JP3393191B2 - Control method of snow melting device using solar cell - Google Patents

Control method of snow melting device using solar cell

Info

Publication number
JP3393191B2
JP3393191B2 JP09458297A JP9458297A JP3393191B2 JP 3393191 B2 JP3393191 B2 JP 3393191B2 JP 09458297 A JP09458297 A JP 09458297A JP 9458297 A JP9458297 A JP 9458297A JP 3393191 B2 JP3393191 B2 JP 3393191B2
Authority
JP
Japan
Prior art keywords
power
solar cell
snow melting
snow
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09458297A
Other languages
Japanese (ja)
Other versions
JPH10285966A (en
Inventor
孝志 中澤
木下  清
制意 今坂
一王 河原林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Original Assignee
Kansai Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc filed Critical Kansai Electric Power Co Inc
Priority to JP09458297A priority Critical patent/JP3393191B2/en
Publication of JPH10285966A publication Critical patent/JPH10285966A/en
Application granted granted Critical
Publication of JP3393191B2 publication Critical patent/JP3393191B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は太陽電池発電システ
ムにおける融雪装置の制御方法に関するものであり、双
方向(順変換動作及び逆変換動作)のパワーコンディシ
ョナーを簡易に、効率良く制御することのできる制御方
法に関するものである。 【0002】 【従来の技術】太陽電池は、太陽光の光エネルギーを太
陽電池によって電気エネルギーに変換することにより発
電する。通常は太陽電池による発電電力をパワーコンデ
ィショナーの逆変換動作により、直流電力を交流電力に
変換し系統に電力を逆潮流する。 【0003】太陽電池発電システムにおける融雪装置
は、この太陽電池に外部から適当な直流電力を加えて発
熱体として使用し、積雪を融雪するものであり、従来は
融雪センサー等を屋外に取り付け、この信号によりパワ
ーコンディショナーを停止していた。 【0004】 【発明が解決しようとする課題】しかしながら、特殊な
融雪センサーなどを取り付けこの信号により制御する必
要から装置が複雑となる欠点があった。本発明では太陽
電池に加える直流電力の適切な制御方法を確立し、パワ
ーコンディショナーを停止した時の太陽電池の発電電圧
を監視し、予め設定した値以上あることで融雪したこと
を検出する。 【0005】 【課題を解決するための手段】太陽電池に直流電力を加
えると、太陽電池は温度上昇し結果として端子電圧が低
下する。パワーコンディショナーはこの直流電力を制御
し、低温時は定電圧で発熱させ、温度が上昇すると太陽
電池の端子電圧が低下しパワーコンディショナーは定電
圧から定電流で電力を供給する。太陽電池の積雪が融雪
されたことの検出は、日照時の太陽電池の発電電圧を電
圧継電器で検出する。このためパワーコンディショナー
は、一定時間ごとに短時間停止するかまたは、定電流制
御状態になると停止し、太陽電池の発電出力電圧を確認
する。なお、停止は融雪のための遅延時間を設けること
も可能である。 【0006】本発明の融雪装置の停止方法では、太陽光
発電システムのパワーコンディショナーを使用し、双方
向制御を行うことにより可能となり、特殊な融雪センサ
ーを必要としない。 【0007】 【発明の実施の形態】本発明の太陽電池発電システムに
おける融雪装置の制御方法は、パワーコンディショナー
を起動させた後、太陽電池に直流電力を供給し、一定時
間ごと又は、定電圧状態をはずれた後は一定時間ごとに
融雪動作を一旦停止させ、太陽電池の発電電圧を検出
し、予め設定された電圧に達した場合に、パワーコンデ
ィショナーの順変換動作を停止し、逆変換動作による太
陽光発電ができる状態に戻す。 【0008】実際は、太陽電池の融雪装置は手動で起動
し、パワーコンディショナーの順変換動作により積雪が
融雪されるにしたがって、太陽電池の温度が上昇し、そ
の温度上昇に伴って電圧が低下し、さらに電流が流れよ
うとする。パワーコンディショナーは定電圧及び定電流
制御機能を有し、太陽電池に直流電力を供給する。この
パワーコンディショナーの順変換動作は、一定時間ごと
または、定電圧制御状態をはずれた後一定時間ごとに停
止し、太陽電池の発電電圧が予め設定された値以上で、
融雪されたことを検知し、パワーコンディショナーを逆
変換動作できる状態に切り替える。ただし、装置として
は手動による停止、起動はできる。このようにすること
により、危険な除雪作業をなくすることができるととも
に、従来の系統連系システムから大きく部品を追加する
こともないのでコスト的にも有利となる。 【0009】 【実施例】図1はこの発明の実施例であり、太陽電池融
雪装置の主要回路を例示したものである。 【0010】図1に示すように、パワーコンディショナ
61は融雪装置の主要機器となり、太陽電池の発電電力
を系統に逆潮流する逆変換動作と、融雪時は系統からの
電力を太陽電池に加える順変換動作を行う。制御装置6
2はこの順変換動作と逆変換動作の指令を出力する。通
常太陽電池(11〜13)からは逆流防止ダイオード
(21〜23)をへてパワーコンディショナー61に電
力を送出される。また、抵抗器(31〜33)と電磁接
触器(41〜43)の直列回路が逆流防止ダイオード
(21〜23)に並列接続され、抵抗器(31〜33)
は太陽電池に流れる電流をバランスさせるものであり、
融雪動作時に電磁接触器(41〜43)が閉となり、太
陽電池に直流電力が供給される。融雪の検出は直流電圧
継電器51で行う。直流電流の検出器71は融雪時にそ
の電流を検出する手段、交流側の電流検出器81は定電
力制御に使用するものである。 【0011】図2は同様の方式で逆流防止ダイオード
(21〜23)に並列接続された電磁接触器41を各太
陽電池のストリングに設けず一括で制御する例である。 【0012】融雪装置を起動する場合は、手動スイッチ
01を融雪側にONにする。これにより制御装置はパワ
ーコンディショナー61を順変換動作で起動する。この
場合電磁接触器(41〜43)が閉となり、太陽電池
(11〜13)に電流制限抵抗器(31〜33)を介し
て直流電力が供給される。パワーコンディショナー61
は定電圧状態で電力を供給する。太陽電池の温度上昇に
より電圧が低下するとパワーコンディショナー61は定
電流制御にはいる。パワーコンディショナー61は一定
の時間ごとに又は、定電圧制御状態からはずれた後一定
時間ごと一旦停止する。停止中に直流電圧継電器51は
太陽電池の発電電圧を検出し、予め設定された電圧以上
が発生していれば、融雪されたと判断してパワーコンデ
ィショナー61を停止する。発電電圧が設定値より低い
場合は再度パワーコンディショナー61は運転を再開し
直流電力を供給する。直流電圧継電器51が検出するま
でパワーコンディショナー61は一定の時間間隔で運転
停止を繰り返す。なお、再度融雪動作を行う必要があれ
ば手動スイッチ01を融雪側にONする。また、融雪モ
ードを途中で中止したい場合は手動スイッチ01をOF
Fにする。 【0013】図3は制御状態の特性を示すものであり、
起動時は定電圧制御状態から始まり、太陽電池の温度が
上昇すると定電流制御状態に移る。 【0014】図4は制御回路の構成を示す。パワーコン
ディショナーの制御装置62は、従来の系統連系動作の
制御回路に、順変換、逆変換動作の切り替え回路101
及び直流電圧制御回路102、直流電流制御回路103
が付加されている。 【0015】 【発明の効果】降雪地域で太陽光発電システムを設置す
ると、傾斜屋根の除雪が困難となり、特に個人住宅では
太陽電池の表面は滑りやすく、屋根に登ることが危険と
なる。本発明により、従来の日照時の太陽光発電による
電力の逆潮流を行うと同時に、降雪、積雪時にはパワー
コンディショナーを順変換動作させ、太陽電池の温度上
昇による融雪ができる機能を持たすことができ、結果、
危険な除雪作業をなくする特長を持つ。また、回路方式
も従来の系統連系システムから大きく部品が追加される
ことが無く、コスト的にも実現可能な範囲となってい
る。
Description: BACKGROUND OF THE INVENTION [0001] 1. Field of the Invention [0002] The present invention relates to a method for controlling a snow melting device in a solar cell power generation system, and relates to a bi-directional (forward conversion operation and reverse conversion operation) power conditioner. The present invention relates to a control method that can easily and efficiently perform control. 2. Description of the Related Art A solar cell generates electric power by converting light energy of sunlight into electric energy by the solar cell. Normally, the power generated by the solar cell is converted into AC power by the reverse conversion operation of the power conditioner, and the power is reversely flowed to the system. [0003] A snow melting device in a solar cell power generation system is used to melt snow by applying an appropriate DC power from the outside to the solar cell and using it as a heating element. Conventionally, a snow melting sensor or the like is installed outdoors. The power conditioner was stopped by a signal. [0004] However, there is a drawback that the apparatus becomes complicated because a special snow melting sensor or the like must be installed and controlled by this signal. In the present invention, an appropriate control method of the DC power applied to the solar cell is established, the generated voltage of the solar cell when the power conditioner is stopped is monitored, and it is detected that the snow has melted when the generated voltage is equal to or higher than a preset value. [0005] When DC power is applied to a solar cell, the temperature of the solar cell rises, and as a result, the terminal voltage decreases. The power conditioner controls the DC power, generates heat at a constant voltage when the temperature is low, and decreases the terminal voltage of the solar cell when the temperature rises, so that the power conditioner supplies power from the constant voltage to a constant current. To detect that the snow on the solar cell has melted, the voltage generated by the solar cell during sunshine is detected by a voltage relay. For this reason, the power conditioner stops for a short period of time at regular intervals, or stops when a constant current control state is established, and checks the power generation output voltage of the solar cell. In addition, it is also possible to provide a delay time for stopping snow melting. The method for stopping a snow melting apparatus according to the present invention is made possible by performing bidirectional control using a power conditioner of a photovoltaic power generation system, and does not require a special snow melting sensor. A method for controlling a snow melting apparatus in a solar cell power generation system according to the present invention is to supply a DC power to a solar cell after starting a power conditioner, and to perform a constant time or constant voltage state. After that, the snow melting operation is temporarily stopped at regular intervals, the generated voltage of the solar cell is detected, and when the voltage reaches a preset voltage, the forward conversion operation of the power conditioner is stopped, and the reverse conversion operation is performed. Return to a state where solar power can be generated. In practice, the snow melting device of the solar cell is manually started, and the temperature of the solar cell rises as the snow melts due to the forward conversion operation of the power conditioner, and the voltage decreases as the temperature rises. Further current is about to flow. The power conditioner has a constant voltage and constant current control function, and supplies DC power to the solar cell. The forward conversion operation of the power conditioner is stopped at regular intervals or at regular intervals after the constant voltage control state is released, and when the power generation voltage of the solar cell is equal to or higher than a preset value,
When the melting of the snow is detected, the power conditioner is switched to a state in which the reverse conversion operation can be performed. However, the device can be manually stopped and started. By doing so, it is possible to eliminate dangerous snow removal work, and it is advantageous in terms of cost because there is no need to add a large part to the conventional grid connection system. FIG. 1 shows an embodiment of the present invention and illustrates a main circuit of a solar cell snow melting apparatus. As shown in FIG. 1, a power conditioner 61 is a main device of a snow melting apparatus, and performs an inverse conversion operation of reversely flowing power generated by a solar cell to a system, and applies power from the system to the solar cell during snow melting. Perform a forward conversion operation. Control device 6
2 outputs commands for the forward conversion operation and the reverse conversion operation. Normally, electric power is transmitted from the solar cells (11 to 13) to the power conditioner 61 through the backflow prevention diodes (21 to 23). Further, a series circuit of the resistors (31-33) and the electromagnetic contactors (41-43) is connected in parallel to the backflow prevention diodes (21-23), and the resistors (31-33) are connected.
Is to balance the current flowing in the solar cell,
During the snow melting operation, the electromagnetic contactors (41 to 43) are closed, and DC power is supplied to the solar cells. The detection of snow melting is performed by the DC voltage relay 51. The DC current detector 71 is means for detecting the current when snow melts, and the AC current detector 81 is used for constant power control. FIG. 2 shows an example in which the electromagnetic contactor 41 connected in parallel to the backflow prevention diodes (21 to 23) is collectively controlled without being provided in each solar cell string in the same manner. To start the snow melting apparatus, the manual switch 01 is turned on to the snow melting side. Thereby, the control device starts the power conditioner 61 by the forward conversion operation. In this case, the electromagnetic contactors (41 to 43) are closed, and DC power is supplied to the solar cells (11 to 13) via the current limiting resistors (31 to 33). Power conditioner 61
Supplies power in a constant voltage state. When the voltage decreases due to a rise in the temperature of the solar cell, the power conditioner 61 starts the constant current control. The power conditioner 61 temporarily stops at regular intervals or at regular intervals after departure from the constant voltage control state. During the stop, the DC voltage relay 51 detects the generated voltage of the solar cell, and if a voltage equal to or higher than a preset voltage is generated, it is determined that the snow has melted and the power conditioner 61 is stopped. If the generated voltage is lower than the set value, the power conditioner 61 resumes operation and supplies DC power again. The operation of the power conditioner 61 is repeated at regular time intervals until the DC voltage relay 51 detects it. If it is necessary to perform the snow melting operation again, the manual switch 01 is turned ON to the snow melting side. If you want to stop the snowmelt mode halfway, turn the manual switch 01 to OFF.
Change to F. FIG. 3 shows the characteristics of the control state.
At the time of startup, the operation starts from the constant voltage control state, and shifts to the constant current control state when the temperature of the solar cell increases. FIG. 4 shows the configuration of the control circuit. The control device 62 of the power conditioner includes a switching circuit 101 for a forward conversion and an inverse conversion operation in a control circuit for a conventional grid connection operation.
And DC voltage control circuit 102, DC current control circuit 103
Is added. When the photovoltaic power generation system is installed in a snowfall area, it becomes difficult to remove snow from the sloping roof. Particularly in a private house, the surface of the solar cell is slippery, and it is dangerous to climb the roof. According to the present invention, at the same time as performing a reverse flow of electric power by solar power generation at the time of conventional sunshine, at the same time as snowfall, it is possible to have a function capable of performing a forward conversion operation of the power conditioner at the time of snowfall and melting snow due to a rise in the temperature of the solar cell, result,
Features that eliminate dangerous snow removal work. In addition, the circuit system does not greatly add components to the conventional system interconnection system, and is in a range that can be realized in terms of cost.

【図面の簡単な説明】 【図1】本発明融雪装置の制御方法の一実施例を示す回
路図 【図2】本発明融雪装置の制御方法の他の一実施例を示
す回路図 【図3】融雪動作時のパワーコンディショナーの順変換
動作時の出力特性図 【図4】制御装置の構成を示した図 【符号の説明】 01 手動スイッチ(融雪動作起動/停止) 11〜13 太陽電池 21〜23 逆流防止ダイオード 31〜33 電流制限用抵抗器 41〜43 電磁接触器 51 直流電圧継電器 61 パワーコンディショナー 62 制御装置 71 直流電流検出器 81 交流電流検出器 101 逆変換動作の切り替え回路 102 直流電圧制御回路 103 直流電流制御回路 104 直流電力制御回路
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a circuit diagram showing one embodiment of a method of controlling a snow melting apparatus of the present invention. FIG. 2 is a circuit diagram showing another embodiment of a controlling method of a snow melting apparatus of the present invention. FIG. 4 is an output characteristic diagram of the power conditioner at the time of forward conversion operation at the time of snow melting operation. FIG. 4 is a diagram showing the configuration of a control device. [Description of References] 01 Manual switch (start / stop of snow melting operation) 11-13 Solar cells 21 23 Backflow prevention diodes 31 to 33 Current limiting resistors 41 to 43 Magnetic contactor 51 DC voltage relay 61 Power conditioner 62 Control device 71 DC current detector 81 AC current detector 101 Switching circuit for reverse conversion operation 102 DC voltage control circuit 103 DC current control circuit 104 DC power control circuit

フロントページの続き (72)発明者 木下 清 兵庫県尼崎市若王子3丁目12番15号 園 田計器工業株式会社内 (72)発明者 今坂 制意 京都市南区吉祥院西ノ庄猪之馬場町1番 地 日本電池株式会社内 (72)発明者 河原林 一王 京都市南区吉祥院西ノ庄猪之馬場町1番 地 日本電池株式会社内 (56)参考文献 特開 平9−23019(JP,A) 特開 平5−82817(JP,A) (58)調査した分野(Int.Cl.7,DB名) H02N 6/00 E01H 5/10 G05F 1/67 H01L 31/04 Continued on the front page (72) Inventor Kiyoshi Kinoshita 3-12-15 Wakaoji, Amagasaki City, Hyogo Pref. Address Nippon Battery Co., Ltd. (72) Inventor Kazuo Kawahara Hayashio, Kyoto City Minami-ku, Kichijoin Nishinosho Inobaba-cho 1 Japan Battery Co., Ltd. (56) References JP-A-9-23019 (JP, A) JP-A-5-82817 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H02N 6/00 E01H 5/10 G05F 1/67 H01L 31/04

Claims (1)

(57)【特許請求の範囲】 【請求項1】太陽電池モジュールを複数個直列に接続
し、その出力に逆流防止ダイオードを設けた太陽電池の
ストリングを複数組併設し、太陽電池発電時にはこれら
の出力をパワーコンディショナーを介して系統に電力を
逆潮流し、また、太陽電池上の積雪の融雪時にはパワー
コンディショナーを順変換動作させ、上記逆流防止ダイ
オードと並列接続された接触器と抵抗の直列回路を介し
て直流電力を太陽電池側へ供給し、太陽電池の加熱融雪
する装置において、各ストリングに直流電圧検出器を設
け、融雪時にパワーコンディショナーの順変換動作を短
時間停止させ、その時の各ストリングの出力電圧が予め
設定した値に達しておれば融雪動作を停止させ、発電側
に切り替えることを特徴とする太陽光発電を使用した融
雪装置の制御方法。
(57) [Claims 1] A plurality of solar cell modules are connected in series, and a plurality of strings of solar cells provided with a backflow prevention diode at the output thereof are provided in parallel. output flushed head tide power to the grid through a power conditioner and power at the time of snow melting snow on the solar cell
The conditioner is operated to perform forward conversion, and supplies direct-current power to the solar cell through a series circuit of a contactor and a resistor connected in parallel with the backflow prevention diode. A detector is provided to temporarily stop the forward conversion operation of the power conditioner during snow melting, and when the output voltage of each string at that time reaches a preset value, stop the snow melting operation and switch to the power generation side. Control method of snow melting device using solar power generation.
JP09458297A 1997-03-28 1997-03-28 Control method of snow melting device using solar cell Expired - Fee Related JP3393191B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09458297A JP3393191B2 (en) 1997-03-28 1997-03-28 Control method of snow melting device using solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09458297A JP3393191B2 (en) 1997-03-28 1997-03-28 Control method of snow melting device using solar cell

Publications (2)

Publication Number Publication Date
JPH10285966A JPH10285966A (en) 1998-10-23
JP3393191B2 true JP3393191B2 (en) 2003-04-07

Family

ID=14114280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09458297A Expired - Fee Related JP3393191B2 (en) 1997-03-28 1997-03-28 Control method of snow melting device using solar cell

Country Status (1)

Country Link
JP (1) JP3393191B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102255573A (en) * 2011-07-21 2011-11-23 优太太阳能科技(上海)有限公司 Control method for improving photoelectric conversion efficiency in photovoltaic power generation system

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11251615A (en) * 1998-03-03 1999-09-17 Canon Inc Photovoltaic power generation system with snow melting function
JP3692801B2 (en) * 1998-12-01 2005-09-07 オムロン株式会社 Snow melting control device, power conditioner and solar power generation system
JP2000214940A (en) * 1999-01-26 2000-08-04 Chudenko Corp Method and device for preventing snow coverage in photovoltaic generation
JP4123673B2 (en) * 2000-03-13 2008-07-23 オムロン株式会社 Snow melting control device and solar power generation system
US10693415B2 (en) 2007-12-05 2020-06-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9130401B2 (en) 2006-12-06 2015-09-08 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8618692B2 (en) 2007-12-04 2013-12-31 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US9112379B2 (en) 2006-12-06 2015-08-18 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US8384243B2 (en) 2007-12-04 2013-02-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8816535B2 (en) 2007-10-10 2014-08-26 Solaredge Technologies, Ltd. System and method for protection during inverter shutdown in distributed power installations
US8013472B2 (en) 2006-12-06 2011-09-06 Solaredge, Ltd. Method for distributed power harvesting using DC power sources
US8319471B2 (en) 2006-12-06 2012-11-27 Solaredge, Ltd. Battery power delivery module
US9218013B2 (en) 2007-11-14 2015-12-22 Tigo Energy, Inc. Method and system for connecting solar cells or slices in a panel system
WO2009072075A2 (en) 2007-12-05 2009-06-11 Solaredge Technologies Ltd. Photovoltaic system power tracking method
JP2011507465A (en) 2007-12-05 2011-03-03 ソラレッジ テクノロジーズ リミテッド Safety mechanism, wake-up method and shutdown method in distributed power installation
US8289742B2 (en) 2007-12-05 2012-10-16 Solaredge Ltd. Parallel connected inverters
GB2485527B (en) 2010-11-09 2012-12-19 Solaredge Technologies Ltd Arc detection and prevention in a power generation system
GB2486408A (en) 2010-12-09 2012-06-20 Solaredge Technologies Ltd Disconnection of a string carrying direct current
GB2483317B (en) 2011-01-12 2012-08-22 Solaredge Technologies Ltd Serially connected inverters
US8570005B2 (en) 2011-09-12 2013-10-29 Solaredge Technologies Ltd. Direct current link circuit
GB2498365A (en) 2012-01-11 2013-07-17 Solaredge Technologies Ltd Photovoltaic module
GB2498791A (en) 2012-01-30 2013-07-31 Solaredge Technologies Ltd Photovoltaic panel circuitry
GB2498790A (en) 2012-01-30 2013-07-31 Solaredge Technologies Ltd Maximising power in a photovoltaic distributed power system
GB2499991A (en) 2012-03-05 2013-09-11 Solaredge Technologies Ltd DC link circuit for photovoltaic array
US10115841B2 (en) 2012-06-04 2018-10-30 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter
US9548619B2 (en) 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
EP3506370B1 (en) 2013-03-15 2023-12-20 Solaredge Technologies Ltd. Bypass mechanism
US9748762B2 (en) 2014-03-21 2017-08-29 Abb Schweiz Ag Method and apparatus for the protection of DC distribution systems
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
US9419428B2 (en) * 2014-05-15 2016-08-16 Abb Technology Ag Protection device for DC collection systems
JP2016163380A (en) * 2015-02-27 2016-09-05 株式会社日立製作所 Power conversion device and photovoltaic power generation system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102255573A (en) * 2011-07-21 2011-11-23 优太太阳能科技(上海)有限公司 Control method for improving photoelectric conversion efficiency in photovoltaic power generation system

Also Published As

Publication number Publication date
JPH10285966A (en) 1998-10-23

Similar Documents

Publication Publication Date Title
JP3393191B2 (en) Control method of snow melting device using solar cell
JP2002339591A (en) Snow-melting device for solar cell attached roof and snow-melting controlling method
US6093885A (en) Photovoltaic power generating system
JP3796095B2 (en) Solar power plant
JP2001223377A (en) Snow-melting controlling method for photovoltaic power generation apparatus
JP3362633B2 (en) Control method of snow melting device using solar cell
JPH10173215A (en) Photovoltaic power generation apparatus snow-melting device
WO2016021218A1 (en) Inspection apparatus for solar power generation system and inspection method for solar power generation system
JP2749559B2 (en) Control method of snow melting device using solar cell
JP2013165577A (en) Power conditioner, power generation system, and current suppression circuit
JP2000023373A (en) Solar light generation inverter device
JP2000252509A (en) Snow melting device provided with solar cell and operating-control method thereof
JP3432795B2 (en) Solar power system
JP3591297B2 (en) Solar power system
JP3629987B2 (en) Snow melting control device and photovoltaic power generation system
JPH0923019A (en) Photovoltaic power generation system having snow melting function
JP2011125190A (en) System interconnection power conditioner
JP3942400B2 (en) Photovoltaic power generation apparatus and control method thereof
JP2003023170A (en) Solar generation system
JPH10135503A (en) Photovoltaic power generation system
JPH0375432A (en) Air fan
JPH07231668A (en) Solar battery power generator
JP2000022192A (en) Snow detector for solar cell and automatic snow melting system employing it
JP2000174301A (en) Snow-melting apparatus using solar cell
JP2001257377A (en) Snow-melt controller and photovoltaic power generation system

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D04

LAPS Cancellation because of no payment of annual fees