JP3245783B2 - Image forming device - Google Patents

Image forming device

Info

Publication number
JP3245783B2
JP3245783B2 JP15795193A JP15795193A JP3245783B2 JP 3245783 B2 JP3245783 B2 JP 3245783B2 JP 15795193 A JP15795193 A JP 15795193A JP 15795193 A JP15795193 A JP 15795193A JP 3245783 B2 JP3245783 B2 JP 3245783B2
Authority
JP
Japan
Prior art keywords
charging
voltage
charged
image forming
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15795193A
Other languages
Japanese (ja)
Other versions
JPH06348114A (en
Inventor
文弘 荒平
孝男 本田
武男 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP15795193A priority Critical patent/JP3245783B2/en
Publication of JPH06348114A publication Critical patent/JPH06348114A/en
Application granted granted Critical
Publication of JP3245783B2 publication Critical patent/JP3245783B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、例えば、電子写真装置
(複写機・光プリンタなど)・静電記録装置等の画像形
成装置のように、被帯電体としての像担持体(電子写真
感光体・静電記録誘電体など)の面を帯電処理する工程
を含む転写式(間接式)或いは直接式の作像プロセスを
適用して画像形成を実行する画像形成装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an image bearing member (electrophotographic photosensitive member) as a member to be charged, such as an image forming apparatus such as an electrophotographic apparatus (copier, optical printer, etc.) and an electrostatic recording apparatus. The present invention relates to an image forming apparatus which performs image formation by applying a transfer type (indirect type) or direct type image forming process including a step of charging a surface of a body or an electrostatic recording dielectric.

【0002】[0002]

【従来の技術】前記のような画像形成装置において、被
帯電体としての像担持体面を帯電処理する手段機器とし
ては従来よりコロナ放電装置が広く利用されている。
2. Description of the Related Art In an image forming apparatus as described above, a corona discharge device has been widely used as a device for charging a surface of an image carrier as a member to be charged.

【0003】コロナ放電装置は像担持体等の被帯電体面
を所定の電位に均一に帯電処理する手段として有効であ
る。しかし、高圧電源を必要とし、コロナ放電のために
好ましくないオゾンが発生するなどの問題点を有してい
る。
A corona discharge device is effective as a means for uniformly charging a surface of a charged body such as an image carrier to a predetermined potential. However, there is a problem that a high-voltage power supply is required and undesired ozone is generated due to corona discharge.

【0004】このようなコロナ放電装置に対して、前記
のように電圧を印加した帯電部材を被帯電体面に接触さ
せて被帯電体面を帯電処理する接触式帯電装置は、電源
の低圧化が図れ、オゾンの発生量が少ない等の長所を有
していることから、例えば画像形成装置に於いてコロナ
放電装置にかえて感光体・誘電体等の像担持体、その他
の被帯電体面の帯電処理手段として注目され、その実用
化研究が進められている。
In such a corona discharge device, a contact-type charging device for charging the surface of the charged object by bringing the charging member to which the voltage is applied into contact with the surface of the charged object as described above can reduce the power supply voltage. Because of its advantages such as low ozone generation, for example, in an image forming apparatus, charging of an image carrier such as a photoreceptor or a dielectric, or other surface to be charged, in place of a corona discharge device Attention has been paid to this as a means, and research into its practical use is underway.

【0005】例えば、本出願人が先に提案(特願昭61-2
98419,298420号、特願昭62-51492号・特願昭62- 230333
〜230335号など)したように、接触式帯電装置に於いて
直流電圧を帯電部材に印加したときの被帯電体の帯電開
始電圧の2倍以上のピーク間電圧を有する振動電界(交
互電界、時間とともに電圧値が周期的に変化する電界
(電圧))を帯電部材と被帯電体との間に形成するこ
と、更には表層に高抵抗層を設けた帯電部材を用いるこ
とにより、被帯電体の帯電均一性、感光体等の被帯電体
表面のピンホール・傷等によるリーク防止等を図ること
ができる。
[0005] For example, the present applicant has previously proposed (Japanese Patent Application No.
98419,298420, Japanese Patent Application No. 62-51492, Japanese Patent Application No. 62-230333
As described above, an oscillating electric field (alternating electric field, time) having a peak-to-peak voltage that is at least twice the charging start voltage of the member to be charged when a DC voltage is applied to the charging member in the contact charging device. An electric field (voltage) whose voltage value changes periodically between the charging member and the member to be charged, and further by using a charging member provided with a high-resistance layer on its surface, Uniform charging, prevention of leakage due to pinholes, scratches, etc. on the surface of the member to be charged such as a photoreceptor can be achieved.

【0006】また、帯電部材として導電性繊維毛ブラシ
あるいは導電性弾性ローラー等の導電性部材(導電性電
位維持部材)を被帯電体と接触させ、外部から直流電圧
を印加することにより被帯電体表面に電荷を直接注入し
て被帯電体表面を所定の電位に帯電させるものもある。
Further, a conductive member (conductive potential maintaining member) such as a conductive fiber bristle brush or a conductive elastic roller as a charging member is brought into contact with the member to be charged, and a DC voltage is externally applied to the member to be charged. In some cases, electric charges are directly injected into the surface to charge the surface of the member to be charged to a predetermined potential.

【0007】図13は接触式帯電装置の一例の概略構成
の横断面図である。
FIG. 13 is a cross-sectional view of a schematic structure of an example of a contact-type charging device.

【0008】1は被帯電体である。本例では回転ドラム
型の電子写真感光体(以下、感光体と記す)である。本
例の該感光体1はアルミニウム等の導電性基層1bと、
その外面に形成した光導電層1aとを基本構成層とする
ものである。
Reference numeral 1 denotes a member to be charged. In this embodiment, the photosensitive member is a rotating drum type electrophotographic photosensitive member (hereinafter, referred to as a photosensitive member). The photoreceptor 1 of this example includes a conductive base layer 1b such as aluminum,
The photoconductive layer 1a formed on the outer surface thereof is used as a basic constituent layer.

【0009】2は帯電部材である。本例はローラータイ
プである(以下帯電ローラーと記す)。該帯電ローラー
2は中心の芯金2cと、その外周に形成した導電層2b
と、更にその外周に形成した抵抗層2aとからなる。
Reference numeral 2 denotes a charging member. This example is a roller type (hereinafter, referred to as a charging roller). The charging roller 2 has a central core 2c and a conductive layer 2b formed on the outer periphery thereof.
And a resistance layer 2a formed on the outer periphery thereof.

【0010】帯電ローラー2は芯金2cの両端部を不図
示の軸受部材に回転自由に軸受させて、ドラム型の感光
体1に並行に配置して不図示の押圧手段で感光体1面に
対して所定の押圧力をもって圧接され、感光体1の回転
駆動に伴い従動回転する。ギア等を取り付け、モータか
ら駆動力を伝達させて強制回転駆動させることも可能で
ある。
The charging roller 2 has both ends of a cored bar 2c rotatably supported by bearing members (not shown), and is disposed in parallel with the drum-type photosensitive member 1 so as to be brought into contact with the surface of the photosensitive member 1 by pressing means (not shown). The photoconductor 1 is pressed against the photoconductor 1 with a predetermined pressing force, and is rotated by the rotation of the photoconductor 1. It is also possible to attach a gear or the like and transmit a driving force from a motor to perform a forced rotation drive.

【0011】3は帯電ローラー2に対するバイアス印加
電源である。この電源3と帯電ローラー2の芯金2cと
が電気的に接続されていて電源3により帯電ローラー2
に対して所定のバイアスが印加される。このバイアスと
しては直流電圧のみの印加とすることもできるが、前述
のように交流電圧に直流電圧を重畳した振動電圧を印加
するのが好ましい。
Reference numeral 3 denotes a power supply for applying a bias to the charging roller 2. The power source 3 is electrically connected to the metal core 2 c of the charging roller 2.
Is applied with a predetermined bias. As the bias, only a DC voltage can be applied, but it is preferable to apply an oscillating voltage obtained by superimposing a DC voltage on an AC voltage as described above.

【0012】そして、被帯電体たる感光体1が回転駆動
されると、該感光体1に圧接され且つバイアス電圧が印
加された帯電部材としての帯電ローラー2により感光体
1の外周面が所定の極性・電位に帯電処理される。
When the photosensitive member 1 to be charged is driven to rotate, the outer peripheral surface of the photosensitive member 1 is fixed to a predetermined position by a charging roller 2 as a charging member pressed against the photosensitive member 1 and applied with a bias voltage. Charged to polarity and potential.

【0013】感光体1の周囲・周辺には、上記の帯電手
段としての帯電ローラー2の他に露光手段・現像手段・
転写手段・クリーニング手段、画像定着手段等の所要の
作像プロセス機器が配設されて画像形成機構が構成され
ていて画像形成が実行されるが、この図にはそれ等のプ
ロセス機器を省略してある。
In addition to the charging roller 2 serving as the above-mentioned charging means, an exposing means, a developing means,
Necessary image forming process equipment such as transfer means / cleaning means, image fixing means and the like are provided to constitute an image forming mechanism, and image formation is executed. It is.

【0014】[0014]

【発明が解決しようとしている課題】上記のような画像
形成装置は画像形成回数が増加するにつれて感光体の外
周面がクリーニング手段のクリーニングブレードや現像
剤等により削られる。
In the above-described image forming apparatus, as the number of times of image formation increases, the outer peripheral surface of the photosensitive member is scraped by a cleaning blade of a cleaning means, a developer, or the like.

【0015】そして、感光体の厚み(層厚、膜厚)が減
少することによる等価容量変化により帯電特性が変化す
る。特に、帯電手段が接触方式の直流電圧印加の場合に
は、感光体1の容量変化に大きく影響を受ける。
The charging characteristics change due to a change in equivalent capacity due to a decrease in the thickness (layer thickness, film thickness) of the photoreceptor. In particular, when the charging unit applies a contact type DC voltage, the capacitance of the photoconductor 1 is greatly affected.

【0016】即ち、画像形成使用回数が増え、感光体の
膜厚が減少すると、帯電ローラー2に流れる直流電流が
増加し感光体の外周面の表面電位は上昇する。感光体の
膜厚が減少しても表面電位が確保できるのは概して良い
傾向であるが、感光体感度は膜厚減少に応じて低下する
ために白原稿に対応する表面電位即ち明部電位が充分に
電位降下しない。
That is, when the number of times of image forming use increases and the film thickness of the photosensitive member decreases, the DC current flowing through the charging roller 2 increases, and the surface potential on the outer peripheral surface of the photosensitive member increases. It is generally good that the surface potential can be ensured even if the thickness of the photoreceptor decreases, but the sensitivity of the photoreceptor decreases as the thickness decreases, so that the surface potential corresponding to a white original, that is, the bright portion potential is reduced. The potential does not drop sufficiently.

【0017】そのため黒原稿と白原稿との表面電位コン
トラストが狭くなり、現像時に充分な現像コントラスト
を得ようとすると白画像の電位に対して充分な逆コント
ラストが得られず、明部電位部が現像剤で薄く現像され
て「かぶり」画像となる障害があった。
As a result, the surface potential contrast between the black document and the white document becomes narrow, and if an attempt is made to obtain a sufficient development contrast during development, a sufficient reverse contrast with respect to the potential of the white image cannot be obtained. There was an obstacle that resulted in a "fogging" image when developed thinly with the developer.

【0018】それを現像バイアスや露光ランプ電圧(=
光像照射の露光量)でかぶらないように調整する場合で
も、調整巾を充分に広く確保しておく必要があるため、
調整範囲が広範囲で電源等のコストアップ要因となって
いた。
[0018] The voltage is applied to the developing bias and the exposure lamp voltage (=
Even if the adjustment is made so as not to overlap with the exposure amount of the light image irradiation), it is necessary to secure a sufficiently wide adjustment width.
The adjustment range is wide, which has been a factor in increasing the cost of power supplies and the like.

【0019】更に、適正な画像形成条件を自動制御で算
出する構成の画像形成装置においては、感光体の表面電
位が変化するために適性画像形成条件の調整最適化が困
難であり、画像形成回数が特定回数を越えると徐々にか
ぶり画像を発生する傾向にあった。
Furthermore, in an image forming apparatus configured to calculate an appropriate image forming condition by automatic control, it is difficult to optimize and adjust the appropriate image forming condition because the surface potential of the photoreceptor changes. When the number exceeds a certain number of times, there was a tendency to gradually generate a fog image.

【0020】この現象を回避するためには、感光体の表
面電位を検出する表面電位センサ等が必要であり、装置
としては大幅なコストアップと複雑化及び大型化となっ
てしまい、小型で低価格な画像形成装置を開発する上で
大きな障害となっていた。
In order to avoid this phenomenon, a surface potential sensor or the like for detecting the surface potential of the photoreceptor is required, which greatly increases the cost and complexity and size of the apparatus. This has been a major obstacle in developing an inexpensive image forming apparatus.

【0021】また、帯電部材2の抵抗層2aの抵抗値は
環境湿度や耐久の進行等の要因により変動しやすい。
Further, the resistance value of the resistance layer 2a of the charging member 2 tends to fluctuate due to factors such as environmental humidity and progress of durability.

【0022】特に、帯電部材の抵抗値が耐久による通電
劣化により所定の値よりも高くなった場合に、帯電部材
による電圧降下のために電圧が被帯電体に十分に印加さ
れなくなり、被帯電体の表面電位が低下して画像不良を
生じる。
In particular, when the resistance value of the charging member becomes higher than a predetermined value due to the deterioration due to conduction due to durability, the voltage is not sufficiently applied to the member to be charged due to the voltage drop by the charging member. , The surface potential is lowered, and image defects occur.

【0023】上述で被帯電体の膜厚が減少すると被帯電
体の表面電位は上昇すると述べたが、しかしながらそれ
は帯電部材の抵抗が十分に低い場合であり、帯電部材の
抵抗が高くなると、感光体の膜厚が減少しても帯電部材
での電圧降下のために電圧が十分に印加されなくなり、
被帯電部材の表面電位が低下してしまい、画像不良が生
じる。
As described above, the surface potential of the member to be charged increases when the thickness of the member to be charged decreases. However, this is the case when the resistance of the charging member is sufficiently low. Even if the film thickness of the body decreases, the voltage is not sufficiently applied due to the voltage drop in the charging member,
The surface potential of the member to be charged is reduced, and image defects occur.

【0024】これについて今少し具体的に説明する。図
14は画像形成装置の一例の概略構成を示している。
This will now be described more specifically. FIG. 14 shows a schematic configuration of an example of the image forming apparatus.

【0025】1は被帯電体としての像担持体であり、本
例のものはアルミニウム等の導電性基体層1bと、その
外周面に形成した光導電層1aを基本構成層とするドラ
ム型の電子写真感光体である。支軸1dを中心に図面上
時計方向に所定の周速度(プロセススピード)をもって
回転駆動される。
Reference numeral 1 denotes an image bearing member as a member to be charged. In this embodiment, a drum-shaped member having a conductive base layer 1b made of aluminum or the like and a photoconductive layer 1a formed on the outer peripheral surface thereof as a basic constituent layer. It is an electrophotographic photosensitive member. It is driven to rotate around the support shaft 1d clockwise in the drawing at a predetermined peripheral speed (process speed).

【0026】2はこの感光体1面に接して感光体面を所
定の極性・電位に一様に一次帯電処理する接触帯電部材
である。本例はローラータイプのもの(帯電ローラー)
であり、中心芯金2cと、その外周に形成した導電層2
bと、更にその外周に順次形成した2層の抵抗層2a2
・2a1 とから成り、芯金2cの両端部を不図示の軸受
部材に回転自由に軸受させてドラム型の感光体1に並行
に配置して不図示の押圧手段で感光体1面に対して所定
の押圧力をもって圧接され、感光体1の回転駆動に伴い
従動回転する。
Reference numeral 2 denotes a contact charging member which comes into contact with the surface of the photoreceptor 1 and performs a primary charging process on the photoreceptor surface to a predetermined polarity and potential uniformly. This example is a roller type (charging roller)
And a conductive core 2 formed on the outer periphery of the central core 2c.
b, and two layers of resistance layers 2a 2 sequentially formed on the outer periphery thereof.
2a 1 and both ends of the cored bar 2c are rotatably supported by bearing members (not shown) so as to be arranged in parallel with the drum-shaped photosensitive member 1 and pressed against the surface of the photosensitive member 1 by pressing means (not shown). Then, the photosensitive member 1 is pressed with a predetermined pressing force, and is rotated by the rotation of the photosensitive member 1.

【0027】而して、電源3から摺動接点3aを介して
芯金2cに所定の直流(DC)バイアスが印加されるこ
とで回転感光体1の周面が所定の極性・電位に接触帯電
(一次帯電)される。
When a predetermined direct current (DC) bias is applied from the power source 3 to the metal core 2c via the sliding contact 3a, the peripheral surface of the rotary photosensitive member 1 is contact-charged to a predetermined polarity and potential. (Primary charging).

【0028】帯電部材2で均一に帯電処理を受けた感光
体1面は次いで露光手段10により目的画像情報の露光
L(原稿画像の結像スリット露光、レーザービーム走査
露光など)を受けることで、その周面に目的の画像情報
に対応した静電潜像が形成される。
The surface of the photoreceptor 1 which has been uniformly charged by the charging member 2 is then subjected to exposure L of target image information (image slit exposure of a document image, laser beam scanning exposure, etc.) by the exposure means 10, An electrostatic latent image corresponding to the target image information is formed on the peripheral surface.

【0029】本例装置における露光手段10は、公知の
原稿台固定−光学系移動型の原稿画像結像スリット露光
手段である。
The exposing means 10 in the apparatus of the present embodiment is a well-known document table fixed-optical system moving type document image forming slit exposing means.

【0030】該露光手段10において、20は固定の原
稿台ガラス、Oは該原稿台ガラス上に画像面下向きで載
置セットされた原稿、21は原稿押え板、22は原稿照
明ランプ(露光用ランプ)、23はスリット板、24〜
26は移動第1〜第3ミラー、27は結像レンズ、28
は固定ミラーである。
In the exposure means 10, reference numeral 20 denotes a fixed platen glass, O denotes a document placed and set on the platen glass with the image surface facing downward, 21 a document pressing plate, and 22 a document illumination lamp (exposure lamp). Lamp), 23 is a slit plate, 24-
26 is a moving first to third mirror, 27 is an imaging lens, 28
Is a fixed mirror.

【0031】ランプ22・スリット板23・移動第1ミ
ラー24は原稿台ガラス20の下面を一端側から他端側
へ所定の速度Vで、また移動第2・第3ミラー25・2
6はV/2の速度で移動駆動されて、原稿台ガラス20
上の下向き原稿面が一端辺側から他端辺側に走査されて
原稿画像が回転感光体1面に結像スリット露光Lされ
る。
The ramp 22, slit plate 23, and moving first mirror 24 move the lower surface of the platen glass 20 from one end to the other at a predetermined speed V, and move the second and third mirrors 25,2.
6 is driven to move at a speed of V / 2,
The upper downward document surface is scanned from one end side to the other end side, and the original image is subjected to image forming slit exposure L on the surface of the rotating photoconductor 1.

【0032】感光体1面の形成潜像は次いで現像手段1
1によりトナー画像として順次に可視像化されていく。
このトナー画像は、次いで、転写手段12により不図示
の給紙手段部から感光体1の回転と同期どりされて適正
なタイミングをもって感光体1と転写手段12との間の
転写部へ搬送された転写材14の面に順次に転写されて
いく。
The latent image formed on one surface of the photoreceptor is then developed by developing means 1
1, the toner image is sequentially visualized as a toner image.
The toner image is then transferred from a paper supply unit (not shown) by a transfer unit 12 to a transfer unit between the photosensitive member 1 and the transfer unit 12 at an appropriate timing in synchronization with the rotation of the photoconductor 1. It is sequentially transferred to the surface of the transfer material 14.

【0033】本例の転写手段12は転写ローラーであ
り、転写材14の裏からトナーと逆極性の帯電を行なう
ことで感光体1面側のトナー画像が転写材14の表面側
に転写されていく。
The transfer means 12 of this embodiment is a transfer roller, and the toner image on the photoconductor 1 side is transferred to the front side of the transfer material 14 by performing charging of a polarity opposite to that of the toner from the back of the transfer material 14. Go.

【0034】トナー画像の転写を受けた転写材14は感
光体1面から分離されて定着ローラー(熱ローラー)1
6aと加圧ローラー16bからなる定着装置16へ搬送
されて像定着を受け、画像形成物として出力される。或
いは裏面にも像形成するものでは転写部への再搬送手段
へ搬送される。
The transfer material 14 to which the toner image has been transferred is separated from the surface of the photoreceptor 1 to form a fixing roller (heat roller) 1.
The sheet is conveyed to a fixing device 16 composed of a roller 6a and a pressure roller 16b, receives an image, and is output as an image formed product. Alternatively, in the case of forming an image on the back surface, the sheet is conveyed to a re-conveying unit to the transfer unit.

【0035】像転写後の感光体1面はクリーニング手段
13で転写残りトナー等の付着汚染物の除去を受けて清
浄面化され、更に除電露光装置15により除電されて、
繰り返して作像に供される。
The surface of the photoreceptor 1 after the image transfer is cleaned by a cleaning means 13 to remove adhered contaminants such as untransferred toner and the like.
It is repeatedly provided for image formation.

【0036】ローラータイプの帯電部材2は面移動駆動
される被帯電体としての感光体1に従動回転させてもよ
いし、非回転のものとさせてもよいし、感光体1の面移
動方向に順方向又は逆方向に所定の周速度をもって積極
的に回転駆動させるようにしてもよい。
The roller-type charging member 2 may be driven or rotated by the surface of the photosensitive member 1 to be charged, or may be non-rotating. Alternatively, the motor may be positively driven to rotate in the forward or reverse direction at a predetermined peripheral speed.

【0037】帯電部材2はローラータイプ以外にも、ブ
レード状タイプ・ブロック状タイプ・ロッド状タイプ・
ベルト状タイプなどの形態に構成できる。
The charging member 2 may be a blade type, a block type, a rod type,
It can be configured in a form such as a belt type.

【0038】図15の(a)はブレード状タイプとした
ものの一例の横断面模型図を示している。この場合、感
光体1面に当接されるブレード状帯電部材2の向きは感
光体1面の面移動方向に順方向又は逆方向のどちらでも
よい。(b)はブロック状もしくはロッド状としたもの
の一例の横断面模型図を示している。
FIG. 15A is a schematic cross-sectional view of an example of a blade type. In this case, the direction of the blade-shaped charging member 2 abutting on the surface of the photoconductor 1 may be either the forward direction or the reverse direction of the surface movement direction of the surface of the photoconductor 1. (B) is a schematic cross-sectional view of an example of a block or rod.

【0039】各タイプの帯電部材2において、2cは導
電性の芯金部材、2bは導電層、2aは抵抗層を示して
いる。
In each type of charging member 2, reference numeral 2c denotes a conductive core member, 2b denotes a conductive layer, and 2a denotes a resistance layer.

【0040】ブロック状もしくはロッド状としたもの
は、回転可能としたローラータイプのものにおいては芯
金部材2cに対してバイアス電圧を印加するために必要
とする給電用摺動接点3aなしに芯金部材2cに対して
電源3に通じるリード線を直接に接続することができ、
給電用摺動接点3aから発生する可能性のある電気ノイ
ズがなくなるという利点とともに、省スペース化、さら
には被帯電体面のクリーニングブレードを兼用させる構
成のものとすることも可能である。
The block-shaped or rod-shaped roller type is a rotatable roller type, and does not require a power supply sliding contact 3a required for applying a bias voltage to the core member 2c. A lead wire leading to the power supply 3 can be directly connected to the member 2c,
In addition to the advantage that electric noise that may be generated from the power supply sliding contact 3a is eliminated, it is possible to save space and to use a cleaning blade that also serves as a cleaning member surface.

【0041】次に、直流電源3を用いて最適な帯電を行
なう方法について説明する。まず、帯電ローラー2に直
流電源により直流電圧を印加する場合の帯電メカニズム
について説明する。
Next, a method of performing optimal charging using the DC power supply 3 will be described. First, a charging mechanism when a DC voltage is applied to the charging roller 2 from a DC power supply will be described.

【0042】感光体1としては負極性のOPC感光ドラ
ムを用いた。具体的には感光体層としてアゾ顔料をCG
L層(キャリア発生層)とし、その上にヒドラゾンと樹
脂を混合したものをCTL層(キャリア輸送層)として
24μmの厚さに積層した負極性有機半導体層(OPC
層)とし、このOPC感光体1を回転駆動させ、その表
面に帯電ローラー2を接触させ、該帯電ローラー2に直
流電圧VDCを印加して暗所でOPC感光体1に接触させ
て帯電を行なわせるものとし、帯電ローラー2通過後の
帯電されたOPC感光体1の表面電位VD と、帯電ロー
ラー2に対する印加直流電圧VDCとの関係を測定した。
As the photosensitive member 1, an OPC photosensitive drum having a negative polarity was used. Specifically, azo pigment is used as a photoconductor layer by CG.
A negative organic semiconductor layer (OPC) in which an L layer (carrier generation layer) and a mixture of hydrazone and a resin are laminated thereon as a CTL layer (carrier transport layer) to a thickness of 24 μm.
The OPC photosensitive member 1 is rotated and driven, a charging roller 2 is brought into contact with the surface of the OPC photosensitive member 1, a DC voltage VDC is applied to the charging roller 2, and the OPC photosensitive member 1 is brought into contact with the OPC photosensitive member 1 in a dark place to perform charging. The relationship between the surface potential V D of the charged OPC photosensitive member 1 after passing through the charging roller 2 and the DC voltage V DC applied to the charging roller 2 was measured.

【0043】図16の(a)の24μmの直線グラフは
その測定結果を示すものである。印加直流電圧VDCに対
して帯電はドラム(感光体)膜厚ごとに閾値を有し、特
定電圧から帯電が開始し、その帯電開始電圧以上の絶対
値の電圧印加に対しては、得られる表面電位VD はグラ
フ上傾き1の直線的な関係が得られた。
The 24 μm linear graph of FIG. 16A shows the measurement results. Charging with respect to the applied DC voltage VDC has a threshold value for each drum (photoconductor) film thickness, charging starts from a specific voltage, and is obtained when a voltage having an absolute value equal to or higher than the charging start voltage is applied. the surface potential V D is a linear relationship of the graph on the slope 1 were obtained.

【0044】ここで、帯電開始電圧は以下に示すように
定義する。即ち、電位が0の像担持体に対して帯電部材
へ直流電圧のみを印加してそれを徐々に大きくしていっ
た時、その印加直流電圧に対する像担持体たる感光体の
表面電位のグラフを書いてみる。この時、DC電位を1
00Vごとに取っていくが、表面電位0に対して表面電
位が現れた時を第1の点として100Vごとに10点と
る。この10点より統計学でいう最小2乗法で直線を書
き、この直線上で表面電位0のときの印加直流電圧の値
を帯電開始電圧とする。図16のグラフの直線は上記最
小2乗法により作成したものである。
Here, the charging start voltage is defined as follows. That is, when only a DC voltage is applied to the charging member with respect to the image carrier having a potential of 0 and the voltage is gradually increased, a graph of the surface potential of the photosensitive member as the image carrier with respect to the applied DC voltage is obtained. I will write. At this time, the DC potential is set to 1
The measurement is performed every 00V, and the point when the surface potential appears with respect to the surface potential 0 is set as the first point, and 10 points are set every 100V. From these 10 points, a straight line is drawn by the least squares method in statistics, and the value of the applied DC voltage when the surface potential is 0 on this straight line is defined as the charging start voltage. The straight line in the graph of FIG. 16 is created by the above least squares method.

【0045】即ち、帯電ローラー2への直流印加電圧を
DCとし、OPC感光ドラム1表面に得られる表面電位
をVD 、帯電開始電圧をVTHとすると、 VD =VDC−VHT ‥‥‥(1) の関係がある。
That is, assuming that the DC applied voltage to the charging roller 2 is V DC , the surface potential obtained on the surface of the OPC photosensitive drum 1 is V D , and the charging start voltage is V TH , V D = V DC −V HT ‥ ‥‥ (1)

【0046】上記の(1)式はパッシェン(Paschen) の
法則を用いて導出できる。
The above equation (1) can be derived using Paschen's law.

【0047】図17に帯電ローラー2とOPC感光体層
及びその両者の接触部の微視的空間Zの形成する等価回
路を示す。帯電ローラー2の総抵抗Rr が小さい場合、
感光体層1aに流れる電流ID により生じる電圧降下I
Dr はVDCに比べて十分に小さいので無視できる。ま
ず、Rr を無視すると、空間Zにかかる電圧Vgは以下
の式で表される。
FIG. 17 shows an equivalent circuit in which a microscopic space Z is formed at the contact portion between the charging roller 2 and the OPC photosensitive member layer and between them. When the total resistance R r of the charging roller 2 is small,
Voltage drop I caused by current ID flowing through photoconductor layer 1a
D R r can be ignored is sufficiently small compared to the V DC. First, ignoring R r , the voltage Vg applied to the space Z is represented by the following equation.

【0048】 Vg= VDC・Z/(LS /KS +Z) ‥‥‥(2) VDC:印加電圧 Z :空隙 LS :感光体層厚み KS :感光体層比誘電率 一方、空隙Zにおける放電現象はパッシェンの法則によ
り、Z=8μ以上では放電破壊電圧Vbは次の1次式
(3)及び(4)で近似できる。
Vg = V DC · Z / (L S / K S + Z) ‥‥‥ (2) V DC : applied voltage Z: void L S : thickness of photoconductor layer K S : relative permittivity of photoconductor layer The discharge phenomenon in the gap Z is based on Paschen's law, and when Z = 8 μ or more, the discharge breakdown voltage Vb can be approximated by the following linear equations (3) and (4).

【0049】 Vb=312+6.2Z (Vb>0の場合) ‥‥‥(3) Vb=−(312+6.2Z)(Vb<0の場合) ‥‥‥(4) Vb<0であるから(2)・(4)式をグラフに書く
と、図18のグラフのようになる。横軸は空隙距離Z、
縦軸は空隙破壊電圧を示し、下に凸の曲線がパッシェ
ンの曲線、上に凸の曲線・・が夫々Zをパラメー
タとした空隙電圧Vgの特性を示す。
Vb = 312 + 6.2Z (when Vb> 0) ‥‥‥ (3) Vb = − (312 + 6.2Z) (when Vb <0) ‥‥‥ (4) Since Vb <0, (2) When the equation (4) is written on a graph, the graph becomes as shown in FIG. The horizontal axis is the gap distance Z,
The vertical axis indicates the gap breakdown voltage, the downward convex curve indicates the Paschen's curve, the upward convex curve indicates the characteristic of the gap voltage Vg using Z as a parameter.

【0050】パッシェンの曲線と、曲線〜が交点
を有するとき放電が生ずるものであり、放電が開始する
点においてはVg=Vbとして得られるZに関する2次
方程式の判別式が0になる。このときが放電開始限界で
あるから、 VDC=VTH となる。
Discharge occurs when the Paschen's curve and the curve 点 have an intersection, and at the point where the discharge starts, the discriminant of the quadratic equation for Z obtained as Vg = Vb is zero. Since this time is the discharge start limit, VDC = VTH .

【0051】パッシェンの法則は空隙での放電現象に関
するものであるが、上記帯電ローラー2を用いた帯電過
程においても帯電部のすぐ近傍で微少ながらオゾンの発
生(コロナ放電に比較して10-2〜10-3)が認めら
れ、帯電ローラーによる帯電が放電現象に関係している
ものと考えられる。従ってVDCによりVD を制御するた
めには、 VDC=VR +VTH ‥‥‥(5) VR :目標表面電位 を用い、電位目標値VR を設定して(5)式によりVTH
を求めて加えればVD をVR に近づけることができる。
Although Paschen's law relates to the discharge phenomenon in the air gap, even in the charging process using the charging roller 2, a small amount of ozone is generated in the immediate vicinity of the charging section (10 -2 compared to corona discharge). To 10 -3 ), and it is considered that the charging by the charging roller is related to the discharge phenomenon. In order to control the V D by V DC is therefore, V DC = V R + V TH ‥‥‥ (5) V R: using the target surface potential, V by set the potential target value V R (5) formula TH
It is added to seek V D can be approximated to V R.

【0052】ここで、(5)式からわかるように閾値電
圧VTHは、 D=LS /KS ‥‥‥(6) により決定されるわけであるが、このとき感光体層の比
誘電率KS は感光体周囲の温度・湿度等による影響を受
けて変化し、また感光体層の厚みLS は耐久により減少
する方向に変化する。
Here, as can be seen from equation (5), the threshold voltage V TH is determined by D = L S / K S ‥‥‥ (6). The rate K S changes under the influence of the temperature, humidity, and the like around the photoreceptor, and the thickness L S of the photoreceptor layer changes in a direction decreasing due to durability.

【0053】従って周囲環境や耐久状況で、表面電位V
D は閾値電圧VTHの変化に伴い、変動することになる。
換言すればKS 及びLS の値を知れば、表面電位VD
適正値とするための直流電圧値VDCを求めることができ
る。
Therefore, the surface potential V
D changes with the change of the threshold voltage VTH .
In other words, if the values of K S and L S are known, a DC voltage value V DC for setting the surface potential V D to an appropriate value can be obtained.

【0054】ここで、感光ドラム1と帯電ローラー2に
より形成される静電容量CP は図19の(a)・(b)
に示すように両者1・2の当接部のニップnにより形成
されており、ニップ部での当接面積をSP とすると等価
回路から CP =SP ×KS /LS =S/D ‥‥‥(7) となる。
[0054] Here, the capacitance C P is 19, which is formed by the photosensitive drum 1 and the charging roller 2 (a) · (b)
As shown in the figure, the contact area is formed by the nip n of the contact portion between the two, and when the contact area at the nip portion is S P , from an equivalent circuit, C P = S P × K S / L S = S / D ‥‥‥ (7).

【0055】つまりCP ∝1/Dである。従ってCP
求めれば適正な直流電圧VDCを(5)式により求めるこ
とができる。
That is, C P ∝1 / D. Therefore, if C P is determined, an appropriate DC voltage VDC can be determined by the equation (5).

【0056】本実施例では、ドラム(感光体)のCP
特定する代わりに、簡易的にドラムの電荷輸送層(CT
層)の膜厚(前述のLs )によって放電インピーダンス
が変化することによる帯電特性の変化を測定し、感光体
のCP の変化を推定し印加電圧を補正する方法をとって
いる。
[0056] In the present embodiment, instead of specifying the C P of the drum (photosensitive member), a charge transport layer of simplified manner drum (CT
The change in charging characteristics due to the discharge impedance is changed by the thickness of the layer) (the aforementioned L s) is measured, taking a method for correcting the estimated applied voltage changes in the C P of the photoreceptor.

【0057】前述の図16の(a)は、帯電ローラー2
への印加電圧とドラム表面電位の関係をドラムCT層厚
ごとに測定したものである。また同様にそのときの直流
電流量を図16の(b)に示したものである。
FIG. 16A shows the charging roller 2.
The relationship between the voltage applied to and the drum surface potential was measured for each drum CT layer thickness. Similarly, the DC current amount at that time is shown in FIG.

【0058】この図からわかるように、ドラムCT層厚
によって帯電特性、電圧電流特性及び放電開始電圧が変
化することが読み取れる。
As can be seen from this figure, it can be seen that the charging characteristics, the voltage-current characteristics and the discharge starting voltage change depending on the thickness of the drum CT layer.

【0059】この特性を任意電圧の定電圧印加時のドラ
ムCT層厚に対してのドラム表面電位と直流電流として
表したものが図20の(a)・(b)である。CT層厚
に応じてのドラム表面電位と直流電流の関係が読み取れ
る。CT層厚が薄くなるにつれてドラム表面電位(黒電
位VD と白電位VL )と直流電流量が上昇することがわ
かる。つまり、特定な定電圧印加時の直流電流量を測定
することでドラムCPに応じた表面電位を推定すること
が可能なことがわかる。
FIGS. 20A and 20B show this characteristic as a drum surface potential and a DC current with respect to the drum CT layer thickness when an arbitrary constant voltage is applied. The relationship between the drum surface potential and the DC current according to the CT layer thickness can be read. DC current amount and the drum surface potential (black potential V D and white potential V L) as CT layer thickness decreases is seen to rise. In other words, it is understood that capable of estimating a surface potential corresponding to the drum C P by measuring the DC current amount during specific constant voltage application.

【0060】図21は、以上の関係からドラムCT層厚
変化によるCP 変化があっても、ドラム表面電位を制御
するための検知電流量とそのときの補正電圧出力に関す
る図である。検知電流量の増加と共に電圧出力を低下さ
せるように補正をかける。
[0060] Figure 21, even if C P change due drum CT layer thickness change from the above relation, a diagram relating to the correction voltage output of the sensing current amount and the time for controlling the drum surface potential. Correction is made so that the voltage output decreases as the amount of detected current increases.

【0061】しかしながら上述で述べたような帯電特性
は、帯電部材の総抵抗Rrが十分に小さい場合に成立す
るものである。
However, the charging characteristics described above are satisfied when the total resistance Rr of the charging member is sufficiently small.

【0062】帯電部材の抵抗が高い場合には帯電部材で
印加電圧に対して電圧降下が生じ帯電部材の表面(被帯
電体と対向している面)の電位が低い値になり図16で
示されるグラフの様子が変化してしまう。
When the resistance of the charging member is high, a voltage drop occurs with respect to the applied voltage at the charging member, and the potential of the surface of the charging member (the surface facing the member to be charged) becomes a low value, as shown in FIG. The appearance of the graph changes.

【0063】以下に、帯電部材に直流電圧を直流電源か
ら印加し帯電部材を通過後の帯電された感光体の表面電
位(VD )と帯電部材に印加する直流電圧(VDC)との
関係を測定した。
The relationship between the surface potential (V D ) of the charged photoconductor after passing the charging member and a DC voltage (V DC ) applied to the charging member is described below. Was measured.

【0064】図22のグラフはその測定結果を示すもの
である。グラフaは帯電部材の総抵抗が十分に低い場合
のグラフであり、印加直流電圧VDCに対して帯電は帯電
開始電圧αを有し、αから帯電開始し、その帯電開始電
圧以上の絶対値の電圧印加に対しては感光体に得られる
表面電位VD はグラフ上傾き1の直線的な関係が得られ
た(上述した通りαは感光体の膜厚などに依存)。
The graph of FIG. 22 shows the measurement results. Graph a is a graph in the case where the total resistance of the charging member is sufficiently low. The charging has a charging start voltage α with respect to the applied DC voltage VDC , starts charging from α, and an absolute value equal to or higher than the charging start voltage. the surface potential V D obtained photoreceptor for voltage application linear relationship graph on slope 1 were obtained (the α as described above depending on such film thickness of the photosensitive member).

【0065】しかしながら、帯電部材の抵抗が高いと、
グラフbに示すようにグラフaに比べて帯電開始電圧β
が高電圧側にシフトし、βから帯電が開始し、そらにそ
の帯電開始電圧以上の絶対値の電圧印加に対しては感光
体に得られる表面電位VD はグラフ上傾き1より小さな
値で(傾きが寝ている)直線的な関係が得られた。
However, if the resistance of the charging member is high,
As shown in the graph b, the charging start voltage β
Shifts to the high voltage side, charging starts from β, and when a voltage having an absolute value equal to or higher than the charging start voltage is applied, the surface potential V D obtained on the photoconductor is a value smaller than the slope 1 on the graph. A linear relationship was obtained (the slope was sleeping).

【0066】当然α、βは使用する環境、帯電部材、感
光体の処方、それに伴う物性により変化する。
Of course, α and β vary depending on the environment to be used, the charging member, the prescription of the photoreceptor, and the accompanying physical properties.

【0067】また感光体の表面電位は、表面電位と電流
値は比例関係であるから、感光体に流れる電流によって
も表すことができる。
The surface potential of the photoreceptor can be expressed by the current flowing through the photoreceptor since the surface potential is proportional to the current value.

【0068】そこで帯電部材の抵抗値と感光体に流れる
電流値の関係を示したのが図23である。当然a、bの
値は帯電部材、及び感光体の処方、膜厚それに伴う物性
により変化する。図23より帯電部材の抵抗がaの値よ
りも大きくなると同じ印加電圧でも帯電部材で電圧降下
を生じてしまい、感光体に所定の電位を載せるのに必要
な電圧が印加されずに電位が確保できずに帯電不良にな
り、画像不良が発生してしまう。
FIG. 23 shows the relationship between the resistance value of the charging member and the current value flowing through the photosensitive member. Naturally, the values of a and b vary depending on the prescription of the charging member and the photoreceptor, the film thickness, and the physical properties associated therewith. According to FIG. 23, if the resistance of the charging member becomes larger than the value of a, a voltage drop occurs at the charging member even with the same applied voltage, and the voltage required to apply a predetermined potential to the photoconductor is not applied, and the potential is secured. Failure to do so results in poor charging, resulting in poor image quality.

【0069】しかし、a以下の抵抗値であれば、どの抵
抗値でも一定の印加電圧で感光体表面に所定の電位が確
保できる。
However, if the resistance value is equal to or less than a, a predetermined potential can be secured on the surface of the photoreceptor with a constant applied voltage at any resistance value.

【0070】このことは帯電部材の抵抗がaよりも小さ
い値であれば、感光体に流れる電流は、感光体によって
決定されるぐらい帯電部材の影響は小さく、逆にaより
も大きくなると、帯電部材によって感光体に流れる電流
が決定されることを意味している。つまり、帯電部材の
抵抗をaの値よりも十分に低い値であれば感光体の表面
電位は確保できる。
This means that if the resistance of the charging member is smaller than a, the current flowing through the photoreceptor is less affected by the charging member as determined by the photoreceptor. This means that the current flowing through the photoconductor is determined by the member. That is, if the resistance of the charging member is sufficiently lower than the value of a, the surface potential of the photoconductor can be secured.

【0071】しかし抵抗値の下限は感光体にピンホール
等が生じた場合、そこに電流が集中してしまう事による
帯電不良を防止する要因で決定される。
However, the lower limit of the resistance value is determined by factors that prevent poor charging due to the concentration of current when a pinhole or the like occurs in the photosensitive member.

【0072】したがって帯電部材の抵抗値を十分に低い
値までは下げられない。図24に表面電位を一定にする
ために帯電部材の抵抗値に対する印加電圧のグラフを示
す。
Therefore, the resistance of the charging member cannot be reduced to a sufficiently low value. FIG. 24 shows a graph of the applied voltage with respect to the resistance value of the charging member to keep the surface potential constant.

【0073】帯電部材の抵抗が上がった場合には帯電部
材中で電圧降下が生じてしまうので、その分印加電圧を
高くしなければ一定の表面電位か保てないことがわか
る。
When the resistance of the charging member rises, a voltage drop occurs in the charging member, and it is understood that a constant surface potential cannot be maintained unless the applied voltage is increased accordingly.

【0074】上述より画像形成回数の増加に伴う感光体
膜厚の減少に対しては帯電部材に印加する電圧を低下さ
せ、一方、帯電部材の抵抗が耐久による汚れや特に低湿
環境下における耐久による通電劣化等により抵抗が高
く、aの値よりも大きくなった場合には、感光体の表面
電位を確保するには帯電部材に印加する電圧を高くしな
ければならないという相反する電圧制御が必要である。
As described above, the voltage applied to the charging member is reduced with respect to the decrease in the thickness of the photosensitive member due to the increase in the number of times of image formation. When the resistance is high due to deterioration due to energization and becomes larger than the value of a, contradictory voltage control is required, in which the voltage applied to the charging member must be increased to secure the surface potential of the photoconductor. is there.

【0075】以上のことから、長期にわたって安定した
画像を得るには、感光体の膜厚と帯電部材の抵抗値を検
知する必要があるのである。そこで本発明は、この種の
画像形成装置について、画像形成回数が増加して被帯電
体(感光体)の厚みが減少することによる被帯電体容量
変化、また通電劣化等による帯電部材の抵抗変化が生じ
ても、その時の最適な補正印加電圧を帯電部材に印加す
る事ができるようにして、帯電不足が無く、常に十分な
画像濃度と画質を維持させることができるようにするこ
とを目的とする。
As described above, in order to obtain a stable image over a long period of time, it is necessary to detect the thickness of the photosensitive member and the resistance value of the charging member. Accordingly, the present invention relates to an image forming apparatus of this type, in which the number of image formations is increased and the thickness of the charged body (photoreceptor) is reduced, and the capacity of the charged body is changed. It is an object of the present invention to make it possible to apply the optimum correction application voltage at that time to the charging member even if the occurrence of the occurrence occurs, so that there is no shortage of charging and sufficient image density and image quality can always be maintained. I do.

【0076】[0076]

【課題を解決するための手段】本発明は下記の構成を特
徴とする画像形成装置である。
SUMMARY OF THE INVENTION The present invention is an image forming apparatus having the following configuration.

【0077】(1)被帯電体に該被帯電体面を帯電処理
する工程を含む作像プロセスを適用して画像形成を実行
する画像形成装置であり、被帯電体の帯電処理手段は、
電圧を印加した帯電部材を被帯電体に当接させて被帯電
体面を帯電する接触式帯電装置であり、該帯電部材とは
別に被帯電体に接触することが可能な別部材を有し、該
帯電部材が被帯電体の非画像形成領域に対応していると
きに該帯電部材と前記別部材を直流定電圧制御し、その
ときの該両部材による直流電流量を検知し、該両者の直
流電流量の差を検知し、該帯電部材が被帯電体の画像形
成領域に対応しているときは上記検知した差の直流電流
量に応じた直流電圧で該帯電部材を直流定電圧制御する
ようにしたことを特徴とする画像形成装置。
(1) An image forming apparatus for performing image formation by applying an image forming process including a step of charging a surface of a member to be charged, wherein the charging means for the member to be charged includes:
A contact-type charging device that charges a charging member surface by bringing a charging member to which a voltage is applied into contact with a charging member, and has a separate member that can contact the charging member separately from the charging member, When the charging member corresponds to the non-image forming area of the member to be charged, the charging member and the another member are controlled by a DC constant voltage, and the amount of DC current by both members at that time is detected, and the DC current of both members is detected. The difference in the flow rate is detected, and when the charging member corresponds to the image forming area of the member to be charged, the charging member is controlled at a constant DC voltage with a DC voltage corresponding to the DC current amount of the detected difference. An image forming apparatus comprising:

【0078】(2)定着装置の定着ローラー温度が特定
温度以下にて画像形成装置を稼働準備状態としたときの
み、帯電部材が被帯電体の非画像形成領域に対応してい
るときに該帯電部材と前記別部材を直流定電圧制御し、
そのときの該両部材の直流電流量を検知し、該両者の直
流電流量の差を検知し、該帯電部材が被帯電体の画像形
成領域に対応しているときは上記検知した直流電流量の
差に応じた直流電圧で該帯電部材を直流定電圧制御する
ようにしたことを特徴とする(1)に記載の画像形成装
置。
(2) Only when the fixing roller temperature of the fixing device is lower than the specific temperature and the image forming apparatus is ready for operation, the charging is performed when the charging member corresponds to the non-image forming area of the member to be charged. DC constant voltage control of the member and the separate member,
The DC current amount of the two members at that time is detected, and the difference between the DC current amounts of the two members is detected. When the charging member corresponds to the image forming area of the member to be charged, the difference between the detected DC current amounts is calculated. The image forming apparatus according to (1), wherein the charging member is controlled at a constant DC voltage with a corresponding DC voltage.

【0079】(3)被帯電体に当接させる前記帯電部材
とは別の部材が、該帯電部材が被帯電体の画像形成領域
に対応しているときには被帯電体から接離可能であるこ
とを特徴とする(1)又は(2)に記載の画像形成装
置。
(3) A member other than the charging member to be brought into contact with the member to be charged can be separated from the member to be charged when the charging member corresponds to the image forming area of the member to be charged. The image forming apparatus according to (1) or (2), wherein

【0080】[0080]

【作用】図1は上記本発明の概念図である。FIG. 1 is a conceptual diagram of the present invention.

【0081】被帯電体1は電子写真装置における回転ド
ラム型感光体であり、アルミニウム等の導電性基体層1
bと、その外周面に形成した光導電層1aを基本構成層
とする。
The member to be charged 1 is a rotating drum type photosensitive member in an electrophotographic apparatus, and is a conductive base layer 1 made of aluminum or the like.
b and the photoconductive layer 1a formed on the outer peripheral surface thereof are used as basic constituent layers.

【0082】帯電部材2はローラー型(帯電ローラー)
であり、芯金2cと、その外周に形成した導電層2b
と、更にその外周に形成した抵抗層2aからなる。
The charging member 2 is a roller type (charging roller)
And a conductive metal layer 2b formed on the outer periphery of the core metal 2c.
And a resistance layer 2a further formed on the outer periphery thereof.

【0083】100は上記帯電部材としての帯電ローラ
ー2とは別に被帯電体としての感光体1に当接させた別
部材である。110は該別部材100を感光体1に対し
て接離させるソレノイド等の手段であり、制御系の所定
のシーケンスにより制御されて該別部材100が感光体
1に対して所定に当接した状態と、非接触に離間した状
態とに切換え制御保持される。
Reference numeral 100 denotes another member which is in contact with the photosensitive member 1 as a member to be charged separately from the charging roller 2 as the charging member. Reference numeral 110 denotes a unit such as a solenoid for bringing the separate member 100 into and out of contact with the photoconductor 1, and is controlled by a predetermined sequence of a control system so that the separate member 100 comes into contact with the photoconductor 1 in a predetermined manner. , And the state is separated and kept in a non-contact state.

【0084】この別部材100は、帯電部材2と全く同
じものでも、別のものでもかまわない。本例では帯電部
材としての帯電ローラー2と全く同等の部材を該別部材
100として用いた。後述の電流検知時に、帯電部材2
よりも感光体回転方向下流側において帯電部材2に近接
して感光体1に当接した状態にされる。
The separate member 100 may be completely the same as the charging member 2 or may be another member. In this example, a member completely equivalent to the charging roller 2 as a charging member was used as the separate member 100. At the time of current detection described later, the charging member 2
The photosensitive member 1 is brought into contact with the photosensitive member 1 closer to the charging member 2 on the downstream side in the rotation direction of the photosensitive member.

【0085】また本例では上記の帯電部材2と別部材1
00のそれぞれにバイアス印加電源3を設けたが、同一
電源でリレーにより接続して切り替え的に電圧を印加す
るようにしてもかまわない。
In this embodiment, the charging member 2 and the separate member 1 are used.
Although the bias application power supply 3 is provided for each of the power supplies 00, the same power supply may be connected by a relay to apply the voltage in a switching manner.

【0086】まず、帯電部材2に検知電流用として一定
の直流電圧を印加し、その時の直流電流Icを検知す
る。
First, a constant DC voltage is applied to the charging member 2 for a detection current, and the DC current Ic at that time is detected.

【0087】次に、感光体1に当接させた別部材100
に上記と同様の直流電圧を印加し、その時の直流電流量
Isを検知する。
Next, another member 100 contacting the photosensitive member 1
A DC voltage similar to that described above is applied, and the DC current amount Is at that time is detected.

【0088】上記帯電部材2と別部材100とによる電
流検知の順番はどちらが先でもかまわない。
The order of current detection by the charging member 2 and the separate member 100 may be either one.

【0089】別部材100の抵抗は帯電部材2に比較し
て朝一のみしか動作しない、つまり通電時間は帯電部材
2に比較してとても短いので、通電劣化や汚れ等による
抵抗変化が少なく十分に低い(a以下でありc以上)値
で保たれるため別部材100には図16に示した直流電
流量が感光体1の膜厚によって検知される。
The resistance of the separate member 100 operates only in the morning compared to the charging member 2, that is, the energization time is very short compared to the charging member 2. Since the value is maintained at a value (not more than a and not less than c), the DC current amount shown in FIG.

【0090】一方、帯電部材2には該帯電部材の抵抗値
が十分に低い値であれば別部材100と同等の直流電流
量が流れる。しかしながら抵抗が通電劣化などにより高
くなってしまうと図22に示すように帯電部材2で電圧
降下を生じ直流電流が流れにくくなってしまう。
On the other hand, if the resistance of the charging member 2 is sufficiently low, a DC current equivalent to that of another member 100 flows through the charging member 2. However, if the resistance becomes higher due to deterioration of energization or the like, a voltage drop occurs in the charging member 2 as shown in FIG. 22, and it becomes difficult for DC current to flow.

【0091】つまり、別部材100の時の直流電流量は
感光体1の膜厚を検知することになり、別部材100と
帯電部材の電流量の差は帯電部材の抵抗値を検知するこ
とになる。
That is, the amount of DC current at the time of the separate member 100 detects the film thickness of the photoconductor 1, and the difference between the amount of current between the separate member 100 and the charging member detects the resistance value of the charging member. .

【0092】帯電部材2と別部材100の電流量の差が
0であれば、帯電部材2の抵抗値は十分に低く、それ故
にそのまま図21に示されたように感光体1の膜厚に応
じた直流電流量に応じて印加電圧を決定すれば良い。
If the difference between the current amounts of the charging member 2 and the separate member 100 is 0, the resistance value of the charging member 2 is sufficiently low, and therefore the film thickness of the photosensitive member 1 is reduced as shown in FIG. The applied voltage may be determined according to the corresponding DC current amount.

【0093】しかし、両者2・100の直流電流量に差
がある場合は、図21に示した印加電圧では帯電部材2
で電圧降下が生じ、感光体1に十分な電位が得られな
い。
However, when there is a difference between the DC current amounts of the two 2.100, the charging member 2 is not applied at the applied voltage shown in FIG.
As a result, a voltage drop occurs, and a sufficient potential cannot be obtained on the photoconductor 1.

【0094】そこで、図2に示したように電流量の差に
応じた補正電圧を図21で示した感光体の膜厚に応じた
印加電圧に加えた値を印加することにより、感光体の表
面電位は、感光体の膜厚、帯電部材の抵抗値によらず、
十分に保たれるのである。
Therefore, as shown in FIG. 2, by applying a value obtained by adding a correction voltage corresponding to the difference in the amount of current to an applied voltage corresponding to the film thickness of the photoconductor shown in FIG. 21, The surface potential is independent of the thickness of the photoconductor and the resistance of the charging member.
It is kept well.

【0095】また、帯電部材2、別部材100に直流電
流量を検知する際に用いる帯電部材2に印加する直流電
圧は図22で示されるαの値より大きい値でなければな
らない。好ましくはβの値より大きい方がよい。
The DC voltage applied to the charging member 2 used for detecting the amount of DC current to the charging member 2 and the separate member 100 must be larger than the value of α shown in FIG. Preferably, the value is larger than the value of β.

【0096】何故なら、αの値より低い電圧を印加した
場合には、電流が被帯電体1に流れず、帯電部材2の抵
抗、感光体1の膜厚を検知する事ができなくなるからで
ある。
This is because, when a voltage lower than the value of α is applied, no current flows to the member 1 to be charged, and the resistance of the charging member 2 and the thickness of the photosensitive member 1 cannot be detected. is there.

【0097】また好ましくは画像形成領域において別部
材100は非接触の状態であるようにしたほうが良い。
何故なら、別部材100を被帯電体1に接触した状態の
ままであると汚れ等によって該別部材100の抵抗値が
変化してしまうので、これを防止するためである。
It is preferable that the separate member 100 be in a non-contact state in the image forming area.
This is because if the separate member 100 is kept in contact with the member 1 to be charged, the resistance value of the separate member 100 changes due to dirt or the like.

【0098】また、この検知を行うタイミングをほぼ一
日に一回、朝一番だけとすることも画像濃度安定のため
には有効である。
It is also effective to make the detection timing almost once a day, only in the morning, for stabilizing the image density.

【0099】例えば、画像形成装置の紙ずまりを処理す
るために短時間だけでも装置の電源を切った場合に、電
源再投入時に再度電流検知を行われ補正電圧が更新され
ることになる。つまり、電源を切る前後で検知電流の検
知精度によって補正電圧が異なることが有り得る。
For example, if the power of the image forming apparatus is turned off even for a short time to clear a paper jam, the current is detected again when the power is turned on again, and the correction voltage is updated. That is, the correction voltage may differ depending on the detection accuracy of the detection current before and after the power is turned off.

【0100】短時間で補正電圧が少しでも異なると、装
置使用者には相当の違和感があるため、画像形成時に濃
度調整値を再設定し直すこととなる。
If the correction voltage is slightly different in a short time, the user of the apparatus has a considerable sense of discomfort, and the density adjustment value must be reset when forming an image.

【0101】これに対して画像形成装置の操作性能を向
上させるために、朝一装置を使用可能状態に立ち上げる
時にのみ定電圧印加、電流検知、補正定電圧制御を行
い、その使用日にはその補正定電圧を保持したままとす
る。
On the other hand, in order to improve the operation performance of the image forming apparatus, the constant voltage application, the current detection, and the correction constant voltage control are performed only when the apparatus is started up in a usable state. The corrected constant voltage is maintained.

【0102】さらに、検知を朝一のみにする事により電
流検知用の別部材100を使用する回数が帯電部材に比
べてかなり減少し、そのために通電劣化などによる抵抗
変化がかなり抑制され長期にわたって感光体の膜厚を正
確に検知する事ができる。
Further, by performing the detection only in the morning, the number of times that the separate member 100 for current detection is used is considerably reduced as compared with the charging member. Can be accurately detected.

【0103】朝一番を判断する方法として実用試験の結
果で有効だったものは、画像形成装置の電源を投入した
ときに定着装置16(図14)の定着ローラー16aの
検知温度が特定温度以下の場合を朝一番とする方法であ
る。ここでの特定温度は30°C〜130°Cの間、特
に100°C程度に設定するのが最も有効だった。
As a method of judging the first in the morning, the one that was effective in the results of the practical test is that the temperature detected by the fixing roller 16a of the fixing device 16 (FIG. 14) is lower than the specific temperature when the power of the image forming apparatus is turned on. This is the first method in the morning. Here, it was most effective to set the specific temperature between 30 ° C. and 130 ° C., especially about 100 ° C.

【0104】また、電流検知用別部材100の形状は帯
電部材2と同等である必要はなく、従来例で示したよう
な帯電部材と同様な形状でもかまわない。
The shape of the separate current detecting member 100 does not need to be the same as that of the charging member 2, and may be the same as that of the charging member shown in the conventional example.

【0105】さらに被帯電体としての感光体1の長手方
向全域にわたって当接する必要はなく感光体に一部でも
当接されていれば良い。しかしその場合、帯電部材2と
別部材100の放電面積が違ってしまうので検知直流電
流は放電面積が違うのでそのままでは比較はできない。
従って放電面積を一定にするような補正係数を用いて電
流量を補正し、比較しなければならない。
Further, it is not necessary to contact the photosensitive member 1 as the member to be charged over the entire area in the longitudinal direction. However, in this case, the detected DC current has a different discharge area because the discharge area of the charging member 2 is different from that of the separate member 100.
Therefore, the amount of current must be corrected using a correction coefficient that keeps the discharge area constant, and a comparison must be made.

【0106】さらに別部材100は帯電部材2と同じ材
料構成である必要はなく、上記で示した抵抗値(a以下
でありc以上)の範囲であれば良い。
Further, the separate member 100 does not need to have the same material composition as the charging member 2, but may be in the range of the resistance value (not more than a and not less than c) described above.

【0107】また最適な補正ランプ電圧により最適露光
を行う方法としては、感光体の感度は膜厚に対応するの
で非画像形成時に別部材100により感光体1の膜厚が
直流電流量より検知できその電流量に応じて画像形成印
加電圧時に電圧補正を加えて画像露光ランプ電圧を補正
する(図25)。
As a method of performing the optimum exposure using the optimum correction lamp voltage, since the sensitivity of the photosensitive member corresponds to the film thickness, the film thickness of the photosensitive member 1 can be detected from the DC current amount by the separate member 100 during non-image formation. The image exposure lamp voltage is corrected by applying voltage correction at the time of image formation application voltage according to the current amount (FIG. 25).

【0108】それによると、感光体の厚みが減少するに
つれて非画像部定電圧印加時の検知電流量が増加し、そ
の増加量に応じて画像部印加電圧値に電圧減少補正とラ
ンプ電圧増加による露光量増加補正を加えるため、常に
最適状態の帯電処理と画像形成が実行される。図26に
上記のシーケンス図を示した。
According to this, as the thickness of the photoreceptor decreases, the amount of detection current when the non-image portion constant voltage is applied increases, and the voltage applied to the image portion is corrected by voltage reduction and ramp voltage increase according to the increase. In order to add the exposure amount increase correction, the charging process and the image formation in the optimum state are always performed. FIG. 26 shows the above sequence diagram.

【0109】[0109]

【実施例】【Example】

〈実施例1〉(図1〜図8) a)帯電部材2 帯電ローラーであり、図1に層構成模型を示したよう
に、芯金2cの上に、EPDM等の104 〜105 Ωc
mの導電ゴム層2bを設け、その上に抵抗層2aを設け
たもの。
<Example 1> (FIGS. 1 to 8) a) is a charging member 2 charging roller, as shown the layer structure model in Figure 1, on a core metal 2c, 10 4 ~10 5 Ωc such as EPDM
m provided with a conductive rubber layer 2b and a resistance layer 2a provided thereon.

【0110】抵抗層2aは、まず、ヒドリンゴム等から
成る107 〜109 Ωcm程度の中抵抗層2a2 を形成
し、更にその上にトレジン(商品名;帝国化学(株))
等のナイロン系物質から成る107 〜1010Ωcmのブ
ロッキング層2a1 を表層として設けた2層構成層とし
た。
[0110] resistance layer 2a, first, 107 to 109 in the order of Ωcm to form a resistance layer 2a 2 made of such hydrin, further Toresin thereon (trade name; Teikoku Chemical Co.)
The blocking layer 2a 1 of 10 7 to 10 10 [Omega] cm made of nylon-based material equal to a two-layer structure layer provided as a surface layer.

【0111】帯電ローラー2の硬度はAsker−C測
定で50°〜70°である。
The hardness of the charging roller 2 is 50 ° to 70 ° as measured by Asker-C.

【0112】この帯電ローラー2を感光体1に総圧16
00gで当接させて感光体の回転に従動回転させ、電圧
を印加して感光体1を帯電処理する。
The charging roller 2 is applied to the photosensitive member 1 at a total pressure of 16
Then, the photosensitive member 1 is rotated by the rotation of the photosensitive member by applying a voltage, and the photosensitive member 1 is charged by applying a voltage.

【0113】b)別部材100 上記帯電ローラー2と同様の部材。B) Separate member 100 The same member as the charging roller 2 described above.

【0114】この別部材100を帯電ローラー2の感光
体回転方向下流側において帯電ローラー2に近接させて
帯電ローラー2と同様に感光体1に当接させて配設し
た。
This separate member 100 was disposed close to the charging roller 2 and in contact with the photosensitive member 1 similarly to the charging roller 2 on the downstream side of the charging roller 2 in the rotation direction of the photoconductor.

【0115】c)感光体1 キヤノン(株)製複写機NP−2020の感光体。C) Photoconductor 1 A photoconductor of a copying machine NP-2020 manufactured by Canon Inc.

【0116】図2に別部材100に流れる直流電流量に
対する印加電圧(感光体1の膜厚減少に対する補正印加
電圧)を、図3に帯電部材2と別部材100による電流
量の差による補正電圧を示した。また別部材100に流
れる直流電流量に対するランプ補正電圧値を図4に示し
た。
FIG. 2 shows the applied voltage for the amount of DC current flowing through the separate member 100 (correction applied voltage for reducing the thickness of the photosensitive member 1), and FIG. 3 shows the correction voltage based on the difference in the amount of current between the charging member 2 and the separate member 100. Indicated. FIG. 4 shows the lamp correction voltage value with respect to the DC current amount flowing through the separate member 100.

【0117】上記の補正電圧グラフとそれを動作させる
ような制御回路を設けた機械を用いて、23℃・5%R
Hの2環境と、23℃・60%RHの環境の2環境下で
耐久試験を行なった。
Using a machine provided with the above-mentioned correction voltage graph and a control circuit for operating the same, a temperature of 23 ° C. and 5% R
The durability test was performed under two environments of H and an environment of 23 ° C. and 60% RH.

【0118】この耐久試験における、感光体の膜厚の推
移を図5に、上記の2環境下での帯電部材2の抵抗変化
の推移を図6に示した。
FIG. 5 shows the change in the thickness of the photosensitive member in this durability test, and FIG. 6 shows the change in the resistance of the charging member 2 under the above two environments.

【0119】帯電部材2の抵抗の測定方法は図7に示し
たように設定し、300V印加時の電流値より抵抗を算
出した。4は電流計、5は演算回路である。
The method of measuring the resistance of the charging member 2 was set as shown in FIG. 7, and the resistance was calculated from the current value when 300 V was applied. 4 is an ammeter and 5 is an arithmetic circuit.

【0120】上記の方法で測定した抵抗値によると、図
23のaの値は2×107 Ω、cの値は8×104 Ωで
あった。
According to the resistance values measured by the above method, the value of a in FIG. 23 was 2 × 10 7 Ω, and the value of c was 8 × 10 4 Ω.

【0121】而して、この実施例1における耐久による
感光体表面電位と印加電圧の推移の結果を図8に示し
た。
FIG. 8 shows the results of changes in the photosensitive member surface potential and the applied voltage due to the durability in Example 1.

【0122】〈実施例2〉(図9) 制御を帯電部材2の検知電流に応じた印加電圧補正(図
2に合わせて)のみとした以外は実施例1と同様の評価
を行った。
Example 2 (FIG. 9) The same evaluation as in Example 1 was performed except that the control was only applied voltage correction (according to FIG. 2) according to the detection current of the charging member 2.

【0123】その結果を図9に示した。The results are shown in FIG.

【0124】〈実施例3〉(図10) 制御を別部材100の検知電流に応じた印加電圧補正の
みとした以外は実施例1と同様の評価を行った。
Example 3 (FIG. 10) The same evaluation as in Example 1 was performed except that the control was performed only for the correction of the applied voltage according to the detection current of the separate member 100.

【0125】その結果を図10に示した。FIG. 10 shows the result.

【0126】〈実施例4〉(図11) ランプの点灯電圧の制御を行なわない以外は実施例1と
同様の評価を行った。
Example 4 (FIG. 11) The same evaluation as in Example 1 was performed except that the lighting voltage of the lamp was not controlled.

【0127】その結果を図11に示した。FIG. 11 shows the result.

【0128】〈実施例5〉(図12) 制御を行わず、耐久初期の一次印加電圧と点灯電圧で耐
久を行った以外は実施例1と同様の評価を行った。
Example 5 (FIG. 12) The same evaluation as in Example 1 was performed, except that the control was not performed and the durability was performed at the primary applied voltage and the lighting voltage at the initial stage of the durability.

【0129】その結果を図12に示した。The results are shown in FIG.

【0130】[0130]

【発明の効果】以上述べたように、画像形成回数が増加
して被帯電体(感光体)の厚みが減少することによる被
帯電体容量変化、また通電劣化等による帯電部材の抵抗
変化が生じても、被帯電体の厚みに対する容量に応じた
電圧一電流特性、また帯電部材の抵抗値に対する電圧−
電流特性を検知することにより、その時の最適な補正印
加電圧を帯電部材に印加する事ができる。
As described above, as the number of times of image formation increases and the thickness of the charged body (photosensitive body) decreases, the capacity of the charged body changes, and the resistance of the charging member changes due to deterioration of energization. However, the voltage-current characteristic according to the capacity with respect to the thickness of the member to be charged, and the voltage-current with respect to the resistance value of the charging member.
By detecting the current characteristics, it is possible to apply the optimum correction application voltage at that time to the charging member.

【0131】その方法としては、非画像形成時に帯電部
材と帯電部材とは別部材を直流定電圧制御し、その検知
電流量に応じて画像形成時印加電圧値に電圧補正を加え
て定電圧制御をする。
As a method for this, a non-image forming member controls a charging member and a member other than the charging member with a DC constant voltage control, and applies a voltage correction to an image forming applied voltage value in accordance with the detected current amount to perform a constant voltage control. do.

【0132】それによると、被帯電体の厚みが減少する
につれて、別部材による非画像部定電圧印加時の検知電
流量が増加し、その増加量に応じて画像部印加電圧値に
電圧減少補正を加えるため、常に最適状態の帯電処理と
画像形成が実行される。
According to this, as the thickness of the member to be charged decreases, the amount of detection current when a non-image portion constant voltage is applied by another member increases, and the voltage decrease correction is applied to the image portion application voltage value according to the increase. , Charging processing and image formation in an optimal state are always performed.

【0133】また帯電部材の抵抗値が上昇した場合、帯
電部材による非画像部定電圧印加時の検知電流量が減少
し、その減少量に応じて画像部印加電圧値に上記の感光
体の容量変化による減少電圧補正された電圧値に帯電部
材の抵抗上昇による電圧を加えるため、常に最適状態の
帯電処理と画像形成が実行される。
When the resistance value of the charging member increases, the amount of current detected when the non-image portion constant voltage is applied by the charging member decreases, and the capacitance of the photosensitive member is changed to the image portion application voltage value according to the decrease. Since a voltage due to an increase in the resistance of the charging member is added to the voltage value corrected for the reduced voltage due to the change, the charging process and image formation in an optimal state are always performed.

【0134】上記のような制御を行うことにより、帯電
不足が無く、常に十分な画像濃度と画質を提供できる。
By performing the above-mentioned control, sufficient image density and image quality can always be provided without insufficient charging.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の概念図FIG. 1 is a conceptual diagram of the present invention.

【図2】 検知電流(別部材100に流れる直流電流
量)と補正電圧出力値の関係グラフ
FIG. 2 is a graph showing a relationship between a detected current (amount of DC current flowing through another member 100) and a corrected voltage output value.

【図3】 帯電部材2と別部材100による電流量の差
による補正電圧グラフ
FIG. 3 is a corrected voltage graph based on a difference in current amount between the charging member 2 and another member 100.

【図4】 別部材100に流れる直流電流量に対するラ
ンプ補正電圧値のグラフ
FIG. 4 is a graph of a lamp correction voltage value with respect to a DC current amount flowing through another member 100;

【図5】 耐久に伴う感光体の膜厚の推移FIG. 5: Transition of photoconductor thickness due to durability

【図6】 耐久に伴う帯電部材の抵抗変化の推移FIG. 6: Change in resistance of a charging member due to durability

【図7】 帯電部材の抵抗値測定要領を示した図FIG. 7 is a diagram showing a procedure for measuring a resistance value of a charging member.

【図8】 実施例1の結果グラフ(耐久による感光体表
面電位と印加電圧の推移)
FIG. 8 is a graph showing the results of Example 1 (changes in photoconductor surface potential and applied voltage due to durability).

【図9】 実施例2の結果グラフ(耐久による感光体表
面電位と印加電圧の推移)
FIG. 9 is a graph showing the results of Example 2 (changes in photoconductor surface potential and applied voltage due to durability).

【図10】 実施例3の結果グラフ(耐久による感光体
表面電位と印加電圧の推移)
FIG. 10 is a graph showing the results of Example 3 (changes in photoconductor surface potential and applied voltage due to durability).

【図11】 実施例4の結果グラフ(耐久による感光体
表面電位と印加電圧の推移)
FIG. 11 is a graph showing the results of Example 4 (changes in photoconductor surface potential and applied voltage due to durability).

【図12】 実施例5の結果グラフ(耐久による感光体
表面電位と印加電圧の推移)
FIG. 12 is a graph showing the results of Example 5 (changes in photoconductor surface potential and applied voltage due to durability).

【図13】 接触帯電装置の一例の概略図FIG. 13 is a schematic view of an example of a contact charging device.

【図14】 画像形成装置の一例の概略図FIG. 14 is a schematic diagram illustrating an example of an image forming apparatus.

【図15】 (a)・(b)はそれぞれ帯電部材の他の
形態例の横断面模型図
FIGS. 15 (a) and (b) are cross-sectional model views of another embodiment of the charging member, respectively.

【図16】 (a)・(b)はそれぞれ帯電特性グラフ16 (a) and (b) are charging characteristic graphs, respectively.

【図17】 感光体と帯電ローラー及び両者の接触部の
微視的空間の形成する等価回路図
FIG. 17 is an equivalent circuit diagram in which a microscopic space is formed between a photoconductor, a charging roller, and a contact portion between the two.

【図18】 空隙ギャップと空隙破壊電圧の関係グラフFIG. 18 is a graph showing a relationship between a gap gap and a gap breakdown voltage.

【図19】 (a)は感光体と帯電ローラーの当接ニッ
プ部を示した図、(b)は等価回路図
19A is a diagram illustrating a contact nip portion between a photoconductor and a charging roller, and FIG. 19B is an equivalent circuit diagram.

【図20】 (a)・(b)は帯電能膜厚依存性を示し
たグラフ
20 (a) and (b) are graphs showing the charging ability film thickness dependence.

【図21】 検知電流(帯電部材2に流れる直流電流
量)と補正電圧出力値の関係グラフ
FIG. 21 is a graph showing a relationship between a detection current (a DC current flowing through the charging member 2) and a correction voltage output value.

【図22】 帯電部材に印加する電圧と被帯電体表面電
位の関係グラフ
FIG. 22 is a graph showing the relationship between the voltage applied to the charging member and the surface potential of the charged member.

【図23】 帯電部材の抵抗値と被帯電体電流の関係グ
ラフ
FIG. 23 is a graph showing the relationship between the resistance value of the charging member and the current to be charged.

【図24】 帯電部材の抵抗値と帯電部材に印加する直
流電圧値の関係グラフ
FIG. 24 is a graph showing a relationship between a resistance value of the charging member and a DC voltage value applied to the charging member.

【図25】 帯電部材2に流れる直流電流量に対するラ
ンプ補正電圧グラフ
25 is a graph of a lamp correction voltage with respect to a DC current amount flowing through the charging member 2. FIG.

【図26】 シーケンス図FIG. 26 is a sequence diagram.

【符号の説明】[Explanation of symbols]

1 被帯電体(像担持体、感光体) 2 帯電部材(帯電ローラー) 3 バイアス印加電源 100 別部材 110 接離手段 DESCRIPTION OF SYMBOLS 1 To-be-charged body (image carrier, photoreceptor) 2 Charging member (charging roller) 3 Bias application power supply 100 Separate member 110 Contacting / separating means

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−223513(JP,A) 特開 平5−307287(JP,A) 特開 平4−9883(JP,A) (58)調査した分野(Int.Cl.7,DB名) G03G 15/02 G03G 15/06 101 G03G 15/16 103 G03G 21/10 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-5-223513 (JP, A) JP-A-5-307287 (JP, A) JP-A-4-9883 (JP, A) (58) Field (Int.Cl. 7 , DB name) G03G 15/02 G03G 15/06 101 G03G 15/16 103 G03G 21/10

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 被帯電体に該被帯電体面を帯電処理する
工程を含む作像プロセスを適用して画像形成を実行する
画像形成装置であり、 被帯電体の帯電処理手段は、電圧を印加した帯電部材を
被帯電体に当接させて被帯電体面を帯電する接触式帯電
装置であり、 該帯電部材とは別に被帯電体に接触することが可能な別
部材を有し、 該帯電部材が被帯電体の非画像形成領域に対応している
ときに該帯電部材と前記別部材を直流定電圧制御し、そ
のときの該両部材による直流電流量を検知し、該両者の
直流電流量の差を検知し、該帯電部材が被帯電体の画像
形成領域に対応しているときは上記検知した差の直流電
流量に応じた直流電圧で該帯電部材を直流定電圧制御す
るようにしたことを特徴とする画像形成装置。
1. An image forming apparatus for forming an image by applying an image forming process including a step of charging a surface of a member to be charged to a surface of the member to be charged. A contact-type charging device for charging the surface of the member to be charged by bringing the charged member into contact with the member to be charged, further comprising a separate member capable of contacting the member to be charged separately from the charging member; Is a direct current constant voltage control of the charging member and the separate member when corresponding to the non-image forming area of the member to be charged, the amount of DC current by the two members at that time is detected, and the difference between the DC current amounts of the two members is detected. Is detected, and when the charging member corresponds to the image forming area of the member to be charged, the charging member is controlled at a constant DC voltage with a DC voltage corresponding to the DC current amount of the detected difference. Image forming apparatus.
【請求項2】 定着装置の定着ローラー温度が特定温度
以下にて画像形成装置を稼働準備状態としたときのみ、
帯電部材が被帯電体の非画像形成領域に対応していると
きに該帯電部材と前記別部材を直流定電圧制御し、その
ときの該両部材の直流電流量を検知し、該両者の直流電
流量の差を検知し、該帯電部材が被帯電体の画像形成領
域に対応しているときは上記検知した直流電流量の差に
応じた直流電圧で該帯電部材を直流定電圧制御するよう
にしたことを特徴とする請求項1に記載の画像形成装
置。
2. Only when the temperature of the fixing roller of the fixing device is equal to or lower than a specific temperature and the image forming apparatus is ready for operation.
When the charging member corresponds to the non-image forming area of the member to be charged, the charging member and the separate member are controlled by a DC constant voltage, and the DC current amounts of both members at that time are detected, and the DC current amounts of both members are detected. Is detected, and when the charging member corresponds to the image forming area of the member to be charged, the charging member is controlled at a constant DC voltage with a DC voltage corresponding to the detected difference in the amount of DC current. The image forming apparatus according to claim 1, wherein:
【請求項3】 被帯電体に当接させる前記帯電部材とは
別の部材が、該帯電部材が被帯電体の画像形成領域に対
応しているときには被帯電体から接離可能であることを
特徴とする請求項1又は同2に記載の画像形成装置。
3. A method according to claim 1, wherein a member other than the charging member to be brought into contact with the member to be charged can contact and separate from the member to be charged when the charging member corresponds to an image forming area of the member to be charged. The image forming apparatus according to claim 1, wherein:
JP15795193A 1993-06-03 1993-06-03 Image forming device Expired - Fee Related JP3245783B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15795193A JP3245783B2 (en) 1993-06-03 1993-06-03 Image forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15795193A JP3245783B2 (en) 1993-06-03 1993-06-03 Image forming device

Publications (2)

Publication Number Publication Date
JPH06348114A JPH06348114A (en) 1994-12-22
JP3245783B2 true JP3245783B2 (en) 2002-01-15

Family

ID=15661032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15795193A Expired - Fee Related JP3245783B2 (en) 1993-06-03 1993-06-03 Image forming device

Country Status (1)

Country Link
JP (1) JP3245783B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08328360A (en) * 1995-05-31 1996-12-13 Fuji Xerox Co Ltd Electrifying method
JP4897250B2 (en) 2005-06-30 2012-03-14 株式会社リコー Image forming method and image forming apparatus
JP6586751B2 (en) * 2015-03-12 2019-10-09 富士ゼロックス株式会社 Charging device, image forming unit, and image forming apparatus
JP6628523B2 (en) * 2015-08-28 2020-01-08 キヤノン株式会社 Image forming device
JP6984150B2 (en) * 2017-03-22 2021-12-17 コニカミノルタ株式会社 Image forming device
JP2018189797A (en) * 2017-05-02 2018-11-29 コニカミノルタ株式会社 Image formation apparatus

Also Published As

Publication number Publication date
JPH06348114A (en) 1994-12-22

Similar Documents

Publication Publication Date Title
US5701551A (en) Image forming apparatus including control means for controlling an output from en electrical power source to a charging member for charging an image bearing member
US7469109B2 (en) Image forming apparatus with residual toner transfer prevention feature
JP4298107B2 (en) Image forming apparatus
US5636009A (en) Image forming apparatus having charging member
JP3279152B2 (en) Control method of image forming apparatus
JPH10232521A (en) Image forming device
JP2004334063A (en) Image forming apparatus
JP3245783B2 (en) Image forming device
JPH09101657A (en) Controlling method for image forming device
JP3397339B2 (en) Image forming device
JP3239454B2 (en) Image forming device
JP2006084877A (en) Image forming apparatus and image carrier discharging method
JPH0887215A (en) Image forming device
JPH09101656A (en) Controlling method for image forming device
JP3319881B2 (en) Image forming device
JP3232762B2 (en) Image forming device
JP3286899B2 (en) Control method of image forming apparatus
JP3228056B2 (en) Image forming device
US20200026214A1 (en) Image forming apparatus
JP3239634B2 (en) Image forming device
JP2003241544A (en) Image forming apparatus
JPH09185220A (en) Method for controlling image forming device
JP2000250370A (en) Electrophotographic device
JPH11223965A (en) Image forming device
JP2005003728A (en) Image forming apparatus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees