JP3394791B2 - Manufacturing method of cooling pipe for high heat load heat receiving plate - Google Patents

Manufacturing method of cooling pipe for high heat load heat receiving plate

Info

Publication number
JP3394791B2
JP3394791B2 JP08045693A JP8045693A JP3394791B2 JP 3394791 B2 JP3394791 B2 JP 3394791B2 JP 08045693 A JP08045693 A JP 08045693A JP 8045693 A JP8045693 A JP 8045693A JP 3394791 B2 JP3394791 B2 JP 3394791B2
Authority
JP
Japan
Prior art keywords
cooling
cooling pipe
spiral structure
receiving plate
metal tape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP08045693A
Other languages
Japanese (ja)
Other versions
JPH06285569A (en
Inventor
純市 澁谷
隆憲 黒木
博士 猪口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Kuroki Kogyosho Co Ltd
Original Assignee
Toshiba Corp
Kuroki Kogyosho Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Kuroki Kogyosho Co Ltd filed Critical Toshiba Corp
Priority to JP08045693A priority Critical patent/JP3394791B2/en
Publication of JPH06285569A publication Critical patent/JPH06285569A/en
Application granted granted Critical
Publication of JP3394791B2 publication Critical patent/JP3394791B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Metal Extraction Processes (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、核融合装置のダイバー
タ板等の高熱負荷受熱板に関する。 【0002】 【従来の技術】従来のダイバータ板等の高熱負荷受熱板
を図6ないし図9を参照して説明する。なお、ここで示
した要素のうち、プラズマ真空容器以外のトカマク型核
融合装置を構成するものは省略して示している。 【0003】図6は、トカマク型核融合装置のポロイダ
ル断面を示したもので、プラズマ1の形状を定める磁場
の等高線であるセパラトリックス線2は、交点(マル
点)3の外側で受熱板となるダイバータ板4に当たるよ
うになっている。高エネルギーを有するプラズマの一部
はセパラトリックス線2に沿って外部に引き出され、ダ
イバータ板4に入射する。なお、図6において、符号5
はプラズマ容器である。このように、セパラトリックス
線2に沿って引き出されたプラズマ1の熱負荷分布は、
図7に示すように、セパラトリックス線2を中心にガウ
ス分布を示す。セパラトリックス線上では熱負荷が極め
て高くなるため、受熱板4を傾けて配置し、単位面積当
りの熱負荷を軽減するようにしている。 【0004】この受熱板4は、図8および図9に示すよ
うに、冷却基板6の一方に冷却管7を接合し、他方にア
ーマタイル8を接合したものである。これらの部材のう
ち、冷却基板6および冷却管7には、熱伝導に優れた銅
等の材料が好んで使用され、一方、アーマタイル8に
は、プラズマ1への不純物の混入抑制のために、低原子
量であるグラファイト等が用いられる。 【0005】 【発明が解決しようとする課題】ところで、この受熱板
4が熱負荷に晒されると、熱負荷が大きいアーマタイル
8の表面9と冷たい冷却管7の内面10との間に大きな
温度差がつく。このため、過大な熱応力が生じて部材間
の接合面部に微少なクラックが発生し、アーマタイル8
が冷却基板6から剥離してしまう等の不具合が起こる。 【0006】また、アーマタイル8は、プラズマ粒子に
よるスパッタリングにより損耗を受けるが、温度がある
閾値を超えると、損耗量は急激に増大し、アーマタイル
8の寿命を著しく損ねてしまう。 【0007】冷却性能を高めてアーマタイル8の温度上
昇を抑えることは、剥離等の問題を解決するのに有効な
対策となるが、そのためには冷却管7内を通る冷却水の
流速をより速くしなければならない。しかし、流速を必
要以上に速くすることは、圧力損失の増加を招くことに
なり、ある程度以上は速くできない。流速を上昇させる
ことに限界があると、必要とする熱伝導率が得られず、
冷却性能が高められない。 【0008】そこで、最近試みられているのが、図10
に示す熱負荷の高い部分の冷却管7に、螺旋状の仕切り
板11をロッド12と共に設けるやり方である。この方
法では、流路面積は明らかに小さくなり、冷却水を仕切
り板11に沿って旋回させながら流すことで、放熱効果
を高めることができる。 【0009】しかしながら、冷却管7内に螺旋状の仕切
り板11をロッド12と共に設けるには、幾つかの技術
的課題を克服する必要がある。例えば、最適な曲げ角度
あるいはピッチを備えた仕切り板11を得るのは容易で
なく、冷却管7に所望の冷却性能を持たせることが難し
い。 【0010】本発明の目的は、製作が容易で、しかもよ
り高い冷却性能を持たせることができる高熱負荷受熱板
用冷却管の製造方法を提供することにある。 【0011】 【課題を解決するための手段】上記目的を達成するため
に本発明の方法は、金属テープの一定区間を加熱して所
定の温度を保持しつつ、その加熱区間を捩って螺旋形状
に成形し、その後、成形部に冷却媒体を送って急冷させ
て焼き入れし、さらに上記捩り成形および冷却工程を繰
り返して螺旋形が連続する螺旋構造体とし、次に螺旋構
造体を冷却管内に挿入して冷却管を冷間引抜き加工にか
けて螺旋構造体のテープ縁端を冷却管内面に密着させて
接合することを特徴とするものである。 【0012】 【作用】冷却管を通る冷却水の動圧に耐え得る金属テー
プの材料としては、機械的強度があり、耐食性に優れた
ステンレス鋼が好ましい。しかし、ステンレス鋼からな
る金属テープを室温(または冷間)において螺旋状にか
つ所定のピッチで捩ることは難しい。一般的には、ステ
ンレス鋼の場合、テープ幅の3〜4倍の捩りピッチでは
室温でも所定の長さに加工することは可能である。しか
し、本発明のように、金属テープの捩りピッチがテープ
幅の3倍以下の場合には、加熱して軟らかくした状態で
捩り加工を施さないと、所定のピッチあるいは所定の長
さの金属テープを得ることが難しい。また金属テープ全
体が加熱され、軟らかくなった状態で捩り加工を施すと
金属テープ金属テープの強度または硬度のばらつきによ
り、一定のピッチの安定した金属テープが得られない。 【0013】そこで本発明においては、捩り加工を施す
一定区間のみを加熱し、所定のピッチに成形した直後
に、捩り成形を終えた部分に、たとえば冷却水等を流し
て冷却し、金属テープの硬さと強度を高めることによ
り、一度捩り成形を施した部分が再度捩り加工を受けな
いようにする。このようにすることで、所定のピッチに
捩られた螺旋構造体を得ることができる。ところで、こ
のような螺旋構造体は数メートルの長さに捩り加工を施
すので、その生産性を高めるためには捩り加工を連続で
行う必要がある。したがって自然冷却などでは能率が低
くなり、また急冷により得られる若干の焼き入れ効果に
よる金属テープの硬さおよび強度の向上が期待できない
ため、専用の捩り加工機によるのが好ましい。 【0014】次に、この螺旋構造体は冷却管に挿入して
これを冷間引抜き加工にかけて、所定の寸法に仕上げ
る。この冷間引抜き加工により、所定の外径および内径
に仕上がるため、特に引抜きダイスの特定が重要であ
る。したがって、引抜きダイスの内径と引抜き後の冷却
管の外径は等しくなるので、冷却管の最終外径寸法に応
じた引き抜きダイスを選定しなければならない。 【0015】また一方、冷間引抜き加工には、冷却管の
内径寸法と螺旋構造体を構成する金属テープ幅には1〜
2mm程度の間隔がある。冷却管外径を縮めて間隔を零と
し、金属テープ縁端が冷却管の内面に密着し、または食
い込んだ状態になるまで絞るようにする。こうして、螺
旋構造体と冷却管とは強固に固定され、冷却水の動圧を
受けてもそれに耐えられるようになる。なお、金属テー
プは冷却管内面に密着し、あるいは僅かそこに食い込ん
だ状態ではいるが、冷却管の機能が損なわれるほどでは
ない。 【0016】かくして本発明の製造方法によれば、冷却
水を螺旋構造体に沿って旋回させながら流すことがで
き、攪拌作用がより効果的に生じるので、熱伝導率を大
きく向上させることが可能である。 【0017】また、冷却効果を適切に保つために、捩り
角度あるいは捩りピッチを変えるときも、捩り成形工程
で加工条件を変えるだけで簡単に対応することができ、
製作が容易である。 【0018】 【実施例】以下、本発明の実施例を図面を参照して説明
する。図1において、たとえばステンレス鋼等の金属テ
ープ21は、一端を引き延ばしてワークに捩りを与える
捩り加工機のガイド盤Giを通して一端に備えられる回
転盤Rtに保持されている。捩り加工機にはベッドBd
に沿ってガイド盤Giを運ぶキャリジCrから延びるア
ームAmに支持された加熱器Htと冷却器Coとが備え
られ、双方がワークに向かってそれぞれ火炎22と冷水
23とが当てられるようになっている。 【0019】上記の捩り加工機を用いて金属テープ21
の捩り成形は次のように行われる。はじめに、金属テー
プ21に一定区間加熱器Htから、たとえばアセチレン
ガス等の火炎22を当てて、その区間の温度を約800
〜1000℃に保持する。この状態でキャリジCrを回
転盤Rtに向かって移動させつつ、回転盤Rtを反時計
方向に回転させる。この回転動作により高温に保持され
る金属テープ21が捩られ、平らな金属テープが螺旋形
状となる。 【0020】次に、この成形部を加熱器Htに並んで備
えられる冷却器Coから供給される冷水23を用いて冷
却する。 【0021】さらに、上記工程を繰り返して、図2に示
すような螺旋形が連続する螺旋構造体24を得る。成形
された後の螺旋構造体24は、たとえば実施例では、テ
ープ幅WとピッチPとの関係が1:2であるが、もちろ
んそれに限られることなく、用途に応じて、回転盤Rt
の回転数、ガイド盤Giの送り速度を変えて自由な形状
とすることができる。 【0022】このように、高温を保っての捩り成形、そ
の後の冷却工程の繰り返しにより所望の捩りピッチを有
する螺旋構造体24を得ることができる。次に、この螺
旋構造体24を図3に示すように冷却管7内に挿入す
る。このとき、挿入をやり易くするために、螺旋構造体
24外面と冷却管7内面との間に、予め約 1〜2mm 程度
の間隙を設ける。 【0023】次に、螺旋構造体24と冷却管7とを、図
4に示す冷間引抜き加工にかける。この冷間引抜き工程
は、引抜きダイスDeを用いて行い、冷却管7外径を縮
めて所定の直径寸法に仕上げる。このとき、螺旋構造体
24のテープ縁端は、冷却管7内面に密着して双方の間
の隙間が零となり、そこに接合される。 【0024】螺旋構造体24外面が冷却管7内面に密着
している様子を、図5に横断面で示している。この場
合、密着を確実にするために金属テープの一部を冷却管
7の内面に僅かに食い込ませてもよい。 【0025】本実施例の冷却管7内に螺旋構造体24を
用いて流路を形成したものにおいては、冷却水を螺旋構
造体24に沿って旋回させながら流すことができ、攪拌
作用がより効果的生じるので、熱伝導率を大きく向上さ
せることが可能である。 【0026】また、この冷却効果を適切に保つために、
螺旋構造体24の捩り角度あるいは捩りピッチを変える
ときも、捩り成形工程で加工条件を変えるだけで簡単に
対応することができ、製作が容易である。 【0027】さらに、螺旋構造体24と冷却管7を密着
させて接合するのも、引抜き加工により簡単に接合する
ことができ、製作が極めて容易ある。 【0028】 【発明の効果】以上の説明から明らかなように本発明
は、金属テープの一定区間を加熱して所定の温度を保持
した状態で、その加熱区間を捩り、螺旋形状に成形し、
その後、成形部に冷却媒体を送って急冷させて焼き入れ
し、さらに捩り成形および上記冷却工程を繰り返して螺
旋構造体とした後、冷却管内に挿入して、冷却管を冷間
引抜き加工にかけるようにしたので、所望の流路を備え
た高熱負荷受熱板用冷却管を容易に製作でき、しかも、
より高い冷却性能を付与することが可能である。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high heat load heat receiving plate such as a diverter plate for a fusion device. 2. Description of the Related Art A conventional high heat load heat receiving plate such as a diverter plate will be described with reference to FIGS. Note that, of the elements shown here, those constituting the tokamak fusion apparatus other than the plasma vacuum vessel are omitted. FIG. 6 shows a poloidal cross section of a tokamak-type fusion device. A separatrix line 2 which is a contour line of a magnetic field which determines the shape of a plasma 1 is connected to a heat receiving plate outside an intersection (round point) 3. Diverter plate 4. A part of the plasma having high energy is drawn out along the separatrix line 2 and enters the diverter plate 4. In addition, in FIG.
Is a plasma container. Thus, the heat load distribution of the plasma 1 drawn along the separatrix line 2 is
As shown in FIG. 7, a Gaussian distribution is shown around the separatrix line 2. Since the heat load is extremely high on the separatrix wire, the heat receiving plate 4 is arranged at an angle to reduce the heat load per unit area. [0004] As shown in FIGS. 8 and 9, the heat receiving plate 4 is formed by joining a cooling pipe 7 to one side of a cooling substrate 6 and joining an armature 8 to the other side. Among these members, a material such as copper having excellent heat conduction is preferably used for the cooling substrate 6 and the cooling pipe 7. On the other hand, the armature 8 is used for suppressing mixing of impurities into the plasma 1. Graphite having a low atomic weight is used. When the heat receiving plate 4 is exposed to a thermal load, a large temperature difference occurs between the surface 9 of the armature 7 having a large thermal load and the inner surface 10 of the cold cooling pipe 7. Is attached. For this reason, an excessive thermal stress is generated, and a minute crack is generated in the joint surface between the members, and the armature tile 8
However, there occurs a problem such as peeling off from the cooling substrate 6. [0006] The armature 8 is damaged by sputtering by plasma particles. When the temperature exceeds a certain threshold, the amount of wear increases rapidly, and the life of the armature 8 is significantly impaired. To improve the cooling performance and suppress the temperature rise of the armature 8 is an effective countermeasure to solve the problem such as separation, but for that purpose, the flow rate of the cooling water passing through the cooling pipe 7 is increased. Must. However, increasing the flow velocity more than necessary results in an increase in pressure loss, and cannot be made faster than a certain degree. If there is a limit to increasing the flow velocity, the required thermal conductivity cannot be obtained,
Cooling performance cannot be improved. [0008] In view of the above, FIG.
The spiral partition plate 11 is provided together with the rod 12 in the cooling pipe 7 in the portion where the heat load is high as shown in FIG. In this method, the flow passage area is clearly reduced, and the cooling water is caused to flow while swirling along the partition plate 11, whereby the heat radiation effect can be enhanced. However, in order to provide the spiral partition plate 11 together with the rod 12 in the cooling pipe 7, it is necessary to overcome some technical problems. For example, it is not easy to obtain a partition plate 11 having an optimum bending angle or an optimum pitch, and it is difficult to make the cooling pipe 7 have a desired cooling performance. An object of the present invention is to provide a method of manufacturing a cooling pipe for a high heat load heat receiving plate, which can be easily manufactured and has higher cooling performance. [0011] In order to achieve the above object, a method of the present invention is to heat a predetermined section of a metal tape to maintain a predetermined temperature while twisting the heating section to form a spiral. It is molded into a shape, and then a cooling medium is sent to the molding part to quench it.
Quenching , and further repeating the above-mentioned twist forming and cooling steps to form a spiral structure having a continuous spiral shape, and then inserting the spiral structure into the cooling pipe and subjecting the cooling pipe to cold drawing to tape the spiral structure The edge is brought into close contact with the inner surface of the cooling pipe and joined. As the material of the metal tape that can withstand the dynamic pressure of the cooling water passing through the cooling pipe, stainless steel having mechanical strength and excellent corrosion resistance is preferable. However, it is difficult to twist a metal tape made of stainless steel spirally at a predetermined pitch at room temperature (or cold). In general, in the case of stainless steel, it is possible to process to a predetermined length at room temperature with a twist pitch of 3 to 4 times the tape width. However, when the twist pitch of the metal tape is three times or less the tape width as in the present invention, the metal tape having a predetermined pitch or a predetermined length must be heated and softened without twisting. Difficult to get. Further, if the entire metal tape is heated and twisted in a softened state, a stable metal tape with a constant pitch cannot be obtained due to variations in strength or hardness of the metal tape. Therefore, in the present invention, only a predetermined section to be subjected to twisting is heated, and immediately after being formed to a predetermined pitch, cooling is performed by flowing, for example, cooling water or the like to the portion where the twisting has been completed, thereby cooling the metal tape. By increasing the hardness and strength, the portion once subjected to the twist forming is prevented from undergoing the twisting again. By doing so, a helical structure twisted at a predetermined pitch can be obtained. By the way, since such a spiral structure is twisted to a length of several meters, it is necessary to continuously perform the twisting in order to increase the productivity. Therefore, the efficiency is low in natural cooling or the like, and the hardness and strength of the metal tape cannot be expected to be improved due to a slight quenching effect obtained by rapid cooling. Therefore, it is preferable to use a dedicated twisting machine. Next, the spiral structure is inserted into a cooling pipe and subjected to cold drawing to finish it to a predetermined size. Since this cold drawing process results in a predetermined outer diameter and inner diameter, it is particularly important to specify a drawing die. Therefore, since the inner diameter of the drawing die is equal to the outer diameter of the cooling pipe after drawing, the drawing die must be selected according to the final outer diameter of the cooling pipe. On the other hand, in cold drawing, the inner diameter of the cooling pipe and the width of the metal tape constituting the spiral structure are 1 to 1.
There is an interval of about 2mm. The outer diameter of the cooling pipe is reduced so that the interval becomes zero, and the metal tape is squeezed until the edge of the metal tape comes into close contact with the inner surface of the cooling pipe or is bitten. Thus, the spiral structure and the cooling pipe are firmly fixed, and can withstand the dynamic pressure of the cooling water. Although the metal tape is in close contact with the inner surface of the cooling pipe or slightly bites there, the function of the cooling pipe is not impaired. Thus, according to the manufacturing method of the present invention, the cooling water can be caused to flow while swirling along the helical structure, and the stirring action is more effectively generated, so that the thermal conductivity can be greatly improved. It is. Further, in order to appropriately maintain the cooling effect, even when the torsion angle or the torsion pitch is changed, it can be easily coped with only by changing the processing conditions in the torsion forming step.
Easy to manufacture. Embodiments of the present invention will be described below with reference to the drawings. In FIG. 1, a metal tape 21 made of, for example, stainless steel is held on a rotary plate Rt provided at one end through a guide plate Gi of a twisting machine that extends one end to twist the work. Bed Bd for twisting machine
Is provided with a heater Ht and a cooler Co supported by an arm Am extending from a carriage Cr that carries a guide board Gi along the same, so that the flame 22 and the cold water 23 are applied to the respective workpieces toward the work. I have. The metal tape 21 is formed by using the above-mentioned twisting machine.
Is performed as follows. First, a flame 22 such as acetylene gas is applied to the metal tape 21 from a heater Ht for a certain section, and the temperature of the section is raised to about 800.
Hold at ~ 1000 ° C. In this state, the turntable Rt is rotated counterclockwise while the carriage Cr is moved toward the turntable Rt. By this rotation, the metal tape 21 held at a high temperature is twisted, and the flat metal tape takes a spiral shape. Next, the formed part is cooled using cold water 23 supplied from a cooler Co provided side by side with the heater Ht. Further, the above steps are repeated to obtain a spiral structure 24 having a continuous spiral shape as shown in FIG. For example, in the embodiment, the relationship between the tape width W and the pitch P is 1: 2 in the spiral structure 24 after being formed.
By changing the number of rotations and the feed speed of the guide board Gi, it is possible to form a free shape. As described above, the spiral structure 24 having a desired twist pitch can be obtained by repeating the twist forming while maintaining the high temperature and the subsequent cooling step. Next, the spiral structure 24 is inserted into the cooling pipe 7 as shown in FIG. At this time, a gap of about 1 to 2 mm is provided in advance between the outer surface of the spiral structure 24 and the inner surface of the cooling pipe 7 to facilitate insertion. Next, the spiral structure 24 and the cooling pipe 7 are subjected to cold drawing shown in FIG. This cold drawing step is performed using a drawing die De to reduce the outer diameter of the cooling pipe 7 to finish it to a predetermined diameter. At this time, the tape edge of the spiral structure 24 comes into close contact with the inner surface of the cooling pipe 7 so that the gap between them becomes zero, and the spiral structure 24 is joined there. A state in which the outer surface of the spiral structure 24 is in close contact with the inner surface of the cooling pipe 7 is shown in FIG. In this case, a part of the metal tape may be slightly cut into the inner surface of the cooling pipe 7 to ensure the close contact. In the cooling pipe 7 of this embodiment in which the flow path is formed by using the spiral structure 24, the cooling water can be caused to flow while swirling along the spiral structure 24, and the stirring action can be further improved. Since it occurs effectively, it is possible to greatly improve the thermal conductivity. In order to properly maintain this cooling effect,
Even when the torsion angle or torsion pitch of the spiral structure 24 is changed, it can be easily coped with only by changing the processing conditions in the torsion forming step, and the manufacture is easy. Further, the spiral structure 24 and the cooling pipe 7 can be easily joined to each other by bringing the cooling pipe 7 into close contact with each other by a drawing process, which is extremely easy to manufacture. As is apparent from the above description, according to the present invention, a predetermined section of a metal tape is heated and maintained at a predetermined temperature, and the heated section is twisted to form a spiral shape.
Thereafter, quenching by quenching sends a cooling medium to the molding unit and <br/>, and the helical structure further repeated torsional formed form Contact and the cooling step, by inserting a cooling tube, a cooling tube since as applied to the cold drawing, can be manufactured to desired flow path high heat load bearing thermal plate cooling tube equipped with the easy, moreover,
It is possible to provide higher cooling performance.

【図面の簡単な説明】 【図1】本発明における捩り成形工程を説明するための
図 【図2】本発明の捩り成形工程により得られる螺旋構造
体の斜視図 【図3】本発明における冷却管組立工程を説明するため
の図 【図4】本発明における冷却管引抜き工程を説明するた
めの図 【図5】本発明の製造方法によって製作された冷却管の
横断面図 【図6】一般的なトカマク型核融合装置の断面図 【図7】図6に示すダイバータ部のプラズマからの熱分
布を説明するための図 【図8】図6に示す受熱板の縦断面図 【図9】図8の受熱板の横断面図 【図10】従来の受熱板の他の例を示す横断面図 【符号の説明】 6………冷却基板 7………冷却管 8………アーマタイル 21………金属テープ 24………螺旋構造体 Cr………キャリジ De………引抜きダイス Gi………ガイド盤 Rt………回転盤
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a view for explaining a twist forming step in the present invention. FIG. 2 is a perspective view of a spiral structure obtained by the twist forming step in the present invention. FIG. FIG. 4 is a view for explaining a pipe assembling step. FIG. 4 is a view for explaining a cooling pipe drawing step in the present invention. FIG. 5 is a cross-sectional view of a cooling pipe manufactured by the manufacturing method of the present invention. FIG. 7 is a cross-sectional view of a typical tokamak-type fusion device. FIG. 7 is a view for explaining heat distribution from plasma in the divertor section shown in FIG. 6. FIG. 8 is a longitudinal cross-sectional view of a heat receiving plate shown in FIG. FIG. 10 is a cross-sectional view of the heat receiving plate of FIG. 8 FIG. 10 is a cross-sectional view of another example of the conventional heat receiving plate [Description of symbols] 6... Cooling substrate 7... Cooling pipe 8. … Metal tape 24… Spiral structure Cr… Carriage De Draw-out die Gi ......... guide panel Rt ......... turntable

フロントページの続き (51)Int.Cl.7 識別記号 FI G21B 1/00 G21B 1/00 K // B21C 1/00 B21C 1/00 C (72)発明者 猪口 博士 福岡県北九州市八幡西区本城東4丁目1 −28 (56)参考文献 特開 平4−284933(JP,A) 特開 平4−105716(JP,A) 特開 昭58−168487(JP,A) 特開 昭63−43727(JP,A) (58)調査した分野(Int.Cl.7,DB名) B21D 53/06 B21C 1/22 B21C 1/00 B21D 39/00 B21D 11/06 B21D 11/14 G21B 1/00 Continuation of the front page (51) Int.Cl. 7 Identification code FI G21B 1/00 G21B 1/00 K // B21C 1/00 B21C 1/00 C (72) Inventor Dr. Inoguchi Honjo Higashi-Hachimanishi-ku, Kitakyushu-shi, Fukuoka Prefecture JP-A-4-284933 (JP, A) JP-A-4-105716 (JP, A) JP-A-58-168487 (JP, A) JP-A-63-43727 (JP-A 63-43727) JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B21D 53/06 B21C 1/22 B21C 1/00 B21D 39/00 B21D 11/06 B21D 11/14 G21B 1/00

Claims (1)

(57)【特許請求の範囲】 【請求項1】 金属テープの一定区間を加熱して所定の
温度を保持しつつ、その加熱区間を捩って螺旋形状に成
形し、その後、前記成形部に冷却媒体を送って急冷させ
て焼き入れし、さらに上記捩り成形および冷却工程を繰
り返して螺旋形が連続する螺旋構造体とし、しかる後、
前記螺旋構造体を冷却管内に挿入して該冷却管を冷間引
抜き加工にかけて前記螺旋構造体のテープ縁端を前記冷
却管内面に密着させて接合することを特徴とする高熱負
荷受熱板用冷却管の製造方法。
(57) [Claim 1] While heating a predetermined section of a metal tape and maintaining a predetermined temperature, the heating section is twisted and formed into a spiral shape. Send cooling medium and quench
Quenching , and further twisting and cooling step to form a spiral structure with a continuous spiral shape,
The cooling for a high heat load heat receiving plate, wherein the spiral structure is inserted into a cooling pipe, the cooling pipe is subjected to cold drawing, and a tape edge of the spiral structure is closely attached to an inner surface of the cooling pipe to be joined. Pipe manufacturing method.
JP08045693A 1993-04-07 1993-04-07 Manufacturing method of cooling pipe for high heat load heat receiving plate Expired - Lifetime JP3394791B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08045693A JP3394791B2 (en) 1993-04-07 1993-04-07 Manufacturing method of cooling pipe for high heat load heat receiving plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08045693A JP3394791B2 (en) 1993-04-07 1993-04-07 Manufacturing method of cooling pipe for high heat load heat receiving plate

Publications (2)

Publication Number Publication Date
JPH06285569A JPH06285569A (en) 1994-10-11
JP3394791B2 true JP3394791B2 (en) 2003-04-07

Family

ID=13718768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08045693A Expired - Lifetime JP3394791B2 (en) 1993-04-07 1993-04-07 Manufacturing method of cooling pipe for high heat load heat receiving plate

Country Status (1)

Country Link
JP (1) JP3394791B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101562169B1 (en) * 2015-04-08 2015-10-20 김찬모 Plasma water treatmant device having twist type discharge electrode

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6186179B2 (en) * 2013-05-31 2017-08-23 株式会社堀場エステック Stirrer and manufacturing method of stirrer
CN106424256A (en) * 2016-10-26 2017-02-22 中国电子科技集团公司第四十八研究所 Machining device for spiral copper tube and machining method thereof
CN106938301B (en) * 2017-04-06 2020-01-21 鑫鹏源智能装备集团有限公司 Seamless steel pipe constant temperature forming die
CN106944570B (en) * 2017-05-10 2021-06-25 南京工程学院 Twisted heat exchange tube manufacturing device
CN117483510B (en) * 2023-12-21 2024-09-03 山东华烨不锈钢制品集团有限公司 Fixing structure for stainless steel bent pipe

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101562169B1 (en) * 2015-04-08 2015-10-20 김찬모 Plasma water treatmant device having twist type discharge electrode
WO2016163691A1 (en) * 2015-04-08 2016-10-13 김찬모 Plasma treatment apparatus having twist-shaped discharge electrode and method for manufacturing twist-shaped discharge electrode

Also Published As

Publication number Publication date
JPH06285569A (en) 1994-10-11

Similar Documents

Publication Publication Date Title
US4395303A (en) Method of manufacturing thin-walled corrosion resistant metallic objects
US20190061044A1 (en) Method for manufacturing double pipe
JP3394791B2 (en) Manufacturing method of cooling pipe for high heat load heat receiving plate
JP3681095B2 (en) Bending tube for heat exchange with internal protrusion
CN112191704B (en) Continuous mixing manufacturing method from blank to bimetal composite wire
CN108160743A (en) A kind of fuel Stainless Steel Cladding manufacturing process
US20080060722A1 (en) Method for the production of tubes for heat exchangers from precipitation-hardened alloys by high-frequency induction welding
US3480486A (en) Heating method for local annealing or stress relieving of parts of metal articles
JPS6115091A (en) Heat transfer tube for heat exchanger
CN1205922A (en) Manufacture of stainless steel heat-transfer pipe for refrigerator
JPS6130217A (en) Manufacture of high-strength high-ductility titanium-alloy wire
JPH06142812A (en) Manufacture of torsion bar for power steering device
Youchison et al. Evaluation of helical wire inserts for CHF enhancement
CN220901683U (en) Molybdenum tube sealing device
CN118543694A (en) Processing method of superfine goddess Chang&#39;s E steel welding wire
JPS6137924A (en) Uniform cooling method of tubular body
CN213113449U (en) Annealing cooling device for titanium pipe welding area
JP2007296560A (en) Method for manufacturing metallic fiber bundle and metallic fiber bundle
JPH0688177A (en) Production of copper alloy pipe
JPS603932A (en) Production of heat exchanger
JPH0635920B2 (en) Heat transfer tube for heat exchanger
JP2500165B2 (en) Method for manufacturing fuel cladding tube
CN112222256A (en) Electric furnace induction coil forming process
CN118207440A (en) Preparation method of aluminum-silicon-copper strip
CN117198631A (en) Preparation method of high-strength high-toughness aluminum conductor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080131

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090131

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100131

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110131

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120131

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130131

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130131

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140131

Year of fee payment: 11