having a low resistance, a high current is detected, so that the constant voltage value after correction becomes low, and the charging potential at the time of image formation decreases. In the case of regular development, the image density decreases, and in the case of reversal development, the image density increases and an image defect such as a fog phenomenon occurs.

【0103】この帯電ローラ周方向での検知電流の違い
による画像濃度違いを解決するため、本実施例では図1
3に示すシーケンスのように帯電ローラ2のDC定電圧
制御時間内にDC電流検知を複数回行い、その複数回の
検知DC電流値を加算あるいは積分し、その平均値を算
出する。画像形成時はその平均検知電流値に応じた補正
電圧で帯電ローラ2の定電圧制御を行う。また、この方
法以外にも複数回の検知DC電流値から最大値、最小値
を除く方式でも良い。
In order to solve the difference in image density due to the difference in detection current in the circumferential direction of the charging roller, in this embodiment, as shown in FIG.
As in the sequence shown in 3, the DC current detection is performed a plurality of times within the DC constant voltage control time of the charging roller 2, and the detected DC current values of the plurality of times are added or integrated, and the average value thereof is calculated. During image formation, constant voltage control of the charging roller 2 is performed with a correction voltage according to the average detected current value. In addition to this method, a method of removing the maximum value and the minimum value from the detected DC current values of a plurality of times may be used.

【0104】以上の方式により、帯電ローラ2の周方向
の抵抗むらに対しても安定した電流検知と補正電圧値が
得られ、常に安定した画像形成を行うことができる。
By the above method, stable current detection and correction voltage value can be obtained even with respect to the resistance irregularity of the charging roller 2 in the circumferential direction, and stable image formation can be always performed.

【0105】以上実施例1〜同4に述べたように、画像
形成回数が増加して感光体の厚みが減少することによる
感光体容量変化があっても、その都度、感光体の厚みに
対する容量に応じた電圧−電流特性を検知することによ
り、その時の最適な補正印加電圧を帯電部材に印加する
ことができる。
As described in Examples 1 to 4 above, even if there is a change in the photosensitive member capacity due to an increase in the number of image formations and a decrease in the photosensitive member thickness, the capacity with respect to the photosensitive member thickness is changed each time. By detecting the voltage-current characteristics according to the above, it is possible to apply the optimum correction applied voltage at that time to the charging member.

【0106】その方法としては、非画像形成時に帯電部
材を直流定電圧制御し、その検知電流量に応じて画像形
成時印加電圧値に電圧補正を加えて定電圧制御をする。
As a method thereof, the charging member is subjected to DC constant voltage control during non-image formation, and voltage correction is applied to the applied voltage value during image formation according to the detected current amount to perform constant voltage control.

【0107】それによると、感光体の厚みが減少するに
つれて非画像部定電圧印加時の検知電流量が増加し、そ
の増加量に応じて画像部印加電圧値に電圧減少補正を加
えるため、常に最適状態の帯電処理と画像形成が実行さ
れる。
According to this, as the thickness of the photosensitive member decreases, the amount of detected current when the non-image area constant voltage is applied increases, and the voltage decrease correction is applied to the image area applied voltage value in accordance with the increase amount, so that the voltage decrease correction is always performed. The charging process and the image formation in the optimum state are executed.

【0108】また、帯電部材の抵抗層の環境湿度変動や
耐久変動で、抵抗値が上昇した場合には検知電流量が減
少し、画像部印加電圧値に電圧増加補正を加えるため、
帯電不足が無く、常に充分な画像濃度と画質を得ること
ができる。
Further, when the resistance value rises due to environmental humidity fluctuations and durability fluctuations of the resistance layer of the charging member, the detected current amount decreases, and the voltage increase correction is added to the image portion applied voltage value.
It is possible to always obtain sufficient image density and image quality without insufficient charging.

【0109】[0109]

【0110】〈実施例5〉(図14〜図16) 画像形成装置の機構構成は前述図1と同じである。<Embodiment 5> (FIGS. 14 to 16) The mechanical structure of the image forming apparatus is the same as that shown in FIG.

【0111】図14は本実施例における装置の動作シー
ケンスであり、大筋は前述図3の動作シーケンスと同じ
である。本実施例では、ドラム前回転期間の区間B1に
おける帯電ローラDC定電圧制御時に、DC電流検知
と、一次電圧補正と、更に画像露光用ランプ22の電圧
補正がなされる。
FIG. 14 shows an operation sequence of the apparatus in this embodiment, and the outline is the same as the operation sequence of FIG. In the present embodiment, DC current detection, primary voltage correction, and voltage correction of the image exposure lamp 22 are performed during charging roller DC constant voltage control in the section B1 of the drum pre-rotation period.

【0112】一次補正電圧にて帯電ローラDC定電圧制
御が始まったら補正ランプ電圧での画像露光Lによる1
枚目の画像形成が行なわれる。
When the charging roller DC constant voltage control is started with the primary correction voltage, 1 is set by the image exposure L with the correction lamp voltage.
The first image is formed.

【0113】また、1枚目と2枚目のプリントの間の紙
間でも再び帯電ローラ2のDC定電圧制御、DC電流検
知、DC定電圧制御、及びランプ電圧制御を実行させて
いる。即ち、1枚目のプリントが終了したら1次帯電バ
イアスを紙間の区間B2において再び帯電ローラDC定
電圧制御となし、DC電流検知を実行させ、次いでその
検知DC電流に応じた一次定電圧制御及びランプ電圧制
御を実行させて2枚目のプリントについての画像形成を
実行させている。
Further, the DC constant voltage control of the charging roller 2, the DC current detection, the DC constant voltage control, and the lamp voltage control are executed again between the sheets between the first and second sheets of printing. That is, when the printing of the first sheet is completed, the primary charging bias is set to the charging roller DC constant voltage control again in the interval B2 between the sheets, the DC current detection is executed, and then the primary constant voltage control according to the detected DC current. Also, the lamp voltage control is executed, and the image formation for the second print is executed.

【0114】3枚以上の連続プリントのときも各紙間に
おいて同様に、帯電ローラDC定電圧制御、DC電流検
知、DC定電圧制御、及びランプ電圧制御のシーケンス
を行なう。
In continuous printing of three or more sheets, the sequence of charging roller DC constant voltage control, DC current detection, DC constant voltage control, and lamp voltage control is similarly performed between each sheet.

【0115】耐久によってドラム表面が削れて感光体膜
厚が薄くなった場合には帯電ローラ2がドラム1の非画
像形成領域面に対応しているときになされているDC定
電圧制御期間B1やB2の検知DC電流が高くなり、そ
の検知DC電流に応じた低下補正電圧でのDC定電圧制
御のもとでドラム1の画像形成領域面に対する帯電処理
が帯電ローラ2によりなされて、かつランプ電圧制御に
よる露光量補正がなされて画像形成が実行される。
When the surface of the drum is scraped due to durability and the film thickness of the photoconductor becomes thin, the DC constant voltage control period B1 which is performed when the charging roller 2 corresponds to the surface of the non-image forming area of the drum 1 or The detection DC current of B2 becomes high, the charging process is performed on the image forming area surface of the drum 1 by the charging roller 2 under the DC constant voltage control with the reduced correction voltage according to the detection DC current, and the lamp voltage is also increased. The exposure amount is corrected by the control, and the image formation is executed.

【0116】また、低湿度環境にて特に帯電ローラ2の
抵抗が上がり、上記期間B1やB2の、帯電ローラDC
定電圧制御の検知DC電流が低くなる。その検知DC電
流に応じた増加補正電圧での、帯電ローラDC定電圧制
御のもとでドラム1の画像形成領域面に対する帯電処理
が帯電ローラ2によりなされて、かつ補正ランプ電圧で
の露光により画像形成が実行されるので、帯電ローラ2
の環境での抵抗変動にかかわらずドラム1の帯電電位は
一定化される。
Further, the resistance of the charging roller 2 is increased particularly in a low humidity environment, and the charging roller DC during the period B1 or B2 is increased.
The detection DC current of the constant voltage control becomes low. The charging roller 2 performs a charging process on the surface of the image forming area of the drum 1 under the control of the charging roller DC constant voltage with the increased correction voltage according to the detected DC current, and the image is formed by exposure with the correction lamp voltage. As the formation is performed, the charging roller 2
The charging potential of the drum 1 is made constant regardless of the resistance fluctuation in the environment.

【0117】図15は検知電流と、補正ランプ電圧出力
値と、ドラム面の増加露光量の相関図である。
FIG. 15 is a correlation diagram of the detected current, the corrected lamp voltage output value, and the increased exposure amount of the drum surface.

【0118】この補正をかけた実験結果を図16の
(a)・(b)に示す。横軸に画像形成回数として耐久
枚数をとり、その時どきのドラム表面電位の変化を示し
ている。従来の特定定電圧印加のみの場合の表面電位推
移は黒電位VD がL、白電位VLがOで表されるが、本
発明のように、帯電ローラ定電圧印加時の直流電流量を
検知し、その電流量に応じて、帯電ローラに対する印加
電圧を補正して定電圧制御すると、それぞれM,Pで表
されるように耐久枚数が増えても常に一定に低下傾向の
ドラム表面電位に制御できる。
Experimental results with this correction are shown in FIGS. 16 (a) and 16 (b). The horizontal axis represents the number of durable images as the number of times of image formation, and shows the change of the drum surface potential at that time. In the conventional case where the surface potential changes only when a specific constant voltage is applied, the black potential V D is represented by L and the white potential VL is represented by O, but as in the present invention, the amount of DC current when the charging roller constant voltage is applied is detected. However, if the voltage applied to the charging roller is corrected according to the amount of the current and constant voltage control is performed, the drum surface potential is constantly controlled to decrease constantly as the number of durable sheets increases, as indicated by M and P, respectively. it can.

【0119】更に、検知電流量に応じて画像露光ランプ
電圧が上昇し、露光量が増加することにより白電位がQ
まで低下し、結果的に黒電位VD がM、白電位VL がQ
の電位を得られる。ここで黒電位VD を低下傾向に制御
することにより、白電位VLの上昇率を抑え、露光量変
化巾を小さく抑えることができる。
Further, the image exposure lamp voltage rises in accordance with the detected current amount, and the exposure amount increases, so that the white potential becomes Q.
As a result, the black potential V D is M and the white potential V L is Q.
The electric potential of Here, by controlling the black potential V D so as to decrease, the rate of increase of the white potential V L can be suppressed, and the change amount of the exposure amount can be suppressed small.

【0120】この実験に使用の感光体1及び帯電ローラ
2は前述実施例1で使用したものと同様のものである。
The photoconductor 1 and the charging roller 2 used in this experiment are the same as those used in the first embodiment.

【0121】〈実施例6〉(図17) 図17のシーケンスは前述図14のシーケンスとの対比
において、ドラム1の前回転期間の区間B1だけにおい
て帯電ローラDC定電圧制御・DC電流検知を実行さ
せ、連続プリントにおける紙間での帯電ローラDC定電
圧制御・DC電流検知は行なわないようにした例であ
る。
<Sixth Embodiment> (FIG. 17) In contrast to the sequence of FIG. 14, the sequence of FIG. 17 executes charging roller DC constant voltage control and DC current detection only in the section B1 of the pre-rotation period of the drum 1. This is an example in which the charging roller DC constant voltage control and the DC current detection are not performed between the sheets in continuous printing.

【0122】区間B1で検知したDC電流に応じた帯電
ローラ定電圧制御及び露光用ランプ22の電圧補正、補
正電圧印加が連続プリントでの各画像形成時になされ
る。
The charging roller constant voltage control according to the DC current detected in the section B1, the voltage correction of the exposure lamp 22 and the correction voltage application are performed at the time of forming each image in continuous printing.

【0123】ただしその検知DC電流、補正一次電圧、
補正ランプ電圧は次のプリント開始時のドラム前回転期
間の区間B1で更新される。
However, the detected DC current, the corrected primary voltage,
The correction lamp voltage is updated in the section B1 of the drum pre-rotation period at the start of the next printing.

【0124】〈実施例7〉(図18) 図18のシーケンスは、画像形成装置に電源を投入した
とき実行される、画像定着装置昇温等のためのドラム前
多回転期間(装置ウォームアップ期間)に帯電ローラ2
のDC定電流制御・DC電圧検知を行なわせている。
<Embodiment 7> (FIG. 18) The sequence of FIG. 18 is a multi-rotation period before the drum (apparatus warm-up period) for raising the temperature of the image fixing apparatus, which is executed when the image forming apparatus is powered on. ) To the charging roller 2
DC constant current control and DC voltage detection are performed.

【0125】装置はウォームアップ終了後、ドラムの回
転・除電露光がOFFとなり、プリント開始信号が入力
されるまでスタンバイ状態となる。
After the warm-up is completed, the apparatus is in a standby state until the rotation / charge elimination exposure of the drum is turned off and the print start signal is input.

【0126】プリント開始信号が入力された後の各画像
形成サイクルにおける帯電ローラ2の一次帯電バイアス
は上記ドラム前多回転期間のDC定電圧制御で検知され
たDC電流に応じた一次補正電圧でDC定電圧制御され
て、かつ露光用ランプ22の電圧補正がされて画像形成
が実行される。
The primary charging bias of the charging roller 2 in each image forming cycle after the print start signal is input is the DC of the primary correction voltage corresponding to the DC current detected by the DC constant voltage control in the pre-drum multi-rotation period. Image formation is performed by performing constant voltage control and correcting the voltage of the exposure lamp 22.

【0127】上記検知されたDC電流及び一次補正電圧
とランプ補正電圧はプリンタの電源が切られるまで保持
される。
The detected DC current and the primary correction voltage and the lamp correction voltage are held until the power of the printer is turned off.

【0128】また、前記実施例3で述べたように、この
検知を行うタイミングをほぼ一日に一回、朝一番だけと
することも画像濃度安定のためには有効である。例え
ば、画像形成装置の紙づまりを処理するために短時間だ
けでも装置の電源を切った場合に、電源再投入時に再度
電流検知が行われ補正電圧が更新されることになる。つ
まり、電源を切る前後で検知電流の検知精度によって補
正電圧値(一次補正電圧及びランプ補正電圧)が異なる
ことが有り得る。短時間で補正電圧が少しでも異なる
と、装置使用者には相当の違和感があるため、画像形成
時に濃度調整値を再設定し直すこととなる。
Further, as described in the third embodiment, it is effective for stabilizing the image density that the detection is performed almost once a day and only in the morning. For example, if the power of the image forming apparatus is turned off for a short time in order to deal with a paper jam of the image forming apparatus, the current is detected again and the correction voltage is updated when the power is turned on again. That is, the correction voltage value (primary correction voltage and lamp correction voltage) may differ before and after the power is turned off depending on the detection accuracy of the detection current. If the correction voltage changes even a little in a short time, the user of the apparatus will feel a lot of discomfort, and the density adjustment value will be reset when the image is formed.

【0129】これに対して画像形成装置の操作性能を向
上させるために、朝一装置を使用可能状態に立ち上げる
ときにのみ、帯電ローラ定電圧印加、電流検知、補正定
電圧制御、及び露光用ランプ22の電圧補正を行い、そ
の使用日にはその補正定電圧及び補正ランプ電圧を保持
したままとする。
On the other hand, in order to improve the operation performance of the image forming apparatus, the charging roller constant voltage is applied, the current is detected, the correction constant voltage is controlled, and the exposure lamp is used only when the apparatus is started up in the morning. The voltage correction of No. 22 is performed, and the corrected constant voltage and the corrected lamp voltage are maintained on the day of use.

【0130】朝一番を判断する方法として実用試験の結
果を有効だったものは、画像形成装置の電源を投入した
ときに定着装置の定着ローラ検知温度が特定温度以下の
場合を朝一番とする方法である。ここでの特定温度は3
0℃〜130℃の間、特に100℃程度に設定するのが
最も有効だった。
As a method for determining the first morning, the result of the practical test was effective. The first method in the morning is when the fixing roller detection temperature of the fixing device is equal to or lower than a specific temperature when the power of the image forming apparatus is turned on. Is. The specific temperature here is 3
It was most effective to set the temperature between 0 ° C and 130 ° C, especially about 100 ° C.

【0131】〈実施例8〉(図19) DC電流検知を1回しか行わない場合は、DC電流を検
知する瞬間に帯電部材たる帯電ローラ2が周方向で抵抗
むらを有していた場合に次のような障害がある。たまた
ま抵抗の低い部分で電流を検知したようなときは、高電
流が検知されるために補正後の定電圧値は低く、また補
正後のランプ電圧は高くなり、画像形成時の帯電電位が
低下することとなる。そして正規現像であれば、画像濃
度低下となり、反転現像であれば画像濃度の上昇及びか
ぶり現象となるような画像障害を生じる。
<Embodiment 8> (FIG. 19) When the DC current is detected only once, when the charging roller 2 as the charging member has uneven resistance in the circumferential direction at the moment of detecting the DC current, There are the following obstacles. If you happen to detect a current in a low resistance area, a high current will be detected, so the constant voltage value after correction will be low, and the lamp voltage after correction will be high, and the charging potential during image formation will decrease. Will be done. In the case of regular development, the image density decreases, and in the case of reversal development, the image density increases and an image defect such as a fog phenomenon occurs.

【0132】このローラ周方向での検知電流の違いによ
る画像濃度違いを解決するため、本実施例では図19に
示すシーケンスのように帯電ローラDC定電圧制御時間
内にDC電流検知を複数回行い、その複数回の検知DC
電流値を加算あるいは積分し、その平均値を算出する。
画像形成時はその平均検知電流値に応じた補正電圧での
帯電ローラ定電圧制御と、露光用ランプ22の電圧補正
を行う。
In order to solve the image density difference due to the difference in the detection current in the roller circumferential direction, in this embodiment, the DC current detection is performed a plurality of times within the charging roller DC constant voltage control time as in the sequence shown in FIG. , Its multiple detection DC
The current values are added or integrated, and the average value is calculated.
During image formation, the charging roller constant voltage control is performed with a correction voltage according to the average detected current value, and the voltage of the exposure lamp 22 is corrected.

【0133】また、この方法以外にも複数回の検知DC
電流値から最大値、最小値を除く方式でも良い。
In addition to this method, detection DC may be performed a plurality of times.
A method of removing the maximum value and the minimum value from the current value may be used.

【0134】以上の方式により、帯電ローラ2の周方向
の抵抗むらに対しても安定した電流検知と補正電圧値
(一次補正電圧及びランプ補正電圧)が得られ、常に安
定した画像形成を行うことができる。
With the above method, stable current detection and correction voltage values (primary correction voltage and lamp correction voltage) can be obtained even with respect to resistance unevenness in the circumferential direction of the charging roller 2, and stable image formation is always performed. You can

【0135】以上実施例5〜同8に述べたように、画像
形成回数が増加して感光体の厚みが減少することによる
感光体容量変化があっても、その都度、感光体の厚みに
対する容量に応じた電圧−電流特性を検知することによ
り、その時の最適な補正印加電圧を帯電部材に印加する
ことができ、またその時の最適な補正ランプ電圧により
最適露光を行うことができる。
As described in Examples 5 to 8 above, even when there is a change in the photosensitive member capacity due to an increase in the number of image formations and a decrease in the photosensitive member thickness, the capacity with respect to the photosensitive member thickness is changed each time. By detecting the voltage-current characteristic according to the above, the optimum correction applied voltage at that time can be applied to the charging member, and the optimum exposure can be performed by the optimum correction lamp voltage at that time.

【0136】その方法としては、非画像形成時に帯電部
材を直流定電圧制御し、その検知電流量に応じて画像形
成時印加電圧値に電圧補正を加えて定電圧制御と画像露
光ランプ電圧を補正し露光量補制御をする。
As a method, constant voltage control is performed on the charging member during non-image formation, and voltage correction is applied to the applied voltage value during image formation according to the detected current amount to correct the constant voltage control and the image exposure lamp voltage. Then, the exposure amount supplementary control is performed.

【0137】それによると、感光体の厚みが減少するに
つれて非画像部定電圧印加時の検知電流量が増加し、そ
の増加量に応じて画像部印加電圧値に電圧減少補正とラ
ンプ電圧増加による露光量増加補正を加えるため、常に
最適状態の帯電処理と画像形成が実行される。
According to this, as the thickness of the photosensitive member decreases, the amount of detected current when the non-image area constant voltage is applied increases, and the voltage applied to the image area is corrected by the voltage decrease and the lamp voltage is increased according to the increase amount. Since the exposure amount increase correction is added, the charging process and the image formation in the optimum state are always executed.

【0138】また、帯電部材の抵抗層の環境湿度変動や
耐久変動で、抵抗値が上昇した場合には検知電流量が減
少し、画像部印加電圧値に電圧増加補正を加えランプ電
圧減少補正かまたは一定ランプ電圧となるため、帯電不
足やカブリが無く、常に充分な画像濃度と画質を得るこ
とができる。
Further, when the resistance value rises due to environmental humidity fluctuations and durability fluctuations of the resistance layer of the charging member, the detected current amount decreases, and the lamp voltage decrease correction is performed by adding the voltage increase correction to the image part applied voltage value. Alternatively, since the lamp voltage is constant, there is no insufficient charging or fog, and a sufficient image density and image quality can always be obtained.

【0139】[0139]

【発明の効果】以上のように本発明によれば、接触帯電
方式を用いた画像形成装置、特に接触帯電部材に交流が
重畳されていない直流を印加して帯電を行う画像形成装
置に関して、感光体と、感光体と接触する帯電部材に直
流を印加して帯電を行う帯電手段と、帯電手段により帯
電された感光体を画像露光し静電像を形成する露光手段
と、を有する画像形成装置さらには、感光体上の静電
像を現像する現像手段と、感光体上の現像像を転写材に
転写する転写手段と、転写後の転写材を加熱定着する定
着手段と、を有する画像形成装置について、耐久による
感光体の膜厚変化、帯電部材の耐久変化、帯電部材の抵
抗層の環境変動に拘らず、帯電不足がなく常に充分な画
像濃度と画質を維持させることができる。
As described above, according to the present invention, contact charging
AC is applied to the image forming apparatus using the method, especially the contact charging member.
Regarding an image forming apparatus that applies a non-overlapping direct current to charge an image forming apparatus , directly connect the photosensitive member and the charging member that is in contact with the photosensitive member.
A charging means for applying a flow to charge the battery and a charging means
Exposure means for forming an electrostatic image by exposing the charged photoreceptor to an image
When the image forming apparatus having, furthermore, electrostatic on the photoreceptor
Developing means for developing the image and the developed image on the photoconductor as the transfer material
A transfer means for transferring and a fixed method for heating and fixing the transfer material after transfer.
The image forming apparatus having
Regardless of changes in the film thickness of the photoreceptor, changes in the durability of the charging member, and environmental changes in the resistance layer of the charging member, sufficient image density and image quality can always be maintained without insufficient charging.

【図面の簡単な説明】[Brief description of drawings]

【図1】 第1の実施例の画像形成装置の概略構成図FIG. 1 is a schematic configuration diagram of an image forming apparatus according to a first embodiment.

【図2】 (a)・(b)はそれぞれローラタイプ以外
の形態の接触帯電部材横断面模型図
2A and 2B are schematic cross-sectional views of a contact charging member of a form other than a roller type.

【図3】 装置の動作シーケンス図FIG. 3 is an operation sequence diagram of the device.

【図4】 (a)・(b)はそれぞれ帯電特性グラフFIG. 4A and FIG. 4B are charging characteristic graphs, respectively.

【図5】 感光体層と帯電ローラ及び両者の接触部の微
視的空間の形成する等価回路図
FIG. 5 is an equivalent circuit diagram in which a microscopic space is formed between a photosensitive layer, a charging roller, and a contact portion between them.

【図6】 空隙ギャップと空隙破壊電圧の関係グラフFIG. 6 is a graph showing the relationship between the void gap and the void breakdown voltage.

【図7】 (a)は感光体と帯電ローラの当接ニップ部
を示した図、(b)は等価回路図
7A is a diagram showing a contact nip portion between a photoconductor and a charging roller, and FIG. 7B is an equivalent circuit diagram.

【図8】 (a)・(b)は帯電能膜厚依存性を示した
グラフ
8 (a) and (b) are graphs showing chargeability and film thickness dependence.

【図9】 検知電圧と補正電圧出力値の関係グラフFIG. 9 is a graph showing the relationship between the detection voltage and the correction voltage output value.

【図10】 (a)・(b)は効果の説明図10 (a) and (b) are explanatory diagrams of effects.

【図11】 第2の実施例装置のシーケンス図FIG. 11 is a sequence diagram of the apparatus according to the second embodiment.

【図12】 第3の実施例装置のシーケンス図FIG. 12 is a sequence diagram of the third embodiment device.

【図13】 第4の実施例装置のシーケンス図FIG. 13 is a sequence diagram of an apparatus according to the fourth embodiment.

【図14】 第5の実施例装置のシーケンス図FIG. 14 is a sequence diagram of the device of the fifth embodiment.

【図15】 検知電流と、補正ランプ電圧出力値と、ド
ラム面の増加露光量の関係図
FIG. 15 is a relationship diagram of the detection current, the correction lamp voltage output value, and the increased exposure amount of the drum surface.

【図16】 (a)・(b)は補正をかけた実験結果の
グラフ
16 (a) and (b) are graphs of the experimental results with correction applied.

【図17】 第6の実施例装置のシーケンス図FIG. 17 is a sequence diagram of an apparatus according to the sixth embodiment.

【図18】 第7の実施例装置のシーケンス図FIG. 18 is a sequence diagram of the seventh embodiment device.

【図19】 第8の実施例装置のシーケンス図FIG. 19 is a sequence diagram of an eighth embodiment device.

【図20】 接触帯電装置の一例の概略図FIG. 20 is a schematic view of an example of a contact charging device.

【符号の説明】[Explanation of symbols]

1 被帯電体(感光体) 2 帯電ローラ 3 帯電バイアス印加電源 10 画像露光手段 11 現像手段 12 転写手段 13 クリーニング手段 14 転写材 1 Charged object (photoreceptor) 2 charging roller 3 Charging bias application power supply 10 Image exposure means 11 Developing means 12 Transfer means 13 Cleaning means 14 Transfer material

───────────────────────────────────────────────────── フロントページの続き (72)発明者 村松 正憲 東京都大田区下丸子3丁目30番2号 キ ヤノン株式会社内 (72)発明者 佐藤 勇 東京都大田区下丸子3丁目30番2号 キ ヤノン株式会社内 (72)発明者 柳田 真 東京都大田区下丸子3丁目30番2号 キ ヤノン株式会社内 (72)発明者 荒平 文弘 東京都大田区下丸子3丁目30番2号 キ ヤノン株式会社内 (72)発明者 渡辺 毅 東京都大田区下丸子3丁目30番2号 キ ヤノン株式会社内 (56)参考文献 特開 平4−9883(JP,A) 特開 平4−57068(JP,A) 特開 平1−321448(JP,A) 特開 平4−116673(JP,A) 特開 平4−107478(JP,A) 特開 平1−204081(JP,A) (58)調査した分野(Int.Cl.7,DB名) G03G 15/02 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Masanori Muramatsu 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc. (72) Inventor Isamu Sato 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Incorporated (72) Inventor Makoto Yanagida 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc. (72) Inventor Fumihiro Arahira 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc. ( 72) Inventor Takeshi Watanabe 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc. (56) References JP-A-4-9883 (JP, A) JP-A-4-57068 (JP, A) Special Kaihei 1-321448 (JP, A) JP 4-116673 (JP, A) JP 4-107478 (JP, A) JP 1-204081 (JP, A) (58) Fields investigated ( Int.Cl. 7 , DB name) G0 3G 15/02

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 被帯電体に該被帯電体面を帯電処理する
工程、帯電処理された被帯電体面に画像情報を含んだ光
像を照射する工程を含む作像プロセスを適用して画像形
成を実行する画像形成装置であり、 該被帯電体の帯電処理手段は、直流電圧のみを印加した
帯電部材を被帯電体に当接させて被帯電体面を帯電する
接触式帯電装置であり、 該帯電部材が被帯電体の非画像形成領域に対応している
ときに該帯電部材を直流定電圧制御し、そのときの直流
電流量を検知し、該帯電部材が被帯電体の画像形成領域
に対応しているときは上記検知した直流電流量に応じ
て、被帯電体層厚の減少があっても常にほぼ一定の被帯
電体表面電位が確保されるべく、上記検知した直流電流
量の増加と共に直流電圧出力を低下させるように補正を
かけた補正直流電圧で該帯電部材を直流定電圧制御する
ようにした、 ことを特徴とする画像形成装置。
1. A surface of an object to be charged is charged.
Light that contains image information on the surface of the charged body that has been subjected to the process and charging
Applying an imaging process that includes the step of irradiating an image
In the image forming apparatus for performing the image formation, the charging means of the member to be charged applies only a DC voltage.
The surface of the body to be charged is charged by bringing the charging member into contact with the body to be charged.
It is a contact type charging device, and the charging member corresponds to the non-image forming area of the member to be charged.
Sometimes the charging member is controlled to a constant DC voltage, and the direct current at that time is controlled.
The amount of electric current is detected, and the charging member is an image forming area of the body to be charged.
When it corresponds to, it depends on the amount of DC current detected above.
Therefore, even if there is a decrease in the thickness of the layer to be charged,
Direct current detected above in order to secure the surface potential of the electric body
Correct so that the DC voltage output decreases as the amount increases.
DC constant voltage control of the charging member with the applied corrected DC voltage
An image forming apparatus characterized by the above .
【請求項2】 画像定着装置の定着ローラ温度が特定温
度以下にて画像形成装置を稼働準備状態としたときの
み、前記帯電部材が被帯電体の非画像形成領域に対応し
ているときに該帯電部材を直流定電圧制御し、そのとき
の直流電流量を検知し、該帯電部材が被帯電体の画像形
成領域に対応しているときは、上記の補正直流電圧で該
帯電部材を直流定電圧制御するようにしたことを特徴と
する請求項1に記載の画像形成装置。
2. A fixing roller temperature of an image fixing device is a specific temperature.
When the image forming device is ready for operation below
However, the charging member corresponds to the non-image forming area of the member to be charged.
DC voltage control of the charging member during
The amount of DC current of the
When it corresponds to the range,
The image forming apparatus according to claim 1, wherein the charging member is controlled to have a constant DC voltage .
【請求項3】 帯電部材は表層に高抵抗層を有する導電
性帯電部材であることを特徴とする請求項1もしくは2
に記載の画像形成装置。
3. A conductive member having a high resistance layer on the surface of the charging member.
3. A charging member according to claim 1, which is a positive charging member.
The image forming apparatus according to item 1.
【請求項4】 帯電部材が被帯電体の画像形成領域に対
応しているときは上記検知した直流電流量に応じて光像
照射の露光量を補正する制御をも行うことを特徴とする
請求項1ないし3のいずれかに記載の画像形成装置。
4. The charging member is opposed to the image forming area of the body to be charged.
In response, the optical image is changed according to the detected DC current amount.
The image forming apparatus according to claim 1, further comprising a control for correcting an exposure amount of irradiation .
JP13774392A 1992-04-28 1992-04-28 Image forming device Expired - Lifetime JP3397339B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP13774392A JP3397339B2 (en) 1992-04-28 1992-04-28 Image forming device
EP93303334A EP0568352B1 (en) 1992-04-28 1993-04-28 Image forming apparatus having charging member
DE69321755T DE69321755T2 (en) 1992-04-28 1993-04-28 Imaging device with a charging element
US08/662,280 US5636009A (en) 1992-04-28 1996-06-12 Image forming apparatus having charging member
HK98115381A HK1014059A1 (en) 1992-04-28 1998-12-24 Image forming apparatus having charging member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13774392A JP3397339B2 (en) 1992-04-28 1992-04-28 Image forming device

Publications (2)

Publication Number Publication Date
JPH05307315A JPH05307315A (en) 1993-11-19
JP3397339B2 true JP3397339B2 (en) 2003-04-14

Family

ID=15205797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13774392A Expired - Lifetime JP3397339B2 (en) 1992-04-28 1992-04-28 Image forming device

Country Status (1)

Country Link
JP (1) JP3397339B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7711278B2 (en) 2006-03-08 2010-05-04 Canon Kabushiki Kaisha Image forming apparatus

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3319881B2 (en) * 1994-08-02 2002-09-03 株式会社リコー Image forming device
JP3442161B2 (en) * 1994-10-03 2003-09-02 株式会社リコー Image forming apparatus and image forming process post-processing method
JPH08220840A (en) * 1994-10-05 1996-08-30 Ricoh Co Ltd Electrifying roller, roller electrifying device and image forming device using same
JP3279152B2 (en) * 1995-10-04 2002-04-30 キヤノン株式会社 Control method of image forming apparatus
JP2007206349A (en) * 2006-02-01 2007-08-16 Fuji Xerox Co Ltd Image forming method and image forming apparatus
JP5546269B2 (en) * 2009-03-17 2014-07-09 キヤノン株式会社 Image forming apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7711278B2 (en) 2006-03-08 2010-05-04 Canon Kabushiki Kaisha Image forming apparatus

Also Published As

Publication number Publication date
JPH05307315A (en) 1993-11-19

Similar Documents

Publication Publication Date Title
JPH0635302A (en) Image forming device
JP4298107B2 (en) Image forming apparatus
US5636009A (en) Image forming apparatus having charging member
JP3279152B2 (en) Control method of image forming apparatus
JP2004334063A (en) Image forming apparatus
JP3397339B2 (en) Image forming device
JPH09101657A (en) Controlling method for image forming device
JP2016057580A (en) Image forming apparatus
JP3239454B2 (en) Image forming device
JP3245783B2 (en) Image forming device
JPH09185219A (en) Electrostatic charging device and image forming device
JPH09101656A (en) Controlling method for image forming device
JP3232762B2 (en) Image forming device
JPH09185220A (en) Method for controlling image forming device
JP4154292B2 (en) Image forming apparatus
JP3239634B2 (en) Image forming device
JP5328470B2 (en) Image forming apparatus
JPH0862946A (en) Image forming device
JPH0822168A (en) Image forming device
JPH08152770A (en) Image forming device
JPH11223965A (en) Image forming device
JPH10239955A (en) Image forming device
JPH10171215A (en) Image forming device
JPH0862947A (en) Image forming device
JPH08328439A (en) Image forming device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080214

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090214

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100214

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100214

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110214

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120214

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130214

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130214

Year of fee payment: 10