JP3395170B2 - Apparatus and method for controlling thrust magnetic bearing - Google Patents

Apparatus and method for controlling thrust magnetic bearing

Info

Publication number
JP3395170B2
JP3395170B2 JP26970993A JP26970993A JP3395170B2 JP 3395170 B2 JP3395170 B2 JP 3395170B2 JP 26970993 A JP26970993 A JP 26970993A JP 26970993 A JP26970993 A JP 26970993A JP 3395170 B2 JP3395170 B2 JP 3395170B2
Authority
JP
Japan
Prior art keywords
signal
displacement
current
detector
stator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26970993A
Other languages
Japanese (ja)
Other versions
JPH07103233A (en
Inventor
精 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP26970993A priority Critical patent/JP3395170B2/en
Publication of JPH07103233A publication Critical patent/JPH07103233A/en
Application granted granted Critical
Publication of JP3395170B2 publication Critical patent/JP3395170B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0444Details of devices to control the actuation of the electromagnets

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、回転軸を非接触支持す
るスラスト磁気軸受の制御装置と方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thrust magnetic bearing control device and method for supporting a rotating shaft in a non-contact manner.

【0002】[0002]

【従来の技術】磁気軸受は磁気力により回転体を非接触
で空中支持するため、潤滑の問題がないこと、特殊な環
境のなかでも使用可能であること、また摩擦、摩耗、騒
音の問題がほとんど無く、超高速回転が可能であるなど
の特徴があるため、その実用化に向かって盛んに研究が
行われている。磁気軸受のうち、磁気吸引力を利用する
ものは、反発力を利用するものより支持力が大きく、ダ
ンピングもかけやすいため広く開発されて多くの回転機
械に適用されつつある。この軸受を適用すると、支持摩
擦が非常に小さくターボ機械や工作機主軸などの高速化
が可能である。しかし、磁気吸引力がそれ自身で不安定
系を構成するため、電磁石を用いた磁気軸受は少なくと
も浮上制御することが必要である。ここで、磁気吸引力
を利用する制御形磁気軸受のうちのスラスト軸受の一般
的な説明をすると次のようになっている。すなわち、回
転軸と、回転軸に固着され磁性体からなる円板状の回転
子と、回転子の軸方向両側にエアギャップを介して対向
するよう固定側に設けられた電磁石からなる2つの固定
子と、2つの固定子に電流を供給する2つの電流増幅器
と、固定子近傍に設けられ固定子にたいする回転子の軸
方向変位を検出する変位検出器と、変位指令値と変位検
出器の信号を比較する比較器と、比較器の信号を受けて
作動する位相補償器と、変位検出器の信号と位相補償器
の信号を受けて電流増幅器に信号を送り、位相補償器の
信号と回転軸が固定子から受ける軸方向の支持力とが比
例関係となるよう補償する補償器とで構成され、回転軸
の軸方向位置が所定の位置になるよう制御されて非接触
支持される。補償器の構成と補償方法については特公昭
63ー19734、特公平3ー43766などに詳しく
述べられている。この補償器を用いると、固定子の電磁
石と回転軸の回転子間に働く磁気吸引力が非線形特性を
持ち、軸受の制御系全体が非線形系となって安定制御が
困難であったものが、全体として線形系とされて安定し
た浮上制御系が得られる。磁気軸受に用いられる前記の
変位検出器には非接触式のものが必要であり、検出精度
や価格の点から、一般に渦電流形変位検出器が多く用い
られている。この変位検出器は、検出コイルに高周波電
流を供給すると検出ターゲットである回転子内に渦電流
が生じ、これがエアギャップに影響されることを利用し
て検出される。この渦電流形変位検出器を用いると、検
出器自身が高価であるため全体コストが上がってしまう
ことや、変位検出器が固定子電磁石の近傍に設けられて
軸受の支持点と変位検出点が異なり制御系の安定余裕が
制限されるという問題がある。そこで、最近は、電磁石
に電流を供給する電流増幅器にスイッチング素子を用い
たPWM形のものが用いられるようになったことを利用
して、その電流リップルからインダクタンスの変化とし
てギャップ値を検出する方法が提案されている(例え
ば、特開平5ー118329)。
2. Description of the Related Art Since a magnetic bearing supports a rotating body in the air in a non-contact manner by a magnetic force, there is no problem of lubrication, it can be used in a special environment, and there are problems of friction, wear and noise. Since it has almost no characteristics and is capable of ultra-high speed rotation, research is being actively conducted toward its practical application. Among the magnetic bearings, those that utilize magnetic attraction force have a larger supporting force than those that utilize repulsive force, and because they are easy to apply damping, they have been widely developed and are being applied to many rotary machines. When this bearing is applied, the supporting friction is very small and it is possible to increase the speed of turbomachines and machine tool spindles. However, since the magnetic attractive force itself forms an unstable system, it is necessary to control at least the levitation of the magnetic bearing using the electromagnet. Here, a general description of the thrust bearing of the control type magnetic bearings utilizing the magnetic attraction force is as follows. That is, two fixed members, which are a rotating shaft, a disc-shaped rotor fixed to the rotating shaft and made of a magnetic material, and electromagnets provided on the fixed side so as to face each other on both axial sides of the rotor via an air gap. A child, two current amplifiers for supplying current to the two stators, a displacement detector provided near the stator for detecting axial displacement of the rotor with respect to the stator, a displacement command value and signals of the displacement detector , A phase compensator that operates by receiving the signal of the comparator, a signal of the displacement detector and a signal of the phase compensator, and sends a signal to the current amplifier, and the signal of the phase compensator and the rotation axis Is composed of a compensator that compensates so as to have a proportional relationship with the axial supporting force received from the stator, and is controlled so that the axial position of the rotating shaft is at a predetermined position and is supported in a non-contact manner. The structure of the compensator and the compensation method are described in detail in Japanese Examined Patent Publication No. 63-19734, Japanese Examined Patent Publication No. 3-43766 and the like. If this compensator is used, the magnetic attraction force acting between the electromagnet of the stator and the rotor of the rotating shaft has a non-linear characteristic, and the whole control system of the bearing becomes a non-linear system, which makes stable control difficult. The overall system is a linear system, and a stable levitation control system can be obtained. The above-mentioned displacement detector used for the magnetic bearing needs to be a non-contact type, and in general, an eddy current type displacement detector is often used from the viewpoint of detection accuracy and price. This displacement detector is detected by utilizing the fact that when a high-frequency current is supplied to the detection coil, an eddy current is generated in the rotor that is the detection target, and this is affected by the air gap. If this eddy current displacement detector is used, the detector itself is expensive, which increases the overall cost, and the displacement detector is installed near the stator electromagnet, and the bearing support point and displacement detection point are Differently, there is a problem that the stability margin of the control system is limited. Therefore, recently, a method of detecting a gap value as a change in inductance from the current ripple by utilizing the fact that a PWM type using a switching element for a current amplifier for supplying a current to an electromagnet has come to be used. Has been proposed (for example, JP-A-5-118329).

【0003】[0003]

【発明が解決しようとする課題】ところが、そのような
磁気軸受の一般的な構成を、例えば工作機主軸のスラス
ト軸受に適用すると、次のような問題がある。工作機主
軸に磁気軸受を適用するとき、工具を設けた主軸先端側
にラジアル軸受が設けられ、スラスト軸受は2つのラジ
アル軸受の間か、主軸後端付近に設けられるのが一般的
である。従って、主軸が稼働する際の温度上昇によって
主軸が膨張すると、主軸先端が変位して熱膨張量だけ加
工精度が低下するのである。その程度は、スラスト軸受
を2つのラジアル軸受の間に設けるよりも主軸後端付近
に設けるほうが大きい。スラスト軸受を2つのラジアル
軸受の間に設けるときの主軸の熱膨張の影響は、スラス
ト軸受を主軸後端付近に設けるときの熱膨張より小さい
が、変位検出器の設置空間が必要であるとか、分解組立
が容易でないなどの欠点を持っている。主軸の熱膨張の
影響を避けるため、主軸先端に変位検出器を設ける方法
も提案されたが、主軸先端の位置が制御されるため加工
精度は高く維持されるものの、前記補償器が正常に動作
できなくなり、制御系の安定性がしだいに損なわれてき
て、ついには浮上できなくなるという問題があった。ま
た、一方、変位検出器を設けることなく、電磁石電流の
リップルから演算して変位を検出する前記の方法は、原
理的に検出が可能であるとはいうものの、電磁石が本来
変位検出器として使われるものでないため、渦電流を利
用した変位検出器と比べると検出精度やその他の諸特性
が非常に悪い。従って工作機主軸のように高い精度を要
求される軸受には適していない。そこで、本発明は、変
位検出器と電磁石間の回転軸の熱膨張にかかわる前記の
諸問題を、既設の変位検出器を利用して解決することを
目的とする。
However, if the general structure of such a magnetic bearing is applied to, for example, a thrust bearing of a machine tool spindle, the following problems occur. When a magnetic bearing is applied to a machine tool spindle, a radial bearing is generally provided on the tip side of the spindle provided with a tool, and a thrust bearing is generally provided between two radial bearings or near the rear end of the spindle. Therefore, when the main spindle expands due to a temperature rise when the main spindle operates, the tip of the main spindle is displaced and the machining accuracy is reduced by the amount of thermal expansion. The degree of this is greater when the thrust bearing is provided near the rear end of the main shaft than when the thrust bearing is provided between the two radial bearings. The effect of thermal expansion of the main shaft when the thrust bearing is installed between the two radial bearings is smaller than the thermal expansion when the thrust bearing is installed near the rear end of the main shaft, but the installation space for the displacement detector is necessary. It has drawbacks such as disassembly and assembly are not easy. In order to avoid the influence of thermal expansion of the spindle, a method of providing a displacement detector at the tip of the spindle was also proposed, but the machining accuracy is maintained high because the position of the tip of the spindle is controlled, but the compensator operates normally. However, there was a problem that the stability of the control system was gradually impaired, and eventually it became impossible to ascend. On the other hand, the above-mentioned method of detecting the displacement by calculating from the ripple of the electromagnet current without providing the displacement detector can be detected in principle, but the electromagnet is originally used as the displacement detector. Since it is not used, the detection accuracy and other characteristics are very poor compared to the displacement detector using eddy current. Therefore, it is not suitable for bearings that require high accuracy, such as machine tool spindles. Therefore, it is an object of the present invention to solve the above-mentioned problems relating to thermal expansion of a rotary shaft between a displacement detector and an electromagnet by using an existing displacement detector.

【0004】[0004]

【課題を解決するための手段】上記問題を解決するた
め、本発明は、回転軸と、該回転軸に固着され磁性体か
らなる円板状の回転子と、該回転子の軸方向両側にエア
ギャップを介して対向するよう固定側に設けられた電磁
石からなる2つの固定子と、該固定子に電流を供給する
PWM形の2つの電流増幅器と、前記固定子に対する回
転子の軸方向変位を検出する変位検出器と、変位指令値
と該変位検出器の信号を比較する第1の比較器と、該第
1の比較器の信号を受けて作動する位相補償器と、前記
変位検出器の信号と位相補償器の信号を受けて前記2つ
の電流増幅器に信号を送り前記位相補償器の信号と回転
軸が2つの固定子から受ける軸方向の支持力とが比例関
係となるよう補償する補償器とで構成され、回転軸の軸
方向を非接触支持するスラスト磁気軸受の制御装置にお
いて、前記電流増幅器が前記固定子に供給する電流を検
出する2つの電流検出器と、回転軸先端部近傍に設けら
れた回転軸先端部の軸方向変位を検出する変位検出器
と、前記電流検出器の信号と変位検出器の信号から固定
子と変位検出器間の回転軸の熱膨張量を演算し、両側の
ギャップ指令値を補正する補正演算器を付加することに
より、回転軸の熱膨張にかかわらず、軸方向のギャップ
と支持力を保つようにする。
In order to solve the above problems, the present invention is directed to a rotary shaft, a disc-shaped rotor fixed to the rotary shaft and made of a magnetic material, and to both axial sides of the rotor. Two stators composed of electromagnets provided on the fixed side so as to face each other via an air gap, two PWM-type current amplifiers for supplying current to the stators, and axial displacement of the rotor with respect to the stators. , A first comparator for comparing a displacement command value with a signal of the displacement detector, a phase compensator that operates by receiving the signal of the first comparator, and the displacement detector. Signal and the signal from the phase compensator are sent to the two current amplifiers to compensate for the signal from the phase compensator and the axial supporting force received by the rotating shaft from the two stators. Composed of a compensator and supports the axial direction of the rotating shaft in a non-contact manner. In a thrust magnetic bearing control device, two current detectors for detecting a current supplied to the stator by the current amplifier, and a displacement for detecting an axial displacement of a rotary shaft tip portion provided near the rotary shaft tip portion. A detector and a correction calculator for calculating the thermal expansion amount of the rotating shaft between the stator and the displacement detector from the signal of the current detector and the signal of the displacement detector and correcting the gap command value on both sides. Thus, the axial gap and the supporting force are maintained regardless of the thermal expansion of the rotating shaft.

【0005】[0005]

【作用】上記手段により、電磁石に供給される電流のリ
ップルが、固定子と回転子のエアギャップに比例するの
で、補正演算器で主軸先端と軸受部間の膨張量が求めら
れ、変位検出器の信号に加算または減算して補償器に用
いる変位信号を補正し、回転軸が熱膨張しても当初の安
定な浮上系が維持されるのである。
With the above means, the ripple of the current supplied to the electromagnet is proportional to the air gap between the stator and the rotor. Therefore, the amount of expansion between the tip of the main shaft and the bearing is calculated by the correction calculator, and the displacement detector is detected. That is, the displacement signal used for the compensator is corrected by adding or subtracting to the signal of (1), and the initial stable levitation system is maintained even if the rotating shaft thermally expands.

【0006】[0006]

【実施例】以下本発明の実施例を図に基づいて説明す
る。図1は本発明のスラスト磁気軸受の制御装置を示す
ブロック図であり、図2は補正演算器を示すブロック図
である。図1において、1は工作機械の主軸、2は主軸
1の先端に図示しないホルダを介して固定された工具、
3はスラスト磁気軸受、31は主軸1に固着され磁性体
からなる円板状の回転子、32、33は回転子31の軸
方向両側にエアギャップを介して対向するよう図示しな
いフレーム等の固定側に設けられた電磁石からなる円環
状の固定子である。4はスラスト磁気軸受3の制御装
置、41は主軸1の先端部近傍に、フレームやブラケッ
トなどに設けられ、主軸1の先端部の軸方向変位を検出
する変位検出器である。42、43は、スイッチング素
子を用いたPWM形の電流増幅器71、72が固定子3
2、33に供給する電流IL ,IR を検出する電流検出
器である。44は、変位指令値Xsと変位検出器41の
信号Xを比較する第1の比較器、5は第1の比較器44
の出力信号Xs−Xを受けて働くPID補償器などから
なる位相補償器である。8は、電流検出器42、43の
検出電流IL ,IR と変位検出器41の信号Xを受け、
回転子31と固定子32、33間のエアギャップに対応
する信号X1 ,X2 を出力する補正演算器である。6
は、位相補償器5の信号と補正演算器8の信号X1 ,X
2 を受けて電流増幅器71、72に指令を送り、位相補
償器5の信号と回転軸が2つの固定子から受ける軸方向
の支持力とが比例関係となるよう補正する補償器であ
る。主軸1は、スラスト磁気軸受3と、主軸1に設けら
れた図示しない2つのラジアル磁気軸受とで非接触支持
され、主軸1に設けられた図示しないモータにより回転
させることができる。変位検出器41とスラスト磁気軸
受3とは離れた位置に配置されている。図2において、
81、81は電流検出器42、43の電流信号IL ,I
R を受け、PWM形の電流増幅器71、72のキャリヤ
周波数を通過させ他の低周波信号を除去する2つのハイ
パスフィルタ、82、82はハイパスフィルタ81、8
1の信号を増幅する2つの増幅器、83、83は増幅器
82の信号を受けてそれぞれ全波整流する2つの全波整
流器、84は2つの全波整流器83の信号を比較する第
2の比較器、85は比較器84の信号にバイアスX0
加算する第1の加算器、86は変位検出器41の信号X
に第1の加算器85の信号を加算する第2の加算器、8
7は変位検出器41の信号から第1の加算器85の信号
を減算する第3の減算器であり、これらにより補正演算
器8を構成している。以上の構成において、スラスト磁
気軸受の浮上制御は次のように行われる。変位検出器4
1で主軸1の軸方向変位Xが検出されると、第1の比較
器44が変位指令値Xsと比較し、偏差信号(Xs−
X)を出力する。その偏差信号(Xs−X)を受けた位
相補償器5は、左右のギャップδL ,δR が等しくなる
ように、位相を補償して信号XL ,XR を出力する。補
償器6は、信号XL ,XR と後述する補正演算器8の信
号X1 ,X2 を受けて、電流増幅器71、72に1 2つ
の電流指令iL ,iR を与える。電流増幅器71、72
は、この電流指令iL ,iR に応じて固定子32、33
に電流IL ,IR を供給する。この電流IL ,IRによ
り回転子31と固定子32、33間に磁気吸引力が生じ
る。回転子31が指令値Xsで指定した位置よりずれて
いるとき、第1の比較器44の偏差信号(Xs−X)が
ゼロでないため、位相補正器5が働いて信号を出力し、
この信号に応じてずれた方向と反対方向の支持力が生じ
主軸のずれた位置を復帰させようとする。このようにし
て主軸1が軸方向に非接触支持される。また、このよう
な動作をしているとき、補正演算8の信号X1 ,X2
回転子31と固定子32、33間のエアギャップにそれ
ぞれ対応するため、位相補償器5の信号と軸方向磁気軸
受3の支持力が比例関係となり、回転子31の浮上位置
と熱膨張に関わらず当初の安定な浮上系が維持される。
固定子32、33の電流IL ,IR が電流検出器42、
43によって検出されると、2つのハイパスフィルタ8
1、81によってそれぞれ低周波信号が阻止され電流増
幅器71、72のキャリヤ周波数の信号だけが出力され
る。ここで、この出力信号と、回転子31と固定子3
2、33間のエアギャップとの関係について説明すると
次の通りである。PWM形の電流増幅器で電磁石からな
る固定子に電流を供給するとき、電流増幅器と固定子の
損失を小さくするため、電流増幅器71、72の主回路
電源の電圧は高く、固定子の抵抗は小さくされる。従っ
て、電流増幅器71、72からみた電磁石からなる固定
子32、33は電気的にインダクタンスと等価とみなす
ことができ、電流増幅器の主回路電圧Vと,電磁石から
なる固定子のインダクタンスLと,電磁石からなる固定
子の電流Iとの間にはおよそ次の関係がある。 V=L(dI/dt) また、インダクタンスLと電磁石からなる固定子と回転
子間のエアギャップXとはおよそ次の関係がある。
L∝1/X この2つの式から次式の関係が得られる。 dI∝V・X・dt この式のdtは電流増幅器のキャリヤ周波数の逆数であ
り、スイッチング素子をスイッチングする時間間隔に等
しく一定である。主回路電圧Vも一定にしてあるので前
記の式は次式のようになり、スイッチングで生じる電流
リップルは概ねエアギャップに比例するのである。 dI∝X 従って、2つのハイパスフィルタ81、81の出力信号
はそれぞれのエアギャップに比例した振幅の三角波とな
る。インダクタンスLが大きいと電流リップルは小さい
のでハイパスフィルタ81、81の出力信号はそれぞれ
増幅器82、82で増幅される。そしてさらに全波整流
器83、83でそれぞれ全波整流されるので、全波整流
器83、83の出力信号は電流リップルの振幅に対応す
る大きさの直流信号となり、それぞれのエアギャップに
比例する。この2つの信号を第2の比較器84で比較
し、第1の加算器85でバイアス信号X0 を加算する。
バイアス信号X0 は初期状態で左右のギャップが等しく
なるように設定してある。図1に示したスラスト磁気軸
受3が作動して非接触浮上し、主軸1が熱膨張する前の
状態で、第1の加算器85の出力信号がゼロとなるよう
調整しておくと、熱膨張して主軸1の軸方向磁気軸受3
の部分の回転子31が軸方向に変位すれば、その変位に
比例した信号が第1の加算器85から出力される。ここ
で、2つの増幅器82,82の増幅率を適当に選べば、
変位検出器41で検出された主軸先端部の変位の変位信
号Xに、第1の加算器85の信号を第2の加算器86で
加算すると、回転子31と固定子32間のエアギャップ
が得られ、変位検出器41で検出された主軸先端部の変
位信号Xから、第1の加算器85の信号を第3の減算器
87で減算すると、回転子31と固定子33間のエアギ
ャップが得られる。補正演算器8の最終段の加減算器8
6、87で用いた2つの信号のうち、一方は変位検出器
41で検出された変位信号Xであるため高い精度を持っ
ているが、他方は、PWM形電流増幅器の出力電流を検
出し、ハイパスフィルタ81から第1の加算器85まで
の回路で演算された熱膨張に相当する信号であるため、
前記のように十分な精度を持っていない。しかし、補正
演算器8で演算された回転子31と固定子32、33間
のエアギャップに相当する信号X1 ,X2 は、変位信号
Xに熱膨張に相当する補正をかけて得られたものである
ため、変位検出器41ほどの精度はないにしても、変位
検出器41の信号を用いないで電流IL ,IR だけで演
算して求めたものよりもかなり高い精度を持っている。
従って、この2つの信号を用いた補償器6によりスラス
ト軸受の制御系は十分安定なものとされるのである。こ
のように、補正演算器8を用いて補償器6の信号を演算
しても、主軸1の軸方向位置は変位検出器41の信号を
用いて制御されるため前記のように高い精度で保持され
る。このようにして、主軸の熱膨張による影響を補正す
ることができるのである。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing a control device of a thrust magnetic bearing according to the present invention, and FIG. 2 is a block diagram showing a correction calculator. In FIG. 1, 1 is a spindle of a machine tool, 2 is a tool fixed to the tip of the spindle 1 via a holder (not shown),
Reference numeral 3 is a thrust magnetic bearing, 31 is a disk-shaped rotor fixed to the main shaft 1 and made of a magnetic material, and 32 and 33 are fixed to a frame or the like not shown so as to face both sides of the rotor 31 in the axial direction with an air gap. It is an annular stator composed of an electromagnet provided on the side. Reference numeral 4 is a control device for the thrust magnetic bearing 3, and reference numeral 41 is a displacement detector which is provided in the vicinity of the tip of the main shaft 1 on a frame, a bracket or the like, and which detects the axial displacement of the tip of the main shaft 1. In 42 and 43, the PWM type current amplifiers 71 and 72 using switching elements are the stator 3
This is a current detector that detects the currents I L and I R supplied to 2, 33. Reference numeral 44 is a first comparator for comparing the displacement command value Xs with the signal X of the displacement detector 41, and 5 is a first comparator 44.
Is a phase compensator including a PID compensator and the like which operates by receiving the output signal Xs-X. 8 receives a detection current I L, I R and signal X of the displacement detector 41 of the current detector 42, 43,
The correction calculator outputs signals X 1 and X 2 corresponding to the air gap between the rotor 31 and the stators 32 and 33. 6
Is the signal of the phase compensator 5 and the signals X 1 and X of the correction calculator 8.
It is a compensator that receives 2 and sends a command to the current amplifiers 71 and 72, and corrects the signal of the phase compensator 5 and the axial supporting force received by the rotating shaft from the two stators in a proportional relationship. The main shaft 1 is non-contact supported by a thrust magnetic bearing 3 and two radial magnetic bearings (not shown) provided on the main shaft 1, and can be rotated by a motor (not shown) provided on the main shaft 1. The displacement detector 41 and the thrust magnetic bearing 3 are arranged apart from each other. In FIG.
81 and 81 are current signals I L and I of the current detectors 42 and 43.
Two high pass filters 82, 82 which receive R and pass the carrier frequency of the PWM type current amplifiers 71, 72 and remove other low frequency signals are high pass filters 81, 8
Two amplifiers for amplifying the signal of No. 1, 83, 83 are two full-wave rectifiers that receive the signal of the amplifier 82 and perform full-wave rectification, respectively, and 84 is a second comparator for comparing the signals of the two full-wave rectifiers 83. , 85 is a first adder for adding the bias X 0 to the signal of the comparator 84, and 86 is a signal X of the displacement detector 41.
A second adder for adding the signal of the first adder 85 to
Reference numeral 7 denotes a third subtracter that subtracts the signal of the first adder 85 from the signal of the displacement detector 41, and these constitute a correction calculator 8. In the above configuration, the levitation control of the thrust magnetic bearing is performed as follows. Displacement detector 4
1 detects the axial displacement X of the spindle 1, the first comparator 44 compares the displacement command value Xs with the deviation signal (Xs-
X) is output. Phase compensator 5 which receives the deviation signal (Xs-X), the left and right of the gap [delta] L, so that [delta] R is equal, and outputs a signal X L, X R to compensate for the phase. Compensator 6, the signal X L, receives the signals X 1, X 2 of the correction arithmetic unit 8 to be described later X R, the current amplifier 71, 72 1 Two current command i L, giving a i R. Current amplifier 71, 72
Depending on the current commands i L and i R
To supply currents I L and I R. The current I L, the magnetic attraction force is generated between the rotor 31 and the stator 32, 33 by I R. When the rotor 31 is displaced from the position designated by the command value Xs, the deviation signal (Xs-X) of the first comparator 44 is not zero, so the phase corrector 5 works to output a signal,
In response to this signal, a supporting force is generated in the opposite direction to the displaced direction, and an attempt is made to restore the displaced position of the spindle. In this way, the spindle 1 is axially supported in a non-contact manner. Further, during such an operation, the signals X 1 and X 2 of the correction calculation 8 correspond to the air gaps between the rotor 31 and the stators 32 and 33, respectively. The supporting force of the directional magnetic bearing 3 has a proportional relationship, and the initially stable floating system is maintained regardless of the floating position of the rotor 31 and thermal expansion.
The currents I L and I R of the stators 32 and 33 are the current detector 42,
43 detected by two high-pass filters 8
The low frequency signals are blocked by 1 and 81, respectively, and only the signals of the carrier frequencies of the current amplifiers 71 and 72 are output. Here, this output signal, the rotor 31 and the stator 3
The relationship with the air gap between the two and 33 will be described below. When supplying current to the stator composed of electromagnets in the PWM type current amplifier, the voltage of the main circuit power supply of the current amplifiers 71 and 72 is high and the resistance of the stator is small in order to reduce the loss of the current amplifier and the stator. To be done. Therefore, the stators 32 and 33 composed of electromagnets as seen from the current amplifiers 71 and 72 can be electrically regarded as equivalent to the inductance, and the main circuit voltage V of the current amplifier, the stator inductance L composed of the electromagnets, and the electromagnets. There is approximately the following relationship with the current I of the stator consisting of V = L (dI / dt) Further, the inductance L and the air gap X between the stator composed of the electromagnet and the rotor have the following relationship.
L∝1 / X From these two equations, the following equation is obtained. dI∝VXdt The dt in this equation is the reciprocal of the carrier frequency of the current amplifier and is constant and equal to the time interval for switching the switching element. Since the main circuit voltage V is also constant, the above equation becomes the following equation, and the current ripple generated by switching is approximately proportional to the air gap. dI∝X Therefore, the output signals of the two high-pass filters 81, 81 are triangular waves having an amplitude proportional to their respective air gaps. Since the current ripple is small when the inductance L is large, the output signals of the high pass filters 81 and 81 are amplified by the amplifiers 82 and 82, respectively. Further, since the full-wave rectifiers 83 and 83 perform full-wave rectification, the output signals of the full-wave rectifiers 83 and 83 become DC signals having a magnitude corresponding to the amplitude of the current ripple, and are proportional to the respective air gaps. The two signals are compared by the second comparator 84, and the bias signal X 0 is added by the first adder 85.
The bias signal X 0 is set so that the left and right gaps are equal in the initial state. If the output signal of the first adder 85 is adjusted to zero before the thrust magnetic bearing 3 shown in FIG. Axial magnetic bearing 3 of main shaft 1 after expansion
When the rotor 31 of the part (1) is displaced in the axial direction, a signal proportional to the displacement is output from the first adder 85. Here, if the amplification factors of the two amplifiers 82, 82 are appropriately selected,
When the signal of the first adder 85 is added by the second adder 86 to the displacement signal X of the displacement of the tip of the spindle detected by the displacement detector 41, the air gap between the rotor 31 and the stator 32 becomes When the signal of the first adder 85 is subtracted by the third subtractor 87 from the displacement signal X of the spindle tip portion obtained and detected by the displacement detector 41, an air gap between the rotor 31 and the stator 33 is obtained. Is obtained. Adder / subtractor 8 at the final stage of the correction calculator 8
Of the two signals used in 6 and 87, one has high accuracy because it is the displacement signal X detected by the displacement detector 41, while the other detects the output current of the PWM type current amplifier, Since the signal corresponds to the thermal expansion calculated by the circuit from the high pass filter 81 to the first adder 85,
As mentioned above, it does not have sufficient accuracy. However, the signals X 1 and X 2 corresponding to the air gap between the rotor 31 and the stators 32 and 33 calculated by the correction calculator 8 are obtained by applying the correction corresponding to the thermal expansion to the displacement signal X. Therefore, even if it is not as accurate as the displacement detector 41, it has considerably higher accuracy than that obtained by calculating only the currents I L and I R without using the signal of the displacement detector 41. There is.
Therefore, the compensator 6 using these two signals makes the thrust bearing control system sufficiently stable. In this way, even if the signal of the compensator 6 is calculated using the correction calculator 8, the axial position of the spindle 1 is controlled using the signal of the displacement detector 41, so that it is held with high accuracy as described above. To be done. In this way, the effect of thermal expansion of the main shaft can be corrected.

【0007】[0007]

【発明の効果】以上述べたように、本発明によれば、固
定子に供給される電流から熱膨張によるスラスト磁気軸
受の部分の変位を求めて補正し、回転子と固定子間のエ
アギャップを求めているので、浮上用変位検出器の他に
変位検出器を追加することなく、熱膨張による磁気軸受
制御系の不安定化を回避して当初の安定な浮上系が維持
されるのである。従って、既設の機械に制御装置のみを
付加するだけでよいので、簡単に機械の性能向上をする
効果がある。
As described above, according to the present invention, the displacement of the portion of the thrust magnetic bearing due to thermal expansion is calculated from the current supplied to the stator and corrected, and the air gap between the rotor and the stator is corrected. Therefore, without adding a displacement detector in addition to the displacement detector for levitation, destabilization of the magnetic bearing control system due to thermal expansion can be avoided and the initially stable levitation system can be maintained. . Therefore, since it is only necessary to add the control device to the existing machine, it is possible to easily improve the performance of the machine.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す、スラスト磁気軸受の制
御装置のブロック図
FIG. 1 is a block diagram of a thrust magnetic bearing control device according to an embodiment of the present invention.

【図2】図1の補正演算器を示すブロック図FIG. 2 is a block diagram showing the correction calculator of FIG.

【符号の説明】[Explanation of symbols]

1 主軸 2 工具 3 スラスト磁気軸受 31 回転子 32、33 固定子 41 変位検出器 4 磁気軸受制御装置 42、43 電流検出器 44 第1の比較器 5 位相補償器 6 補償器 71、72 電流増幅器 8 補正演算器 81 ハイパスフィルタ 82 増幅器 83 全波整流器 84 第2の比較器 85 第1の加算器 86 第2の加算器 87 第3の比較器 1 spindle 2 tools 3 Thrust magnetic bearing 31 rotor 32, 33 Stator 41 Displacement detector 4 Magnetic bearing control device 42,43 Current detector 44 First Comparator 5 Phase compensator 6 compensator 71, 72 Current amplifier 8 Correction calculator 81 High-pass filter 82 amplifier 83 Full wave rectifier 84 Second comparator 85 First adder 86 Second adder 87 Third Comparator

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 回転軸と、該回転軸に固着され磁性体か
らなる円板状の回転子と、該回転子の軸方向両側にエア
ギャップを介して対向するよう固定側に設けられた電磁
石からなる2つの固定子と、該固定子に電流を供給する
PWM形の2つの電流増幅器と、前記固定子に対する回
転子の軸方向変位を検出する変位検出器と、変位指令値
と該変位検出器の信号を比較する第1の比較器と、該第
1の比較器の信号を受けて作動する位相補償器と、前記
変位検出器の信号と位相補償器の信号を受けて前記2つ
の電流増幅器に信号を送り前記位相補償器の信号と回転
軸が2つの固定子から受ける軸方向の支持力とが比例関
係となるよう補償する補償器とで構成され、回転軸の軸
方向を非接触支持するスラスト磁気軸受の制御装置にお
いて、 前記電流増幅器が前記固定子に供給する電流を検出する
2つの電流検出器と、回転軸先端部近傍に設けられた回
転軸先端部の軸方向変位を検出する変位検出器と、前記
電流検出器の信号と変位検出器の信号から固定子と変位
検出器間の回転軸の熱膨張量を演算し、両側のギャップ
指令値を補正する補正演算器を備えたことを特徴とする
スラスト磁気軸受の制御装置。
1. A rotary shaft, a disk-shaped rotor fixed to the rotary shaft and made of a magnetic material, and electromagnets provided on the fixed side so as to face each other on both axial sides of the rotor via an air gap. , Two PWM type current amplifiers for supplying current to the stator, a displacement detector for detecting axial displacement of the rotor with respect to the stator, a displacement command value and the displacement detection. Comparator for comparing the signals of the detector, a phase compensator that operates by receiving the signal of the first comparator, and the two currents that receive the signal of the displacement detector and the signal of the phase compensator A compensator that sends a signal to an amplifier and compensates the signal of the phase compensator so that the rotational shaft receives a supporting force in the axial direction from the two stators in a proportional relationship. In the control device of the thrust magnetic bearing to be supported, the current increase Current detectors that detect the current supplied to the stator by the device, a displacement detector that is provided near the tip of the rotary shaft and that detects axial displacement of the rotary shaft tip, and a signal of the current detector. And a displacement detector signal to calculate the amount of thermal expansion of the rotating shaft between the stator and the displacement detector, and a correction calculator that corrects the gap command values on both sides. .
【請求項2】 前記補正演算器が、電流検出器の信号を
受けて電流増幅器のキャリア周波数を通過させる2つの
ハイパスフィルタと、該ハイパスフィルタの信号を受け
てそれぞれ信号レベルを調節する2つの増幅器と、該増
幅器の信号を受けてそれぞれ全波整流する2つの全波整
流器と、該2つの全波整流器の信号を比較する第2の比
較器と、該第2の比較器の信号を受けて基準信号を加算
する第1の加算器と、該第1の加算器の信号を受けて前
記変位検出器の信号を加算する第2の加算器と、前記第
1の加算器の信号を受けて前記変位検出器の信号から減
算する第3減算器からなる請求項1のスラスト磁気軸受
の制御装置。
2. The correction arithmetic unit receives two signals from a current detector to pass a carrier frequency of a current amplifier, and two amplifiers each receive a signal from the high pass filter to adjust a signal level. And two full-wave rectifiers for full-wave rectifying the signals of the amplifier, a second comparator for comparing the signals of the two full-wave rectifiers, and a signal of the second comparator A first adder for adding a reference signal, a second adder for receiving a signal from the first adder and adding a signal from the displacement detector, and a signal for receiving the signal from the first adder 2. The thrust magnetic bearing control device according to claim 1, comprising a third subtractor for subtracting from the signal of the displacement detector.
【請求項3】 請求項1記載のスラスト磁気軸受の制御
装置において、PWM形の電流増幅器が固定子に供給す
る電流リップルから得られる変位と変位検出器から得ら
れる変位を加減算して、軸の熱膨張にによる変位の変動
を補償することを特徴とするスラスト磁気軸受の制御方
法。
3. The thrust magnetic bearing control device according to claim 1, wherein a displacement obtained from a current ripple supplied to a stator by a PWM type current amplifier and a displacement obtained from a displacement detector are added / subtracted, and A method for controlling a thrust magnetic bearing, which is characterized by compensating for a change in displacement due to thermal expansion.
JP26970993A 1993-10-01 1993-10-01 Apparatus and method for controlling thrust magnetic bearing Expired - Fee Related JP3395170B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26970993A JP3395170B2 (en) 1993-10-01 1993-10-01 Apparatus and method for controlling thrust magnetic bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26970993A JP3395170B2 (en) 1993-10-01 1993-10-01 Apparatus and method for controlling thrust magnetic bearing

Publications (2)

Publication Number Publication Date
JPH07103233A JPH07103233A (en) 1995-04-18
JP3395170B2 true JP3395170B2 (en) 2003-04-07

Family

ID=17476088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26970993A Expired - Fee Related JP3395170B2 (en) 1993-10-01 1993-10-01 Apparatus and method for controlling thrust magnetic bearing

Country Status (1)

Country Link
JP (1) JP3395170B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3699970B2 (en) 2004-01-15 2005-09-28 株式会社帝国電機製作所 Motor bearing wear detector
EP2818739B1 (en) * 2013-06-28 2018-06-13 Skf Magnetic Mechatronics Improved active magnetic bearings control system
CN116576764B (en) * 2023-07-06 2023-09-29 瑞纳智能设备股份有限公司 Axial displacement detection device and method of rotating shaft and magnetic bearing system

Also Published As

Publication number Publication date
JPH07103233A (en) 1995-04-18

Similar Documents

Publication Publication Date Title
US5313399A (en) Adaptive synchronous vibration suppression apparatus
US20180216665A1 (en) Magnetic bearing control device and vacuum pump
US6984907B2 (en) Magnetic bearing apparatus
JP3215842B2 (en) Magnetic bearing protection device and turbo molecular pump
JPH07256503A (en) Spindle apparatus
US5491396A (en) Magnetic bearing apparatus and rotating machine having such an apparatus
JP3395170B2 (en) Apparatus and method for controlling thrust magnetic bearing
EP0716241B1 (en) Magnetic bearing apparatus
JP7155531B2 (en) Magnetic levitation controller and vacuum pump
JP3463218B2 (en) Magnetic bearing device
US20160290351A1 (en) Magnetic bearing device and vacuum pump
Hendrickson et al. Application of magnetic bearing technology for vibration free rotating machinery
KR100575556B1 (en) Method for controlling vibration of a magnetically suspended spindle
JP4344601B2 (en) Magnetic bearing low disturbance control device
EP0381898A2 (en) Method and apparatus for cancelling vibrations of rotating machines with active magnetic bearings
Xu et al. Unbalance Control for High-Speed Active Magnetic Bearing Systems Without Speed Sensors
JPH064093Y2 (en) Magnetic bearing control device
JPH05231428A (en) Control method and control device for magnetic bearing
JP2002039178A (en) Magnetic bearing device
JP3517846B2 (en) Magnetic bearing control device
JP2546997B2 (en) Non-contact support method
JP3174864B2 (en) Magnetic bearing control device
JPH0735683Y2 (en) Magnetic bearing control circuit
JPH1070866A (en) Nonbearing type rotating machine
JPH0965607A (en) Inner-rotor type motor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090207

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100207

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees