JPS6115091A - Heat transfer tube for heat exchanger - Google Patents

Heat transfer tube for heat exchanger

Info

Publication number
JPS6115091A
JPS6115091A JP13464384A JP13464384A JPS6115091A JP S6115091 A JPS6115091 A JP S6115091A JP 13464384 A JP13464384 A JP 13464384A JP 13464384 A JP13464384 A JP 13464384A JP S6115091 A JPS6115091 A JP S6115091A
Authority
JP
Japan
Prior art keywords
wire
tube
copper
spiral
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13464384A
Other languages
Japanese (ja)
Inventor
Shoichi Yoshiki
吉木 尚一
Junichiro Yamashita
山下 順一郎
Junya Oe
大江 潤也
Kazuo Toda
戸田 一夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP13464384A priority Critical patent/JPS6115091A/en
Publication of JPS6115091A publication Critical patent/JPS6115091A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/046Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure characterised by the material or the construction of the capillary structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/02Arrangements for modifying heat-transfer, e.g. increasing, decreasing by influencing fluid boundary
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/12Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)

Abstract

PURPOSE:To provide a heat transfer tube of a high heat efficiency which is easy to manufacture by closely fixing a spiral wire made of fine wires of copper of a copper alloy, having a winding diameter of a dimension substantially equal to the diameter dimension of the tube inner diameter to the inner surface of a metal tube having a smooth inner surface or a grooved inner surface. CONSTITUTION:A fine wire 2 made of copper or a copper alloy is beforehand wound around a winding core rod having a diameter which is slightly smaller than the inner diameter dimension of a tubular body 1 at an equal pitch or at a dense pitch, and is inserted into the tubular body 1 together with the core rod when the fixing of both ends of the fine wire 2 is released, the winding diameter of the fine wire 2 becomes naturally large by a spring-back force of the fine wire 2, and the clamping on the core rod of a spiral wire 3 is loosened. Hence, the core rod can be drawn out of the tubular body 1, and the wire 3 is closely fixed to the inner surface 1a of the tubular body 1 by a spring-back stress. Thus, the wire 3 is positively secured thereto by the extraction method or the roll pressing method. Further, the heat transfer efficiency is improved by the increase in the inner surface area, generation of the turbulent flow, and occurrence of the capillary phenomenon.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、空調用冷凍機等に使用される熱交換器用伝熱
管に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a heat transfer tube for a heat exchanger used in an air conditioning refrigerator or the like.

〔従来の技術〕[Conventional technology]

従来実用に供されている熱交換器用伝熱管は、伝熱効率
を高めるために銅または銅合金から構成されており、そ
の内面が平滑なもの(平滑管)と、さらに熱効率を上げ
るために内面にらせん溝を形成したちの(溝イ]管)と
がある。
Heat transfer tubes for heat exchangers that have been put into practical use in the past are made of copper or copper alloy in order to increase heat transfer efficiency. There is a type of tube that forms a spiral groove.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、囚知のように伝熱管においてその伝熱効率を
高めるには、 (イ) 電熱面積を大きく覆る。
By the way, as we know, in order to increase the heat transfer efficiency in heat transfer tubes, (a) Cover the electric heating area by a large amount.

(ロ) 核沸騰を起しやすくする。(b) Making it easier to cause nucleate boiling.

(ハ) 毛細管現象をおこしやすくなる。(c) It becomes easier to cause capillary action.

(ニ) 乱流が生じやすくなる。(d) Turbulence becomes more likely to occur.

ことが有効とされでいる。This is considered to be effective.

これに対し、上記従来の伝熱管、特に平滑管においては
、上記項目を」分に’fA屋させるまでには至っておら
ず、そのため、−Lり熱効率の^い伝熱管が要求されて
いるのが現状である。さらに、L2伝熱管のうち溝付管
においては、この溝付管が主に転造方式により製造され
ており、この方法では加工速度が遅く、しかも転造技術
上らせん満の乗数、ねじれ角度などにIJ11限がある
等の欠点があり、そのため製造効率を犠牲にする割には
性能の向上が得られないでいる。
On the other hand, the above-mentioned conventional heat exchanger tubes, especially smooth tubes, have not yet reached the point where the above items have been reduced to 'fA', and therefore, heat exchanger tubes with -L thermal efficiency are required. is the current situation. Furthermore, among the L2 heat exchanger tubes, grooved tubes are mainly manufactured by the rolling method, and this method requires slow processing speed, and due to the rolling technology, the helical multiplier, twist angle, etc. However, there are drawbacks such as the IJ11 limit, and therefore performance cannot be improved at the expense of manufacturing efficiency.

この発明は上2事情に鑑みてなされたもので、熱効率が
畠り、容易に製造することができる伝熱管を提供するこ
とを目的とするものである。
This invention was made in view of the above two circumstances, and aims to provide a heat exchanger tube that has high thermal efficiency and can be easily manufactured.

F問題を解決するための手段」 この発明は、銅または銅合金製の内面平W1または内面
溝付の管体の内面にこの管体の内径寸法とほぼ同寸法の
巻径の銅または銅合金IBIil製のスパイラル線を密
着固定したものである。
Means for Solving Problem F" This invention provides a copper or copper alloy with a winding diameter that is approximately the same as the inner diameter of the tube on the inner surface of a tube W1 made of copper or copper alloy with a flat or grooved inner surface. It is made of IBIil spiral wire tightly fixed.

「作用」 上記構成によれば、管体内面の表面積がこの内面に密着
固定されているスパイラル線によって大幅に増大され、
同管体内の流体の流れも同スパイラル線によって乱流と
なり、同スパイラル線のピッチを密にすれば上記管体内
面に細かく連続した間隙が形成され、これによって毛細
管現象が生じ、同間隙によって核沸騰がおこりやすくな
り、その結果、伝熱効率が大幅に向上される。また、管
体内面へのスパイラル線の密着固定番よ、ロウf」さ。
"Operation" According to the above configuration, the surface area of the inner surface of the tube is greatly increased by the spiral wire closely fixed to this inner surface,
The flow of fluid inside the tube also becomes turbulent due to the spiral wires, and if the pitch of the spiral wires is made dense, fine continuous gaps are formed on the inner surface of the tube, which causes capillary phenomenon, and the gaps create nucleation. Boiling occurs more easily, and as a result, heat transfer efficiency is greatly improved. Also, the spiral wire should be tightly attached to the inner surface of the tube.

めっき等の簡易な接合方法、さらに管体内にスパイラル
線を挿入した後、鋼管体に引扱き加Yを施こしたり、ロ
ールIf縮加工を施こしたり等の簡単な機械的方法など
により行なうことができるので、製造が容易となる。
Simple joining methods such as plating, and simple mechanical methods such as inserting a spiral wire into the tube and then subjecting the steel tube to handling Y or roll If shrinking. This makes manufacturing easier.

以下、この発射を図面を参照して説明する。This firing will be explained below with reference to the drawings.

(実施例1) 第1図はこの発明の第1の実施例を示すもので、図中符
号1は銅またtよ銅合金製の管体を示すものである。こ
の管体1の内面1aは平滑となっており、この内面1a
には銅または銅合金細線21Ilのスパイラル線3が密
着固定されている。
(Embodiment 1) FIG. 1 shows a first embodiment of the present invention, and the reference numeral 1 in the figure indicates a tube made of copper or copper alloy. The inner surface 1a of this tube body 1 is smooth, and this inner surface 1a
A spiral wire 3 made of copper or copper alloy fine wire 21Il is closely fixed to the wire.

上記スパイラル線3は銅または銅合金細線を芯材に等ピ
ッチあるいは密4ビッヂで巻くだけで形成することがで
き、その1¥寸法tよ上記管体1の径寸法にほば比例し
て適宜決定される。このスパイラル線3の上記管体1内
面1aへの密着固定は、実際的には次のようにして行な
われる。まず、銅または銅合金線!i12を予め管体1
の内径q法により若干小径の巻線芯金棒に等ピッチある
いは密着ピッチで巻きつけ、この芯金棒ごと管体1内に
挿入し、その後、細線2の両端の固定を解除する。
The spiral wire 3 can be formed by simply winding a copper or copper alloy thin wire around a core material at equal pitches or close to 4 bits. It is determined. In practice, the spiral wire 3 is closely fixed to the inner surface 1a of the tube body 1 in the following manner. First, copper or copper alloy wire! i12 in advance to tube body 1
The thin wire 2 is wound at equal pitches or close pitches using the inner diameter q method, and is inserted into the tube body 1 together with the core rod, after which both ends of the thin wire 2 are unfixed.

するど、細線2のスプリングバックの力により細線2の
巻径が自然に大きくなり、らせん状の細線2(スパイラ
ル線3)の芯金棒に対する締めっ4J力が緩むので、芯
金棒を管体1内から引き出す。
Then, the winding diameter of the thin wire 2 naturally increases due to the springback force of the thin wire 2, and the 4J force tightening the spiral thin wire 2 (spiral wire 3) against the core rod is loosened, so the core rod is attached to the tube body 1. Bring it out from within.

この状態のままでも、スパイラル線3はそりのスプリン
グバックの応力により管体1内面1aに密着固定される
が、下記4つの方法のいずれかにより確実に密着固定さ
せる。
Even in this state, the spiral wire 3 is tightly fixed to the inner surface 1a of the tube body 1 due to the springback stress of the warp, but it can be firmly fixed tightly by any of the following four methods.

(D  上記管体1をその内部に固定プラグまたは)0
−ティングプラグを挿入づ”るか、また岬、1まIこは
何も挿入しないで、引抜きダイスを通過さゼて、管体1
を縮径づることにより行なう(川辺法)。
(D A plug that fixes the pipe body 1 inside it or) 0
- Insert the tubing plug or insert the cape, or pass through the drawing die without inserting anything.
This is done by reducing the diameter (Kawabe method).

α) 上記管体1を半円形のキャリバーをもった対向す
る2つのロール、またはつづみ型の2つのロールにより
絞ることにより行なう(ロール汗加払)(ロ) 上記管
体1内に水曜製フラックスを6−人し、次に半田線を挿
入し、その後、不活性ガス、還元性ガスを導入しながら
インダクションヒーターあるいは光輝焼鈍炉などを利用
して加熱し、ロウ接合する(ロウ(jl法)、、この場
合、lll線2に予めようなどの低融白金属めっきして
おtプば、上記0つ付が容易となる。
α) This is done by squeezing the tube 1 with two opposing rolls with semicircular calibers or two pinch-type rolls (roll sweat removal). Apply flux, then insert a solder wire, then heat using an induction heater or bright annealing furnace while introducing an inert gas or reducing gas, and perform soldering (waxing (JL method)). ), In this case, if the wire 2 is plated with a low-melting white metal such as gold in advance, the above-mentioned 0 mark can be easily attached.

■ 上記管体1内にめっき液および陽極を入れるととも
に管体1を陰極として管体1にめっきを施こすことによ
りf5なう(めっき法)。
(2) Filling the tube 1 with a plating solution and an anode and using the tube 1 as a cathode, plating the tube 1 (plating method).

上記のようにして管体1の内面1aに密着固定されるス
パイラル線3は、所定ピッチで形成してもよいが、図に
承すように密着ピッチにしてお番ノばスパイラル線3と
管体1の内面1aとの間にらせん状に連続した間隙4を
容易に形成することができる。
The spiral wire 3 that is closely fixed to the inner surface 1a of the tube body 1 as described above may be formed at a predetermined pitch, but as shown in the figure, the spiral wire 3 and the tube can be formed at a close pitch. A spirally continuous gap 4 can be easily formed between the body 1 and the inner surface 1a.

しかして、[記構)もの伝熱管によれば、次のような利
点を得ることができる。
According to the heat exchanger tube having the following structure, the following advantages can be obtained.

く1)スパイラル線3によって虞体1の内表面積は大幅
に増加され、伝熱効率が向上する。
(1) The spiral wire 3 greatly increases the inner surface area of the shield 1, improving heat transfer efficiency.

山) スパイラル線30巻き方向を管体1の軸方向(管
体1内の流れ方向)に対し90°近くにまで設定するこ
とができ、その結果、管体1内の流れに乱流を多く生じ
させることができ、伝熱効率の向上が図れる。
The winding direction of the spiral wire 30 can be set to nearly 90 degrees with respect to the axial direction of the tube 1 (the flow direction inside the tube 1), and as a result, the flow inside the tube 1 is made more turbulent. This can improve heat transfer efficiency.

(C)  スパイラル線3のピッチを密着ピッチとJる
ことによって、スパイラル線3と管体1の内面1aとの
間に連続毛細管(間隙4)を形成することができ、それ
によって伝熱効率の向上が図れる。
(C) By setting the pitch of the spiral wire 3 to the close pitch, a continuous capillary tube (gap 4) can be formed between the spiral wire 3 and the inner surface 1a of the tube body 1, thereby improving heat transfer efficiency. can be achieved.

(小 スパイラル線を構成する銅または銅合金細線2の
入手は極めて容易で、しかもスパイラル線3の製造も容
易である。
(The copper or copper alloy thin wire 2 constituting the small spiral wire is extremely easy to obtain, and the spiral wire 3 is also easy to manufacture.

(e)  スパイラル線3の最小巻径は、巻線芯fL衿
の製造下限寸法により制限を受けるだけなので、極めて
細巻径のものまで形成することができ、ぞのため4履φ
や3履φ稈度の極く細い伝熱管の製造も可能となる。
(e) The minimum winding diameter of the spiral wire 3 is limited only by the minimum manufacturing dimension of the winding core fL collar, so it is possible to form windings with an extremely small winding diameter.
It is also possible to manufacture extremely thin heat exchanger tubes with a diameter of 3 mm or 3 mm.

〔実施例2〕 第2図および第3図はこの発明の第2の実施例を示すも
ので、図中第1図と共通する部分には銅量−符号を1」
シて説明を簡略化する。図中符号5は管体1の内面1a
に密着固定されるスパイラル線3を構成する銅または銅
合金細線を示すものである。この細線5と実施例1にお
りる細線2との違いは、その外周面にノツチ(切込み溝
)5aが形成されている点である。このノツチ5aは、
第2図および第3図(alに示すように細線5の片側に
軸方向に間歇的に設けてもよいし、第3回出)に示づよ
うにリング状に軸方向間歇的に形成してしよいし、さら
に第3図(C)に示すようにスパイラル状に連続して設
けて乙よい。
[Embodiment 2] Figures 2 and 3 show a second embodiment of the present invention, and the parts common to Figure 1 are indicated by the amount of copper minus the code 1.
This will simplify the explanation. Reference numeral 5 in the figure indicates the inner surface 1a of the tube body 1.
This figure shows the thin copper or copper alloy wire that constitutes the spiral wire 3 that is closely fixed to the wire. The difference between this thin wire 5 and the thin wire 2 in Example 1 is that a notch (cut groove) 5a is formed on its outer peripheral surface. This notch 5a is
It may be provided intermittently in the axial direction on one side of the thin wire 5 as shown in Figures 2 and 3 (al), or intermittently in the axial direction in a ring shape as shown in Figure 3. It is also possible to provide them continuously in a spiral shape as shown in FIG. 3(C).

上記のようにスパイラル線3を構成する細線5にノツチ
5aを形成すると、スパイラル線3と管体1の内面1a
との間に形成されている間隔(71!続毛細管)4に管
体1内側に開く多数の開口部5・・・を形成することが
できる。
When the notch 5a is formed in the thin wire 5 constituting the spiral wire 3 as described above, the spiral wire 3 and the inner surface 1a of the tube body 1
A large number of openings 5 that open inside the tube body 1 can be formed in the interval (71! continuation capillary tube) 4 formed between the tube body 1 and the tube body 1 .

従って、この実施例においては、前記′;51の実施例
において得られた利点が得られることに加えて次のよう
な新たな利点を得ることができる。すな、F)も、開口
部6から発泡現象(核沸厭)が住じゃすく、これに伴4
【って発泡現象のqじ4Tい開[1部6から管体1内の
冷媒が間隙4内に入り込み沸騰が促進されるという利点
が得られ、さらに開1]部6の形成により伝熱表面積が
より大きくなり、乱流形成効果も増大する。
Therefore, in this embodiment, in addition to the advantages obtained in the embodiment 51 above, the following new advantages can be obtained. Also, in F), a bubbling phenomenon (nuclear boiling) occurs from the opening 6, and as a result, 4
[This has the advantage that the refrigerant in the tube body 1 enters the gap 4 from the foaming phenomenon q4T, and boiling is promoted, and furthermore, the formation of the open part 6 improves heat transfer. The surface area is larger and the turbulence forming effect is also increased.

「実施例3」 第4図は、この発明の第3の実施例の要部を示すもので
、図中符号7は前記したように管体1の内面1aに密着
固定されるスパイラル線3を構成する銅または銅合金細
線を示すものである。この細線7は、図に示すように、
銅または銅合金の極細線7aからなる撚線である。
"Embodiment 3" FIG. 4 shows the main part of the third embodiment of the present invention, and the reference numeral 7 in the figure indicates the spiral wire 3 which is closely fixed to the inner surface 1a of the tube body 1 as described above. This shows the constituent copper or copper alloy fine wire. As shown in the figure, this thin line 7 is
This is a stranded wire made of ultrafine wires 7a of copper or copper alloy.

このようにスパイラル線3を構成する細線7を撚線とす
れば、このスパイラル線3と笛体1の内面1aとの間に
形成される連続した間隔(′4続毛細管)4に非常に多
くの開口部が形成されることになり、前記第2の実施例
と同様の利点を10ることかでき、しかもそれらの利点
をより一層増大することができる。
If the thin wires 7 constituting the spiral wire 3 are twisted wires, there will be a large number of strands in the continuous interval ('4 continuation capillary tube) 4 formed between the spiral wire 3 and the inner surface 1a of the flute body 1. Therefore, ten of the same advantages as in the second embodiment can be obtained, and these advantages can be further increased.

「実施例4」 第5図はこの発明の第4の実施例のようでを示すもので
、図中符号8は前記スパイラル$!j!3を構成する銅
または銅合金細線を示すものである。この細線8は、一
本の銅また(J銅合金製の極細線8aを微小径スパイラ
ルに形成してなるものである。
"Embodiment 4" FIG. 5 shows a fourth embodiment of the present invention, in which reference numeral 8 denotes the spiral $! j! 3 shows the copper or copper alloy thin wire constituting No. 3. This thin wire 8 is formed by forming a single copper or (J copper alloy) ultra-thin wire 8a into a minute diameter spiral.

この実施例においてはスパイラルFj13を構成する細
線8が上記のように異なるだけで、他の形状は前記各実
施例と同様である。
In this embodiment, the only difference is the thin wire 8 constituting the spiral Fj13 as described above, and the other shapes are the same as in each of the above embodiments.

この発明に係わる伝熱管を上記のように構成すれば、前
記第3の実施例と同様の利点を得ることができる。
By configuring the heat exchanger tube according to the present invention as described above, the same advantages as in the third embodiment can be obtained.

なお、上記各実施例においては、管体を平滑管としたが
、この発明の伝熱管は平滑管ばかりでなく溝付管にも同
様に適用づることができる。
In each of the above embodiments, the tube body is a smooth tube, but the heat exchanger tube of the present invention can be applied not only to a smooth tube but also to a grooved tube.

「効果」 以上説明したように、この発明に係わる伝熱管は、銅ま
たは銅合金製の内面平滑または内面溝付の管体の内面に
この管体の内径寸法とほぼ同司法の巻径の銅または銅合
金細線製のスパイラル線を密請固定したものである6、
従−)て、この発明の伝熱管においては、管体内面の表
面積がこの内面に密着固定されているスパイラル線によ
)て大幅に増大され、鋼管体内の流体の流れも同スパイ
ラル線によって乱流となり、同スパイラル線のピッチを
密にすれば、上記管体内面に細く連続した隙間が形成さ
れ、これによって毛細管現象が生じ、同間隙によって核
沸騰がおこりやすくなり、その結果、伝熱効率が大幅に
向上される。また、管体内面へのスパイラル線の密着固
定は、ロウイ1、めっき等の簡易な接合方法、さらに管
体内にスパイラル線を挿入した後、鋼管体に引扱き加I
を施こしたり、ロール圧縮加工を施こしたり等の簡単な
ぼ械的方沫などにより行うことかできるので、製造が容
易である。
"Effects" As explained above, the heat exchanger tube according to the present invention has a copper or copper alloy tube with a smooth or grooved inner surface and a copper coil having a winding diameter that is approximately the same as the inner diameter of the tube. Or a spiral wire made of fine copper alloy wire fixed in secret6.
Therefore, in the heat exchanger tube of the present invention, the surface area of the inner surface of the tube is greatly increased by the spiral wire closely fixed to the inner surface, and the flow of fluid inside the steel tube is also disturbed by the spiral wire. If the pitch of the spiral wires is made dense, a narrow continuous gap will be formed on the inner surface of the tube, which will cause a capillary phenomenon, which will cause nucleate boiling to occur more easily, and as a result, the heat transfer efficiency will decrease. Significantly improved. In addition, the spiral wire can be tightly fixed to the inner surface of the tube by simple bonding methods such as rowi 1 or plating, and after the spiral wire is inserted into the tube, it is handled and applied to the steel tube.
It is easy to manufacture because it can be carried out by simple mechanical methods such as rolling or roll compression.

最後に、上記本発明の効果を定量的に確認づるために、
前記第1の実施例に基づいて下記議題的手段により伝熱
管を作製し、その伝熱1)竹を調べた実施例を示す。
Finally, in order to quantitatively confirm the effects of the present invention,
An example will be shown in which a heat transfer tube was manufactured by the following method based on the first example, and its heat transfer 1) bamboo was investigated.

「実施例」 外径9.6am+φ、肉厚0.33m、長さ2000m
のりん脱酸銅管(管体)を用い、トリクロルエチレン線
状を行なって管内面を脱脂した。−万、銅の0.3a*
φの細線を711IIRφのコイル巻線芯金棒<SUS
みがき細棒を2000txmにコイル巻線間により0.
45繻の巻線ピッチで巻き取り、両端をゆるまないよう
に固定し、これを1配りん脱酸銅管に挿入し、その後、
両端を解放した。上配りん脱酸銅管内の銅細線は、スプ
リングバックによりコイル巻線金棒より解放され、銅管
内面に0゜6Hnの巻線ピッチで密着(した。その後、
解放された芯金棒を銅管内より抜き出した。
"Example" Outer diameter 9.6am+φ, wall thickness 0.33m, length 2000m
Using a phosphorus-deoxidized copper tube (tube body), the inner surface of the tube was degreased by trichlorethylene linear treatment. -10,000,0.3a* of copper
φ fine wire to 711IIRφ coil winding core metal rod <SUS
A thin polishing rod of 2000 txm was applied between the coil windings.
Wind it up with a winding pitch of 45 knots, fix both ends so that it does not come loose, insert it into a phosphorus-deoxidized copper pipe, and then
Both ends were released. The thin copper wire inside the top phosphor deoxidized copper tube was released from the coil-wound metal rod by springback and was tightly attached to the inner surface of the copper tube with a winding pitch of 0°6Hn.
The released core metal rod was extracted from the inside of the copper tube.

なお、この銅細線からなるスパイラル線のスプリングバ
ック応力を利用し、このスパイラル線を銅管内面に等ピ
ッチで密着させる調整方θ、1よ、その線材の機械的I
IL賀〈引張り強さ、伸び耐力値)、物理的性質(Vレ
グ率)、線材のねじれ、線径および巻(¥などにJ、り
決まるものである。
In addition, the adjustment method θ, 1, which makes use of the springback stress of the spiral wire made of thin copper wire and brings the spiral wire into close contact with the inner surface of the copper tube at equal pitches, is based on the mechanical I of the wire.
It is determined by IL (tensile strength, elongation yield value), physical properties (V-leg ratio), twist of the wire, wire diameter, and winding (J, etc.).

上記のようにして製作した銅製スパイラル線の入った鋼
管は、スパイラル線の巻き径のばらつき、鋼管自身の持
つ楕円度などにより厳密には密着しておらず、局部的に
わずかに隙間が残っている場合がある。
The steel pipe containing the copper spiral wire manufactured as described above does not fit tightly due to variations in the winding diameter of the spiral wire and the ellipticity of the steel pipe itself, and there may be slight gaps left locally. There may be cases.

従って、上記銅管を引抜ダイスを通し、外径の減少率で
1%の空引抽伸を行ない、それによってスパイラル線が
管内面に完全に密着ツる様にした。
Therefore, the above-mentioned copper tube was passed through a drawing die and subjected to dry drawing at a reduction rate of 1% in outer diameter so that the spiral wire was completely tightly attached to the inner surface of the tube.

その後、管内面に軟Dつ骨用水溶性ノラツクスを注入す
るとともに、軟ロウ材(Sn−Pb=6:4)2.5#
φ、長さ2000朧を挿入し、この鋼管をN2ガス流通
下の高周波インダクシ」ンヒーター中を毎分10IIl
のスピードで通過させ、線材を銅管内面に密着固定した
。また、加熱にJ、る銅管の酸化を防止するため、加熱
直後にN2ガスによる冷却をおこなった。このようにし
て製竹した伝熱管の内面を水洗いしたあと、全長に渡っ
てロウ化が完全であることを確認した。
After that, water-soluble Norax for soft D bones was injected into the inner surface of the tube, and soft solder material (Sn-Pb=6:4) 2.5 #
φ, length 2000mm, and this steel pipe was heated at 10IIl per minute in a high frequency induction heater under N2 gas flow.
The wire was tightly fixed to the inner surface of the copper tube. In addition, in order to prevent oxidation of the copper tube during heating, cooling with N2 gas was performed immediately after heating. After washing the inner surface of the bamboo heat transfer tube made in this way with water, it was confirmed that waxing was complete over the entire length.

上記のようにして製作した伝熱管を外径が10゜05I
IIllIφになるまで全長に戸ってプラグ通しによる
*Vi拡管を施こしlζが、スパイラル線の剥離は認め
られなかった。
The heat exchanger tube manufactured as described above has an outer diameter of 10°05I.
*Vi tube expansion was performed by inserting a plug over the entire length until it reached IIllIφ, but no peeling of the spiral wire was observed.

また、上記伝熱管を第6図に示す伝熱N竹試験装置で試
験した。この装置中、Tは湿度セン9、Pは汗力割、P
Dは差B−31,30はポンプ、31はバルブ、32 
Let流φM、33は膨張弁、341!]ンブレツυ、
35はりブ]ンデンリ、36は1ノブTバボイラ、37
は恒温水槽であり、38が供試管としての伝熱管である
。そして、蒸発おJ、び凝縮試験は、5mの直管く伝熱
管)を使用し、冷媒R22にて次の訳験条f1にて実施
した。
The heat transfer tube was also tested using the heat transfer N-bamboo test apparatus shown in FIG. In this device, T is humidity sensor 9, P is perspiration rate, P
D is the difference B-31, 30 is the pump, 31 is the valve, 32
Let flow φM, 33 is an expansion valve, 341! ] Nbulets υ,
35 Haribundenri, 36 is 1 knob Tbaboira, 37
is a constant temperature water tank, and 38 is a heat exchanger tube as a test tube. The evaporation, condensation, and condensation tests were conducted using a 5 m straight heat transfer tube and using refrigerant R22 under the following experimental conditions f1.

蒸発試験  凝縮試験 冷 媒 流 m  (Kg/  H)     40,
60,80     40,60.80蒸発温度(℃)
     5     5例近過熱痕(℃)     
5;−0,55イ4近凝縮温度(’C)      4
!+      45過冷却度(℃)10」−0,55
寸 05水Φ(J/分)      9.0    9
.0水ン’i=    (’C)          
 15〜25     25〜,35この場合、それぞ
れの冷媒流ff1(而/ H)旬に冷媒系が安定づるよ
うIJ水温を制御し、この[水は供試管38に流入する
冷媒に対し向流となるようにバルブ操作した。第6図中
矢印A、へ−は、それぞれ蒸発試験の場合の冷媒および
水の流れる方向を示し、矢印B、B−はそれぞれの凝縮
試験の場合の冷媒および水の流れる方向を示している。
Evaporation test Condensation test refrigerant flow m (Kg/H) 40,
60,80 40,60.80 Evaporation temperature (℃)
5 Overheating marks near 5 cases (℃)
5;-0,55i4 Near condensation temperature ('C) 4
! + 45 degree of supercooling (℃) 10'' -0,55
Size 05 Water Φ (J/min) 9.0 9
.. 0 water 'i = ('C)
15~25 25~,35 In this case, the IJ water temperature is controlled so that the refrigerant system is stabilized at the peak of each refrigerant flow ff1 (H/ I operated the valve to make sure. Arrows A and B in FIG. 6 indicate the flow directions of refrigerant and water in the case of the evaporation test, respectively, and arrows B and B- indicate the flow directions of the refrigerant and water in the case of the condensation test, respectively.

この試験の結果、本発明の方法によって得られた伝熱管
Cは、第7図に示すような優れた伝熱特性を右すること
がわかった。なお、比較例は平滑鋼管、および渦付き鋼
管5mの場合の結果である。
As a result of this test, it was found that the heat transfer tube C obtained by the method of the present invention had excellent heat transfer characteristics as shown in FIG. In addition, the comparative example is the result in the case of a smooth steel pipe and a steel pipe with a vortex of 5 m.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の第1の実施例を示すもので、この発
明に係る伝熱管の一部切欠いて示しlこ斜視図、第2図
はおよび第3図(a)、山)、(C)はそれぞれ等伝熱
管内のスパイラル線を構成する細線の側面図、第4図は
この発明の第3の実施例を示すもので、この発明に係る
伝熱管を構成するスパイラル線の斜視図、第5図はこの
発明の第4の実施例を示すもので、この発明に係る伝熱
管を構成するスパイラル線の斜視図、第6図はこの発明
に変わる伝熱管の伝熱特性を測定するのに好適な試験装
置の構成図、第7図は前記試験装置によって測定したこ
の発明の伝熱管の伝熱特竹植を示すグラ2である。 1・・・・・・管体、1a・・・・・・内面、2.5・
・・・・・細線、3・・・・・・スパイラル線、4・・
・・・・間隙(連続毛細管)、5a・・・・・・切込み
溝、6・・・・・・開口部、7・・・・・・細線(撚線
)、8・・・・・・細線(スパイラル状細線)、7a、
8a・・・・・・極細線。
FIG. 1 shows a first embodiment of the present invention, and shows a partially cutaway perspective view of a heat exchanger tube according to the present invention, and FIG. C) is a side view of a thin wire constituting a spiral wire in a heat exchanger tube, and FIG. 4 shows a third embodiment of the present invention, and is a perspective view of a spiral wire constituting a heat exchanger tube according to the present invention. , FIG. 5 shows a fourth embodiment of the present invention, which is a perspective view of the spiral wire constituting the heat exchanger tube according to the present invention, and FIG. 6 shows the measurement of the heat transfer characteristics of the heat exchanger tube according to the present invention. FIG. 7 is a block diagram of a test device suitable for the above-mentioned test device, and is a graph 2 showing the heat transfer special bamboo planting of the heat transfer tube of the present invention measured by the test device. 1...Pipe body, 1a...Inner surface, 2.5.
...Thin wire, 3...Spiral wire, 4...
... Gap (continuous capillary), 5a ... Cut groove, 6 ... Opening, 7 ... Thin wire (twisted wire), 8 ... Thin wire (spiral thin wire), 7a,
8a...extremely thin wire.

Claims (3)

【特許請求の範囲】[Claims] (1)銅また銅合金製の内面平滑または内面溝付の管体
の内面にこの管体の内径寸法とほぼ同寸法の巻径の銅ま
たは銅合金細線製のスパイラル線が密着固定されてなる
熱交換器用伝熱管。
(1) A spiral wire made of fine copper or copper alloy wire with a winding diameter approximately the same as the inner diameter of the tube is closely fixed to the inner surface of a tube made of copper or copper alloy with a smooth or grooved inner surface. Heat exchanger tubes for heat exchangers.
(2)銅または銅合金細線が、スパイラル状の極細線ま
たは撚線または編組線から構成されていることを特徴と
する特許請求の範囲第1項記載の熱交換器用伝熱管。
(2) The heat exchanger tube for a heat exchanger according to claim 1, wherein the copper or copper alloy thin wire is composed of a spiral ultrafine wire, a stranded wire, or a braided wire.
(3)銅または銅合金細線の外周面上に連続的または間
歇的に切込み溝が形成されていることを特徴とする特許
請求の範囲第1項記載の熱交換器用伝熱管。
(3) The heat exchanger tube for a heat exchanger according to claim 1, wherein cut grooves are formed continuously or intermittently on the outer peripheral surface of the thin copper or copper alloy wire.
JP13464384A 1984-06-29 1984-06-29 Heat transfer tube for heat exchanger Pending JPS6115091A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13464384A JPS6115091A (en) 1984-06-29 1984-06-29 Heat transfer tube for heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13464384A JPS6115091A (en) 1984-06-29 1984-06-29 Heat transfer tube for heat exchanger

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP13373289A Division JPH0635920B2 (en) 1989-05-26 1989-05-26 Heat transfer tube for heat exchanger

Publications (1)

Publication Number Publication Date
JPS6115091A true JPS6115091A (en) 1986-01-23

Family

ID=15133157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13464384A Pending JPS6115091A (en) 1984-06-29 1984-06-29 Heat transfer tube for heat exchanger

Country Status (1)

Country Link
JP (1) JPS6115091A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR950019617A (en) * 1993-12-31 1995-07-24 페터스, 라이헬트 Heat exchanger pipe with facility charge
EP1111323A3 (en) * 1999-12-20 2003-11-26 General Electric Company Article surface with metal wires and method for making
JP2010133644A (en) * 2008-12-04 2010-06-17 Hitachi Appliances Inc Distributor
CN102213495A (en) * 2010-04-07 2011-10-12 北京佳盛世纪科技有限公司 Split solar secondary heat pipe
GB2452369B (en) * 2007-08-31 2012-07-11 Retermia Oy Equipment and method for making a needle-fin tube
CN103727826A (en) * 2013-12-23 2014-04-16 江苏大学 Spiral-finned heat exchange tube
CN104880112A (en) * 2015-04-16 2015-09-02 无锡锡能锅炉有限公司 Few-end spiral coil and method for assembling large multi-end spiral coil by few-end spiral coils

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49101953A (en) * 1973-01-31 1974-09-26

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49101953A (en) * 1973-01-31 1974-09-26

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR950019617A (en) * 1993-12-31 1995-07-24 페터스, 라이헬트 Heat exchanger pipe with facility charge
EP1111323A3 (en) * 1999-12-20 2003-11-26 General Electric Company Article surface with metal wires and method for making
GB2452369B (en) * 2007-08-31 2012-07-11 Retermia Oy Equipment and method for making a needle-fin tube
JP2010133644A (en) * 2008-12-04 2010-06-17 Hitachi Appliances Inc Distributor
CN102213495A (en) * 2010-04-07 2011-10-12 北京佳盛世纪科技有限公司 Split solar secondary heat pipe
CN103727826A (en) * 2013-12-23 2014-04-16 江苏大学 Spiral-finned heat exchange tube
CN103727826B (en) * 2013-12-23 2016-03-02 江苏大学 A kind of heat exchanger tube with helical fin
CN104880112A (en) * 2015-04-16 2015-09-02 无锡锡能锅炉有限公司 Few-end spiral coil and method for assembling large multi-end spiral coil by few-end spiral coils

Similar Documents

Publication Publication Date Title
JPS6115091A (en) Heat transfer tube for heat exchanger
EP2423585B1 (en) Method of forming, inserting and permanently bonding ribs in boiler tubes
US4251907A (en) Method for the manufacture of thin-walled metal tubes
US2268680A (en) Heat exchanger with wire heat conductors
CN110449483A (en) A kind of composite filament preparation method of stainless steel cladding steel wire
US4503602A (en) Method for the manufacture of a superconducting hollow conductor
US4537642A (en) Method of manufacturing Al-stabilized superconductor
JP2004190922A (en) Heat exchanger
US4074753A (en) Heat transfer in pool boiling
JPS6114032A (en) Manufacture of heat transfer tube for heat exchanger
JPS6115094A (en) Heat transfer tube for use in heat exchanger
WO2004059666A1 (en) PROCESS FOR PRODUCING Nb3Al SUPERCONDUCTIVE WIRE ROD AND Nb3Al SUPERCONDUCTIVE WIRE ROD PRODUCED BY THE PROCESS
US3928909A (en) Method for producing cartridge heaters
JPH0531080B2 (en)
JPS6115092A (en) Heat transfer tube for use in heat exchanger
JPH02140596A (en) Heat transfer pipe for heat exchanger
JPS5830682B2 (en) Conductor No. Seizouhouhou
JPS6149726A (en) Manufacture of heat transfer pipe for heat exchanger
JPS5818086A (en) Double tube type heat exchanger
JPS603932A (en) Production of heat exchanger
GB341887A (en) Improvements relating to the manufacture of hlongated metal bodies comprising a core and smooth shell
JPS62107880A (en) Production of seam welded pipe
JP4010080B2 (en) Bending correction method for high temperature superconducting cable core
JPH0824954B2 (en) Wire drawing device
SU1175239A2 (en) Heat-exchange pipe and method of manufacturing same