JP3393191B2 - The method of snow melting apparatus using a solar cell - Google Patents

The method of snow melting apparatus using a solar cell

Info

Publication number
JP3393191B2
JP3393191B2 JP09458297A JP9458297A JP3393191B2 JP 3393191 B2 JP3393191 B2 JP 3393191B2 JP 09458297 A JP09458297 A JP 09458297A JP 9458297 A JP9458297 A JP 9458297A JP 3393191 B2 JP3393191 B2 JP 3393191B2
Authority
JP
Japan
Prior art keywords
solar cell
power
snow
snow melting
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09458297A
Other languages
Japanese (ja)
Other versions
JPH10285966A (en
Inventor
孝志 中澤
制意 今坂
木下  清
一王 河原林
Original Assignee
園田計器工業株式会社
日本電池株式会社
関西電力株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 園田計器工業株式会社, 日本電池株式会社, 関西電力株式会社 filed Critical 園田計器工業株式会社
Priority to JP09458297A priority Critical patent/JP3393191B2/en
Publication of JPH10285966A publication Critical patent/JPH10285966A/en
Application granted granted Critical
Publication of JP3393191B2 publication Critical patent/JP3393191B2/en
Anticipated expiration legal-status Critical
Application status is Expired - Fee Related legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion electric or electronic aspects
    • Y02E10/58Maximum power point tracking [MPPT] systems

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は太陽電池発電システムにおける融雪装置の制御方法に関するものであり、双方向(順変換動作及び逆変換動作)のパワーコンディショナーを簡易に、効率良く制御することのできる制御方法に関するものである。 BACKGROUND OF THE INVENTION [0001] [Technical Field of the Invention The present invention relates to a control method of the snow melting apparatus in the solar cell power generation system, the power conditioner bidirectional (forward conversion operation and inverse transform operation) simply, it relates to a control method capable of efficiently controlled. 【0002】 【従来の技術】太陽電池は、太陽光の光エネルギーを太陽電池によって電気エネルギーに変換することにより発電する。 [0002] Solar cells generates electricity by converting the light energy of sunlight into electric energy by the solar cell. 通常は太陽電池による発電電力をパワーコンディショナーの逆変換動作により、直流電力を交流電力に変換し系統に電力を逆潮流する。 Normally the inverse conversion operation of the electric power generated power conditioner by the solar cell and the backward flow power to the system converts DC power to AC power. 【0003】太陽電池発電システムにおける融雪装置は、この太陽電池に外部から適当な直流電力を加えて発熱体として使用し、積雪を融雪するものであり、従来は融雪センサー等を屋外に取り付け、この信号によりパワーコンディショナーを停止していた。 [0003] snow melting apparatus in the solar cell power generation system uses a heat generating member by adding a suitable DC power from the outside to the solar cell is intended to snow melting the snow, the conventional mounting the snow melting sensor or the like outdoors, this It had stopped the power conditioner by the signal. 【0004】 【発明が解決しようとする課題】しかしながら、特殊な融雪センサーなどを取り付けこの信号により制御する必要から装置が複雑となる欠点があった。 However [0005], the system from the need to control this signal mounting and special snow melting sensor has a disadvantage that complicated. 本発明では太陽電池に加える直流電力の適切な制御方法を確立し、パワーコンディショナーを停止した時の太陽電池の発電電圧を監視し、予め設定した値以上あることで融雪したことを検出する。 The present invention establishes an appropriate control method of the DC power applied to the solar cell, monitors the generated voltage of the solar cell when it stops power conditioner, detects that it has snow melting by more than a preset value. 【0005】 【課題を解決するための手段】太陽電池に直流電力を加えると、太陽電池は温度上昇し結果として端子電圧が低下する。 [0005] The addition of the DC power to the solar cell Means for Solving the Problems], solar cells terminal voltage decreases as the elevated result temperature. パワーコンディショナーはこの直流電力を制御し、低温時は定電圧で発熱させ、温度が上昇すると太陽電池の端子電圧が低下しパワーコンディショナーは定電圧から定電流で電力を供給する。 Power conditioner controls the DC power, at low temperatures the heat is generated at a constant voltage, the power conditioner terminal voltage drops of the solar cell when the temperature rises to supply power at a constant current from the constant voltage. 太陽電池の積雪が融雪されたことの検出は、日照時の太陽電池の発電電圧を電圧継電器で検出する。 Detection of the snow of the solar cell is snow melting detects a generated voltage of the solar cell during daylight voltage relay. このためパワーコンディショナーは、一定時間ごとに短時間停止するかまたは、定電流制御状態になると停止し、太陽電池の発電出力電圧を確認する。 Therefore power conditioner, or to stop short at regular intervals, and stops when the constant current control state, to confirm the generation output voltage of the solar cell. なお、停止は融雪のための遅延時間を設けることも可能である。 Note that stopping is also possible to provide the delay time for melting snow. 【0006】本発明の融雪装置の停止方法では、太陽光発電システムのパワーコンディショナーを使用し、双方向制御を行うことにより可能となり、特殊な融雪センサーを必要としない。 [0006] In method of stopping snow melting apparatus of the present invention uses a power conditioner for photovoltaic systems, made possible by performing the bidirectional control, it does not require a special snow melting sensors. 【0007】 【発明の実施の形態】本発明の太陽電池発電システムにおける融雪装置の制御方法は、パワーコンディショナーを起動させた後、太陽電池に直流電力を供給し、一定時間ごと又は、定電圧状態をはずれた後は一定時間ごとに融雪動作を一旦停止させ、太陽電池の発電電圧を検出し、予め設定された電圧に達した場合に、パワーコンディショナーの順変換動作を停止し、逆変換動作による太陽光発電ができる状態に戻す。 [0007] The method of snow melting apparatus in the solar cell power generation system of the embodiment of the present invention is, after starting the power conditioner, and supplies DC power to the solar cell, at regular time intervals or a constant voltage condition after off-once stops the snow melting operation at predetermined time intervals, when detecting the generated voltage of the solar cell, it reaches a preset voltage, and stops the forward conversion operation of the power conditioner, by the inverse transform operation back to the state that it is solar power. 【0008】実際は、太陽電池の融雪装置は手動で起動し、パワーコンディショナーの順変換動作により積雪が融雪されるにしたがって、太陽電池の温度が上昇し、その温度上昇に伴って電圧が低下し、さらに電流が流れようとする。 [0008] In fact, snow melting apparatus of the solar cell was started manually, according to snow is melting snow by the forward transform operation of the power conditioner, the temperature of the solar cell increases, the voltage decreases as the temperature rises, Furthermore, the current tends to flow. パワーコンディショナーは定電圧及び定電流制御機能を有し、太陽電池に直流電力を供給する。 Power conditioner has a constant voltage and constant current control function, and supplies DC power to the solar cell. このパワーコンディショナーの順変換動作は、一定時間ごとまたは、定電圧制御状態をはずれた後一定時間ごとに停止し、太陽電池の発電電圧が予め設定された値以上で、 Forward conversion operation of the power conditioner, constant time intervals or to stop at regular intervals after the out constant voltage control state, the power generation voltage of the solar cell pre-set value or more,
融雪されたことを検知し、パワーコンディショナーを逆変換動作できる状態に切り替える。 It detects that the snow melting switches ready for inverse conversion of the power conditioner. ただし、装置としては手動による停止、起動はできる。 However, stop by manual as a device, activation can. このようにすることにより、危険な除雪作業をなくすることができるとともに、従来の系統連系システムから大きく部品を追加することもないのでコスト的にも有利となる。 In this way, it is possible to eliminate the dangerous snow removal, it is advantageous in terms of cost since nor to add a large part from the conventional system interconnection system. 【0009】 【実施例】図1はこの発明の実施例であり、太陽電池融雪装置の主要回路を例示したものである。 [0009] [Embodiment] FIG. 1 is an embodiment of the present invention, is an illustration of a main circuit of the solar cell snow melting device. 【0010】図1に示すように、パワーコンディショナ61は融雪装置の主要機器となり、太陽電池の発電電力を系統に逆潮流する逆変換動作と、融雪時は系統からの電力を太陽電池に加える順変換動作を行う。 [0010] As shown in FIG. 1, the power conditioner 61 becomes the major equipment for snow melting apparatus, the inverse transform operation and, when melting snow that backward flow of the electric power generated by the solar battery to the system applies power from the grid on the solar cell perform the forward conversion operation. 制御装置6 The control device 6
2はこの順変換動作と逆変換動作の指令を出力する。 2 outputs a command for the forward transformation operation and inverse transform operations. 通常太陽電池(11〜13)からは逆流防止ダイオード(21〜23)をへてパワーコンディショナー61に電力を送出される。 Delivered power to the power conditioner 61 normally fart a blocking diode (21 to 23) from the solar cell (11 to 13). また、抵抗器(31〜33)と電磁接触器(41〜43)の直列回路が逆流防止ダイオード(21〜23)に並列接続され、抵抗器(31〜33) Further, the resistor (31 to 33) and the series circuit of the electromagnetic contactor (41 to 43) are connected in parallel to the blocking diode (21 to 23), a resistor (31 to 33)
は太陽電池に流れる電流をバランスさせるものであり、 Is intended is to balance the current flowing through the solar cells,
融雪動作時に電磁接触器(41〜43)が閉となり、太陽電池に直流電力が供給される。 Electromagnetic contactors (41 to 43) is closed during snow melting operation, DC power is supplied to the solar cell. 融雪の検出は直流電圧継電器51で行う。 Detection of snow melting is performed at DC voltage relay 51. 直流電流の検出器71は融雪時にその電流を検出する手段、交流側の電流検出器81は定電力制御に使用するものである。 It means the detector 71 of the direct current to detect the current at the time of melting snow, the AC side of the current detector 81 is for use in the constant power control. 【0011】図2は同様の方式で逆流防止ダイオード(21〜23)に並列接続された電磁接触器41を各太陽電池のストリングに設けず一括で制御する例である。 [0011] FIG. 2 shows an example of control at once without disposing a string of the solar cell electromagnetic contactor 41 connected in parallel to the blocking diode (21 to 23) in a similar manner. 【0012】融雪装置を起動する場合は、手動スイッチ01を融雪側にONにする。 [0012] If you want to start the snow melting apparatus to ON the manual switch 01 to the snow-melting side. これにより制御装置はパワーコンディショナー61を順変換動作で起動する。 Thus, the control unit activates the power conditioner 61 by the forward transform operation. この場合電磁接触器(41〜43)が閉となり、太陽電池(11〜13)に電流制限抵抗器(31〜33)を介して直流電力が供給される。 In this case the electromagnetic contactor (41 to 43) is closed, DC power is supplied through a current limiting resistor to the solar cell (11 to 13) (31 to 33). パワーコンディショナー61 Power conditioner 61
は定電圧状態で電力を供給する。 Supplies power at a constant voltage state. 太陽電池の温度上昇により電圧が低下するとパワーコンディショナー61は定電流制御にはいる。 When the voltage drops due to the temperature rise of the solar cell power conditioners 61 enters the constant current control. パワーコンディショナー61は一定の時間ごとに又は、定電圧制御状態からはずれた後一定時間ごと一旦停止する。 Power conditioner 61 or every predetermined time, and stops once every fixed time after deviating from the constant voltage control state. 停止中に直流電圧継電器51は太陽電池の発電電圧を検出し、予め設定された電圧以上が発生していれば、融雪されたと判断してパワーコンディショナー61を停止する。 DC voltage relay 51 during the stoppage detects the generated voltage of the solar cell, if generated over preset voltage, stops the power conditioner 61 is judged to have been snow melting. 発電電圧が設定値より低い場合は再度パワーコンディショナー61は運転を再開し直流電力を供給する。 Power conditioner 61 when the generated voltage is lower than the set value again supplies a DC power to resume operation. 直流電圧継電器51が検出するまでパワーコンディショナー61は一定の時間間隔で運転停止を繰り返す。 Power conditioner 61 to detect the DC voltage relay 51 repeats the operation is stopped by a fixed time interval. なお、再度融雪動作を行う必要があれば手動スイッチ01を融雪側にONする。 Note that ON the manual switch 01 to the snow melting side if necessary to perform snow melting operation again. また、融雪モードを途中で中止したい場合は手動スイッチ01をOF In addition, the manual switch 01 If you want to stop the snow-melting mode in the middle OF
Fにする。 To F. 【0013】図3は制御状態の特性を示すものであり、 [0013] Figure 3 shows a characteristic of a control state,
起動時は定電圧制御状態から始まり、太陽電池の温度が上昇すると定電流制御状態に移る。 Startup begins from the constant voltage control state, passes to the constant-current control state when the temperature of the solar cell rises. 【0014】図4は制御回路の構成を示す。 [0014] Figure 4 shows the configuration of a control circuit. パワーコンディショナーの制御装置62は、従来の系統連系動作の制御回路に、順変換、逆変換動作の切り替え回路101 Controller 62 of the power conditioner, the control circuit of the conventional system interconnection operation, forward transform, the inverse transform operation switching circuit 101
及び直流電圧制御回路102、直流電流制御回路103 And DC voltage control circuit 102, the DC current control circuit 103
が付加されている。 There has been added. 【0015】 【発明の効果】降雪地域で太陽光発電システムを設置すると、傾斜屋根の除雪が困難となり、特に個人住宅では太陽電池の表面は滑りやすく、屋根に登ることが危険となる。 [0015], according to the present invention and installing a solar power system in the snowfall areas, snow removal of the inclined roof becomes difficult, especially the surface of the solar cell in the individual houses is easy to slip, the danger is to climb to the roof. 本発明により、従来の日照時の太陽光発電による電力の逆潮流を行うと同時に、降雪、積雪時にはパワーコンディショナーを順変換動作させ、太陽電池の温度上昇による融雪ができる機能を持たすことができ、結果、 The present invention, concurrently with providing backward flow power by the photovoltaic power generation at the time of conventional sunshine, snowfall, a power conditioner is sequentially converted work when snow, elastic coils can be provided a function that allows snow melt due to the temperature rise of the solar cell, result,
危険な除雪作業をなくする特長を持つ。 With features that eliminate the dangerous snow removal work. また、回路方式も従来の系統連系システムから大きく部品が追加されることが無く、コスト的にも実現可能な範囲となっている。 The circuit method also without the large components from a conventional system interconnection system is added, has a cost to be feasible range.

【図面の簡単な説明】 【図1】本発明融雪装置の制御方法の一実施例を示す回路図【図2】本発明融雪装置の制御方法の他の一実施例を示す回路図【図3】融雪動作時のパワーコンディショナーの順変換動作時の出力特性図【図4】制御装置の構成を示した図【符号の説明】 01 手動スイッチ(融雪動作起動/停止) 11〜13 太陽電池21〜23 逆流防止ダイオード31〜33 電流制限用抵抗器41〜43 電磁接触器51 直流電圧継電器61 パワーコンディショナー62 制御装置71 直流電流検出器81 交流電流検出器101 逆変換動作の切り替え回路102 直流電圧制御回路103 直流電流制御回路104 直流電力制御回路 Circuit diagram showing another embodiment of the control method of the circuit diagram the invention; FIG snow melting apparatus according to an embodiment of the control method of the BRIEF DESCRIPTION OF THE DRAWINGS [Figure 1] The present invention snow melting apparatus 3 ] description Figure [sign showing the configuration of an output characteristic diagram of the forward transform operation of the power conditioner during snow melting operation [4] controller] 01 manual switch (snow-melting operation start / stop) 11 to 13 solar cells 21 to 23 blocking diode 31 to 33 current limiting resistor 41 to 43 the electromagnetic contactor 51 DC voltage relay 61 power conditioner 62 controller 71 DC current detector 81 AC current detector 101 switching circuit 102 DC voltage control circuit of the inverse transform operation 103 DC current control circuit 104 direct-current power control circuit

フロントページの続き (72)発明者 木下 清 兵庫県尼崎市若王子3丁目12番15号 園 田計器工業株式会社内(72)発明者 今坂 制意 京都市南区吉祥院西ノ庄猪之馬場町1番 地 日本電池株式会社内(72)発明者 河原林 一王 京都市南区吉祥院西ノ庄猪之馬場町1番 地 日本電池株式会社内 (56)参考文献 特開 平9−23019(JP,A) 特開 平5−82817(JP,A) (58)調査した分野(Int.Cl. 7 ,DB名) H02N 6/00 E01H 5/10 G05F 1/67 H01L 31/04 Of the front page Continued (72) inventor Kiyoshi Kinoshita Amagasaki, Hyogo Prefecture Nyakuoji 3-chome 12th No. 15 Garden field instrument industry within Co., Ltd. (72) inventor now hill Seii, Minami-ku, Kyoto Kisshoin'nishinoshoinobaba-cho 1 Ban areas Japan Storage battery Co., Ltd. in the (72) inventor Kawarabayashi the time being, Minami-ku, Kyoto Kisshoin'nishinoshoinobaba-cho, the No. 1 destination Japan Storage battery Co., Ltd. in the (56) reference Patent flat 9-23019 (JP, a) Patent flat 5-82817 (JP, a) (58 ) investigated the field (Int.Cl. 7, DB name) H02N 6/00 E01H 5/10 G05F 1/67 H01L 31/04

Claims (1)

  1. (57)【特許請求の範囲】 【請求項1】太陽電池モジュールを複数個直列に接続し、その出力に逆流防止ダイオードを設けた太陽電池のストリングを複数組併設し、太陽電池発電時にはこれらの出力をパワーコンディショナーを介して系統に電力を逆潮流し、また、太陽電池上の積雪の融雪時にはパワー (57) Connect the [claimed is: 1. A solar cell module in series a plurality of solar cells in which a blocking diode to the output string to the hotel plurality of sets, at the time of solar cell power generation of output flushed head tide power to the grid through a power conditioner and power at the time of snow melting snow on the solar cell
    コンディショナーを順変換動作させ、上記逆流防止ダイオードと並列接続された接触器と抵抗の直列回路を介して直流電力を太陽電池側へ供給し、太陽電池の加熱融雪する装置において、各ストリングに直流電圧検出器を設け、融雪時にパワーコンディショナーの順変換動作を短時間停止させ、その時の各ストリングの出力電圧が予め設定した値に達しておれば融雪動作を停止させ、発電側に切り替えることを特徴とする太陽光発電を使用した融雪装置の制御方法。 The conditioner is forward conversion operation, via a series circuit of the blocking diode and connected in parallel contactors resistance to supply DC power to the solar cell side, in the apparatus for heating snow melting of the solar cell, a DC voltage to each string the detector is provided, a short time to stop the forward transform operation of the power conditioner when melting snow, stopping the snow melting operation if I reached a value output voltage is preset for each string at that time, and wherein the switching to the power generation side the method of snow melting apparatus using solar power to.
JP09458297A 1997-03-28 1997-03-28 The method of snow melting apparatus using a solar cell Expired - Fee Related JP3393191B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09458297A JP3393191B2 (en) 1997-03-28 1997-03-28 The method of snow melting apparatus using a solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09458297A JP3393191B2 (en) 1997-03-28 1997-03-28 The method of snow melting apparatus using a solar cell

Publications (2)

Publication Number Publication Date
JPH10285966A JPH10285966A (en) 1998-10-23
JP3393191B2 true JP3393191B2 (en) 2003-04-07

Family

ID=14114280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09458297A Expired - Fee Related JP3393191B2 (en) 1997-03-28 1997-03-28 The method of snow melting apparatus using a solar cell

Country Status (1)

Country Link
JP (1) JP3393191B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102255573A (en) * 2011-07-21 2011-11-23 优太太阳能科技(上海)有限公司 Control method for improving photoelectric conversion efficiency in photovoltaic power generation system

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9130401B2 (en) 2006-12-06 2015-09-08 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8816535B2 (en) 2007-10-10 2014-08-26 Solaredge Technologies, Ltd. System and method for protection during inverter shutdown in distributed power installations
US8319471B2 (en) 2006-12-06 2012-11-27 Solaredge, Ltd. Battery power delivery module
US9112379B2 (en) 2006-12-06 2015-08-18 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US8384243B2 (en) 2007-12-04 2013-02-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8618692B2 (en) 2007-12-04 2013-12-31 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US8013472B2 (en) 2006-12-06 2011-09-06 Solaredge, Ltd. Method for distributed power harvesting using DC power sources
US9218013B2 (en) * 2007-11-14 2015-12-22 Tigo Energy, Inc. Method and system for connecting solar cells or slices in a panel system
WO2009072075A2 (en) 2007-12-05 2009-06-11 Solaredge Technologies Ltd. Photovoltaic system power tracking method
EP2232690B1 (en) 2007-12-05 2016-08-31 Solaredge Technologies Ltd. Parallel connected inverters
CN101933209B (en) 2007-12-05 2015-10-21 太阳能安吉有限公司 Safety mechanism distributed power device, waking up and shut
GB2485527B (en) 2010-11-09 2012-12-19 Solaredge Technologies Ltd Arc detection and prevention in a power generation system
GB2486408A (en) 2010-12-09 2012-06-20 Solaredge Technologies Ltd Disconnection of a string carrying direct current
GB2483317B (en) 2011-01-12 2012-08-22 Solaredge Technologies Ltd Serially connected inverters
GB2498790A (en) 2012-01-30 2013-07-31 Solaredge Technologies Ltd Maximising power in a photovoltaic distributed power system
GB2498791A (en) 2012-01-30 2013-07-31 Solaredge Technologies Ltd Photovoltaic panel circuitry
GB2499991A (en) 2012-03-05 2013-09-11 Solaredge Technologies Ltd DC link circuit for photovoltaic array
US10115841B2 (en) 2012-06-04 2018-10-30 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter
US9548619B2 (en) 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
EP3506370A1 (en) 2013-03-15 2019-07-03 Solaredge Technologies Ltd. Bypass mechanism
US9748762B2 (en) 2014-03-21 2017-08-29 Abb Schweiz Ag Method and apparatus for the protection of DC distribution systems
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
US9419428B2 (en) 2014-05-15 2016-08-16 Abb Technology Ag Protection device for DC collection systems
JP2016163380A (en) * 2015-02-27 2016-09-05 株式会社日立製作所 Power conversion device and photovoltaic power generation system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102255573A (en) * 2011-07-21 2011-11-23 优太太阳能科技(上海)有限公司 Control method for improving photoelectric conversion efficiency in photovoltaic power generation system

Also Published As

Publication number Publication date
JPH10285966A (en) 1998-10-23

Similar Documents

Publication Publication Date Title
US6285572B1 (en) Method of operating a power supply system having parallel-connected inverters, and power converting system
US5592074A (en) Battery power supply system
JP3541982B2 (en) Line overvoltage protection method and apparatus for photovoltaic power converter
ES2224116T3 (en) Method of measuring the state of insulation and apparatus for a power generator decentralized system.
EP0915348B1 (en) Ground fault detection and protection method for a variable speed ac electric motor
KR100614570B1 (en) Power supply unit
US6448489B2 (en) Solar generation system
Herrmann et al. Low cost DC to AC converter for photovoltaic power conversion in residential applications
JP4160919B2 (en) The inverter device
US5886890A (en) Power-supply system involving system interconnection
US5723956A (en) Low cost electronic ultracapacitor interface technique to provide load leveling of a battery for pulsed load or motor traction drive applications
CA1259655A (en) Interface control for storage battery based alternate energy system
KR960016604B1 (en) Single phase ac power conversion apparatus
CN100517159C (en) Solar power generating device
US4725740A (en) DC-AC converting arrangement for photovoltaic system
JP3329168B2 (en) Backflow prevention device
JP3767767B2 (en) Charge control method and charge control device
US5977659A (en) Inverter apparatus and solar power generation apparatus
US5923100A (en) Apparatus for controlling a solar array power system
US5560218A (en) Control apparatus and method for an air conditioner
EP0137756A2 (en) Motor vehicle electrical system
JP4353446B2 (en) DC power output apparatus and photovoltaic systems
Swiegers et al. An integrated maximum power point tracker for photovoltaic panels
JPH08275390A (en) Method and apparatus for controlling charging and discharging, and power generating system having such apparatus
JP3655831B2 (en) Booster unit, power conditioners, and solar power generation system using them

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D04

LAPS Cancellation because of no payment of annual fees