JP3390458B2 - Silica sol - Google Patents

Silica sol

Info

Publication number
JP3390458B2
JP3390458B2 JP27326291A JP27326291A JP3390458B2 JP 3390458 B2 JP3390458 B2 JP 3390458B2 JP 27326291 A JP27326291 A JP 27326291A JP 27326291 A JP27326291 A JP 27326291A JP 3390458 B2 JP3390458 B2 JP 3390458B2
Authority
JP
Japan
Prior art keywords
sol
silica
water
volume
color
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27326291A
Other languages
Japanese (ja)
Other versions
JPH0585716A (en
Inventor
恒夫 大久保
通郎 小松
正文 平井
Original Assignee
触媒化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 触媒化成工業株式会社 filed Critical 触媒化成工業株式会社
Priority to JP27326291A priority Critical patent/JP3390458B2/en
Publication of JPH0585716A publication Critical patent/JPH0585716A/en
Application granted granted Critical
Publication of JP3390458B2 publication Critical patent/JP3390458B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明はオパール様の遊色を呈す
るシリカゾルに関するものである。 【0002】 【従来の技術】特公平1−23411号公報には、光彩
色を呈する透明で、かつ、安定なシリカ質ゾルの製造法
が開示されている。この製造法によれば、0.2〜1μ
mの粒径で、粒径が揃った無定形シリカ球を用いてチン
ダル散光を呈するアルコール類分散液を作り、このアル
コール類分散媒を無極性溶媒で置換することにより前記
シリカ質ゾルを製造するものである。更に、同公報は光
彩色を呈する原理に関して、粒子が溶媒中で面心立方配
列をとり、配列面の重なりの間隔が光の波長程度に小さ
いため、その面に対してある角度で入射した白色光は分
光され、特定方向に特定の波長の光が回折する結果、特
定の単色光が見られ、目の位置を変えることにより、そ
の色が連続的に変化する旨説明する。 【0003】 【発明の目的】本発明は、前記光彩色を呈するシリカゾ
ルではなく、全く新しいオパール様の遊色を呈するシリ
カゾルを提供することを目的とする。 【0004】 【発明の構成】本発明のシリカゾルは、平均粒径が0.
045〜0.55μmの範囲にあり、粒径の変動係数が
15%以下であるシリカ粒子が水または水−有機溶媒に
分散したシリカゾルであって、電気伝導度が560μS
/cm以下であることを特徴とするものである。このシリ
カゾルはオパール様の遊色を呈することが好ましい。 【0005】 【発明の具体的な説明】本発明のシリカゾルは、粉末、
ゾルなど種々のシリカゾルの出発原料から製造すること
ができるが、なかでも、水分散シリカゾル、シリカオル
ガノゾルなどのシリカ粒子分散ゾルが好適である。 【0006】本発明では、まず、シリカ粒子分散ゾル中
から夾雑イオン(陽イオン、陰イオン)を取り除き、高
度に脱イオン化して、シリカゾルを安定化させることが
必要である。コロイド中の夾雑イオンを高度に脱イオン
化することにより、シリカ粒子表面の電気二重層が膨張
し、粒子間に相互反発力が作用する結果、コロイド粒子
の分散状態が安定化する。 【0007】脱イオン化は、シリカ粒子分散ゾルを陽イ
オン交換樹脂および陰イオン交換樹脂でイオン交換処理
することにより夾雑イオンを除去することができる。具
体的な処理方法としては、陽イオン交換樹脂と陰イオン
交換樹脂を充填したカラムにゾルを通したり、あるい
は、ゾル中にイオン交換樹脂を混合して撹拌した後、同
樹脂を分離するなどの適宜の方法を採用する。脱イオン
化の程度は電気伝導度を測定することによって確認する
ことができ、シリカゾルの電気伝導度を560μS/cm
以下とすることが必要である。 【0008】一般に、シリカゾルは低pH域では表面の
OH基が解離しておらず不安定であり、高pH域におい
て安定なシリカゾルとなる。従って、前記特公平1−2
3411号公報では、アルカリ側において無極性溶媒中
でシリカ質ゾルの安定化を図っている。これに対し、本
発明は前記の如く、シリカゾルを高度に脱イオン化する
ことにより、シリカゾルを安定化させるものである。 【0009】脱イオン化により、シリカ粒子分散液の構
造が微結晶(クリスタリット)の集合体に似た構造をと
り、このために、オパールに固有の遊色と呼ばれる現象
に酷似した現象が発現する。オパールにおける遊色と
は、鉱物の内部または表面において虹色が観察される現
象をいい、これは主として鉱物の内部で、面に平行ない
くつかのへき開が生じ、その面で反射した光が互いに干
渉し合うことにより生じるものである。 【0010】本発明のシリカゾルに白色光が入射する
と、前記の微結晶類似構造の面により光が分光され、特
定方向に特定波長の光が回折されて単色光が観察され
る。本発明のゾルは微結晶間の粒界と同様な不連続面が
存在するので、個々の微結晶類似構造面での回折光が異
なり、種々の色の光彩が観察され、オパールに似た光学
現象が現れる。また、この微結晶類似構造の大きさ、即
ち、遊色の大きさはシリカ粒子の大きさ、濃度、夾雑イ
オン濃度などによって変化するが、約7mm以下、通常は
約3〜6mmである。 【0011】本発明の遊色現象は、シリカゾルに振動が
与えられると消滅する。しかし、シリカゾルを静置すれ
ば、短時間で再び遊色現象が現れる。また、静置状態に
おいて、前記遊色現象は、シリカゾルの性状によって
は、連続的に発現する場合と、光彩が明滅する場合があ
る。即ち、シリカ粒子間の相互反発力が弱い領域、具体
的には粒子濃度が低いかまたは所定量の塩を含む水−有
機溶媒の混合溶媒系などでは光彩が明滅する場合があ
る。 【0012】脱イオン化したシリカゾルの分散媒には、
水、または、水とメタノール、エタノール等のアルコー
ル、エチレングリコール等の有機溶媒の1種または2種
以上の混合溶媒を用いることができる。 【0013】シリカゾル中のシリカ粒子の濃度は、0.
01〜20容量%の範囲が好ましい。0.01容量%よ
り低いと、粒子間距離が長くなり相互反発力が作用しな
くなる。また、20容量%より高くなると、相互反発力
が強くなり過ぎ、分散液の構造が見かけ上均一な相とな
り遊色現象が発現しなくなる。シリカ粒子の平均粒径は
0.55μm以下、特に、0.045〜0.55μmの
範囲が好ましい。0.55μmより大きいと遊色現象が
目視できず、また、時間の経過によりシリカ粒子が沈降
し易く、安定なシリカゾルが得られにくい。他方、0.
045μmより小さいと、明瞭な遊色が発現しない。 【0014】シリカ粒子の粒径は、均一であることが望
ましく、次式で示される変動係数(CV値)が15%以
下であることが好ましい。 CV=(σ/D)×100〔%〕 ただし、上式において、σ;標準偏差、D;平均粒径で
ある。更に、個々のシリカ粒子は単分散しており、凝集
粒子の割合は全粒子数の10%以下であることが好まし
い。 【0015】 【実施例】以下に実施例を示し、本発明をさらに具体的
に説明する。実施例1 平均粒径0.04μmのシリカ粒子分散ゾル(触媒化成
工業(株)製、カタロイドSI−45P、シリカ濃度4
0重量%)600gおよび水ガラス64gを純水233
0gに希釈して、シード粒子分散液を調製した。この分
散液を98℃に加熱し、この濃度を保持しながらケイ酸
液(シリカ濃度4重量%)を22g/hrで約9時間添加
した。添加終了後、この温度で1時間熟成した後冷却
し、限外濾過膜によりSiO2 濃度10重量%に濃縮
し、更に、エバポレーターで20重量%まで濃縮して、
平均粒径0.06μm、CV値6.5%、凝集率1.6
%のシリカ粒子が単分散されたシリカゾルを得た。 【0016】このゾルの1部を採り、陽イオン交換樹脂
を加えて撹拌し、pHが3以下になった後樹脂を濾別
し、次いで陰イオン交換樹脂を加えて撹拌した。pHが
7になった後、樹脂を濾別し、再び陽イオン交換樹脂を
加えてpHを2.8とした。これを80℃で10時間熟
成した後冷却し、樹脂を濾別した。このゾルを純水で希
釈してシリカ濃度0.86容量%にすると、遊色を発す
るゾルになった。この遊色はゾルに振動を与えるとが消
えるが、静置するとすぐ遊色が発現した。 【0017】実施例2 平均粒径0.10μmのシリカ粒子分散ゾル(触媒化成
工業(株)製、カタロイドSI−100P)を実施例1
と同様にイオン交換樹脂で処理した。熟成条件を90
℃、8時間とした以外は実施例1と同様に純水で希釈す
ると、同様の遊色が発現した。 【0018】実施例3 実施例2において、シリカ濃度を6.82容量%にした
ところ遊色が発現した。このゾルの遊色は、振動に影響
されず、常に遊色を保っていた。 【0019】実施例4 平均粒径0.08μmのシリカ粒子分散ゾル(触媒化成
工業(株)製、カタロイドSI−80P)100gに陽
イオン交換樹脂と陰イオン交換樹脂の混合物約30cc
を加えた後、80℃で10時間熟成した。これを冷却し
た後、樹脂を濾別することなく純水で希釈し、シリカ濃
度0.86容量%にしたところ、実施例1と同様の遊色
が発現した。 【0020】実施例5 エチルアルコール1000g、水43gおよび28%ア
ンモニア水357gとからなる混合溶液に、平均粒径
0.08μmの球状シリカ215gを分散させて、シー
ド粒子分散液を調製した。このシード粒子分散液をオー
トクレープに入れ、120℃に加熱し、この温度を保ち
ながら、エチルアルコール/水/アンモニアの混合溶液
(重量比:1.0/0.3/0.1)1952gおよび
エチルシリケート(SiO2 として28重量%)369
gを同時に添加した。全量添加後、150℃で1時間熟
成した後、限外濾過膜によりSiO2 濃度10重量%に
濃縮し、更に、エバポレーターで20重量%まで濃縮し
て、平均粒径0.11μm、CV値4.2%、凝集率
0.2%のシリカ粒子が単分散されたシリカゾルを得
た。 【0021】このシリカゾルの1部を採り、陽イオン交
換樹脂を加えて撹拌し、pHが3.1になった後、この
樹脂を濾別し、次いで、陰イオン交換樹脂を加えて撹拌
し、pHが7.3になった後、樹脂を濾別した。上記の
シリカゾル約100ccをビーカーに採り、陽イオン交
換樹脂と陰イオン交換樹脂の混合物を約10cc加え、
蒸留水を加えてシリカ濃度を0.23容量%に調節する
と、遊色が明滅するゾルが得られた。このゾルに振動を
与えると前記遊色は消えるが、静置すれば又すぐにもと
の明滅するゾルに戻った。 【0022】実施例6 実施例5において、陽イオン交換樹脂および陰イオン交
換樹脂で処理したシリカゾルにさらに陽イオン交換樹脂
を加えてpH2.8とした。これを90℃で、8時間熟
成した後冷却した。このゾルをビーカーに採り、純水で
シリカ濃度4.35容量%に希釈すると、遊色が明滅す
るゾルが得られた。この遊色は振動を与えると消えるが
静置するとすぐに明滅する遊色が現れた。 【0023】実施例7 実施例5で得たイオン交換樹脂処理前のシリカゾルに陽
イオン交換樹脂と陰イオン交換樹脂の混合物を加え11
0℃、1時間熟成した後冷却し、室温で樹脂の入ったま
ま3週間放置した後、樹脂を濾別し、更に、蒸留水を加
えシリカ濃度を4.65容量%にすると、遊色が明滅す
るゾルが得られた。 【0024】実施例8 実施例7と同様の樹脂を濾別した後のゾルに、NaCl
を含む蒸留水を加えシリカ濃度8.41容量%、食塩濃
度2.5×10-5モル/リットルにすると、遊色が明滅
するゾルが得られた。 【0025】実施例9 実施例5において、イオン交換樹脂で処理した後のシリ
カゾルに、陽イオン交換樹脂と陰イオン交換樹脂の混合
物を加え、同時に、精製エタノールおよび純水を加え
て、シリカ濃度0.73容量%、エタノール濃度30容
量%の水/エタノール混合溶媒のゾルにしたところ、明
滅する遊色が発現した。 【0026】実施例10 実施例9において、エタノール60容量%、シリカ濃度
1.31容量%にしたところ、明滅する遊色が発現し
た。 【0027】実施例11 実施例9において、エタノール60容量%、シリカ濃度
3.77容量%にしたところ、明滅する遊色が発現し
た。 【0028】実施例12 実施例9においてエチレングリコール30容量%、シリ
カ濃度0.55容量%にしたところ、明滅する遊色が発
現した。 【0029】実施例13 実施例9においてエチレングリコール60容量%、シリ
カ濃度1.02容量%にしたところ、明滅する遊色が発
現した。 【0030】実施例14 平均粒径0.08μmのシリカ粒子分散ゾル(触媒化成
工業(株)製、カタロイドSI−80P)を実施例5と
同様の方法でイオン交換樹脂で処理した後、精製エタノ
ールおよび純水を加え、さらに陽イオン交換樹脂と陰イ
オン交換樹脂の混合物を加えて、シリカ濃度0.73容
量%、エタノール濃度30容量%の水/エタノール混合
溶媒のゾルにしたところ、明滅する遊色が発現した。 【0031】実施例15 平均粒径0.20μmのシリカ粒子分散ゾル(触媒化成
工業(株)製、カタロイドSI−200P)を実施例1
4と同様にしてシリカ濃度0.73容量%、エタノール
濃度30容量%、の水/エタノール混合溶媒のゾルにし
たところ、明滅する遊色が発現した。 【0032】実施例16 平均粒径0.08μmのシリカ粒子分散ゾル(触媒化成
工業(株)製、カタロイドSI−80P)を実施例14
と同様にしてシリカ濃度1.74容量%、溶媒濃度がエ
タノール30容量%、エチレングリコール30容量%、
の水/エタノール/エチレングリコールの混合溶媒のゾ
ルにしたところ、明滅する遊色が発現した。 【0033】実施例17 実施例5で得たイオン交換樹脂で処理した後のゾルに蒸
留水を加え、シリカ濃度を6.5容量%としたところ、
遊色を発するゾルが得られたが明滅はしなかった。 【0034】実施例18 実施例17においてシリカ濃度を17容量%とした後、
陽イオン交換樹脂と陰イオン交換樹脂の混合物を加えた
ところ、遊色を発するゾルが得られたが明滅はしなかっ
た。 【0035】実施例19 平均粒径0.16μmのシリカ粒子分散ゾル(触媒化成
工業(株)製、カタロイドSI−160P)に陽イオン
交換樹脂と陰イオン交換樹脂の混合物を加え110℃、
1時間熟成した後冷却し、室温で樹脂の入ったまま2週
間放置した後、樹脂を濾別し、更に、蒸留水を加えシリ
カ濃度を0.06容量%にしたところ、遊色が明滅する
ゾルが得られた。 【0036】比較例1 平均粒径0.10μmのシリカ粒子分散ゾル(触媒化成
工業(株)製、カタロイドSI−100P)をビーカー
に採り、これを蒸留水でシリカ濃度0.86容量%に希
釈して撹拌したが、白濁しただけのゾルになり、遊色は
発現しなかった。 【0037】比較例2 平均粒径0.04μmのシリカ粒子分散ゾル(触媒化成
工業(株)製、カタロイドSI−45P)を実施例5と
同様にして脱イオン後、精製エタノールを加え、シリカ
濃度0.73容量%、エタノール30容量%の水/エタ
ノール溶媒のゾルにした。透明なゾルが得られたが、遊
色は発現しなかった。 【0038】比較例3 平均粒径0.60μmのシリカ粒子分散ゾル(触媒化成
工業(株)製、カタロイドSI−600P)を実施例5
と同様にして脱イオン後、精製エタノールを加え、シリ
カ濃度0.73容量%、エタノール30容量%の水/エ
タノール溶媒のゾルにした。白濁したゾルが得られた
が、遊色は発現しなかった。 【0039】以上の実施例および比較例をシリカゾルの
電気伝導度と共に、表1にまとめて示す。電気伝導度は
伝導度計(東亜電波工業(株)製、CM−11P)によ
り測定した。なお、遊色の観察の欄において、○は遊色
が発現したこと、☆は遊色が明滅したこと、×は遊色が
発現しなかったことをそれぞれ示す。 【0040】 【表1】シリカ粒子 シリカ 電気 溶媒 遊色の 平均粒径 CV 凝集率 濃度 伝導度 観察μm)() () (容量%)(μS/cm) 実施例1 0.06 6.5 1.6 0.86 4.8 水 ○ 実施例2 0.10 4.9 2.0 0.91 5.7 水 ○ 実施例3 0.10 4.9 2.0 6.82 63.5 水 ○ 実施例4 0.08 6.0 1.8 0.86 3.2 水 ○ 実施例5 0.11 4.2 0.2 0.23 1.2 水 ☆ 実施例6 0.11 4.2 0.2 4.35 16.3 水 ☆ 実施例7 0.11 4.2 0.2 4.65 14.2 水 ☆ 実施例8 0.11 4.2 0.2 8.41 28.9 水 ☆ 実施例9 0.11 4.2 0.2 0.73 1.0 水/Et ☆ 実施例10 0.11 4.2 0.2 1.31 1.1 水/Et ☆ 実施例11 0.11 4.2 0.2 3.77 3.1 水/Et ☆ 実施例12 0.11 4.2 0.2 0.55 0.9 水/Eg ☆ 実施例13 0.11 4.2 0.2 1.02 1.1 水/Eg ☆ 実施例14 0.08 6.0 1.8 0.73 1.0 水/Et ☆ 実施例15 0.20 5.0 2.0 0.73 1.0 水/Et ☆ 実施例16 0.08 6.0 1.8 1.74 1.2 水/Et/Eg ☆ 実施例17 0.11 4.2 0.2 6.50 15.6 水 ○ 実施例18 0.11 4.2 0.2 17.00 71.3 水 ○ 実施例19 0.16 10.0 3.0 0.06 0.6 水 ☆ 比較例1 0.10 4.9 2.0 0.86 1×103 水 × 比較例2 0.04 5.6 2.0 0.73 1.8 水/Et × 比較例3 0.60 8.2 2.2 0.73 1.3 水/Et × 注)Et;エタノール、Eg;エチレングリコール 【0041】 【発明の効果】本発明のシリカゾルは、全く新しいオパ
ール様の遊色を呈するシリカゾルであり、その光彩が美
しく特異的である。また、このオパール様の遊色は光学
的に安定しているだけでなく、シリカゾル自体も化学的
安定性が高い。従って、このシリカゾルは、化粧水など
の化粧品配合剤、塗料、染料、顔料用の添加剤、表示装
置用ディスプレイ、各種内装材、外装材の添加材として
利用可能である。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silica sol having an opal-like free color. 2. Description of the Related Art Japanese Patent Publication No. 1-23411 discloses a method for producing a transparent and stable siliceous sol exhibiting brilliant colors. According to this manufacturing method, 0.2 to 1 μm
The above silica-based sol is produced by preparing an alcohol dispersion liquid exhibiting Tingal scattering using amorphous silica spheres having a particle diameter of m and having a uniform particle diameter, and replacing the alcohol dispersion medium with a nonpolar solvent. Things. Furthermore, the same publication describes the principle of exhibiting glowing color, because particles take a face-centered cubic arrangement in a solvent, and the interval between overlapping arrangement planes is as small as the wavelength of light. The light is separated, and as a result of diffracting light of a specific wavelength in a specific direction, a specific monochromatic light is seen, and it is explained that the color changes continuously by changing the position of the eyes. An object of the present invention is to provide a silica sol exhibiting a completely new opal-like free color, instead of the silica sol exhibiting the glow color. [0004] The silica sol of the present invention has an average particle size of 0.1.
It is a silica sol in which silica particles having a coefficient of variation of particle size of 15% or less in a range of 045 to 0.55 μm are dispersed in water or a water-organic solvent, and have an electric conductivity of 560 μS
/ Cm or less. The silica sol preferably exhibits an opal-like play color. DETAILED DESCRIPTION OF THE INVENTION The silica sol of the present invention comprises powder,
It can be produced from various starting materials of silica sol such as sol, and among them, silica particle-dispersed sol such as water-dispersed silica sol and silica organosol is preferable. In the present invention, first, it is necessary to remove contaminating ions (cations and anions) from the silica particle-dispersed sol and to highly deionize the silica sol to stabilize the silica sol. By highly deionizing contaminant ions in the colloid, the electric double layer on the surface of the silica particles expands, and mutual repulsion acts between the particles, so that the dispersion state of the colloid particles is stabilized. In deionization, impurity ions can be removed by subjecting a silica particle-dispersed sol to an ion exchange treatment with a cation exchange resin and an anion exchange resin. Specific treatment methods include passing the sol through a column filled with a cation exchange resin and an anion exchange resin, or mixing and stirring the ion exchange resin in the sol and then separating the resin. An appropriate method is adopted. The degree of deionization can be confirmed by measuring the electric conductivity, and the electric conductivity of the silica sol is determined to be 560 μS / cm.
It is necessary to: In general, silica sol is unstable in a low pH range without OH groups on the surface being dissociated, and becomes a stable silica sol in a high pH range. Therefore, the above-mentioned Tokuhei 1-2
Japanese Patent No. 3411 discloses stabilization of a siliceous sol in a nonpolar solvent on the alkali side. On the other hand, the present invention stabilizes the silica sol by highly deionizing the silica sol as described above. [0009] By deionization, the structure of the silica particle dispersion takes on a structure similar to an aggregate of crystallites (crystallites), and therefore, a phenomenon very similar to a phenomenon called play color inherent to opal is developed. . Opal play in opal refers to the phenomenon in which iridescence is observed inside or on the surface of a mineral, mainly due to the cleavage inside the mineral, parallel to the plane, and the light reflected on the plane being reflected by each other. This is caused by interference. When white light is incident on the silica sol of the present invention, the light is split by the surface of the microcrystal-like structure, light of a specific wavelength is diffracted in a specific direction, and monochromatic light is observed. Since the sol of the present invention has discontinuous planes similar to grain boundaries between microcrystals, diffracted light on individual microcrystal-like structures is different, and various colors of light are observed. A phenomenon appears. The size of the microcrystal-like structure, that is, the size of the play color, varies depending on the size, concentration, concentration of contaminant ions and the like of the silica particles, but is about 7 mm or less, usually about 3 to 6 mm. The play of color phenomenon of the present invention disappears when vibration is applied to the silica sol. However, if the silica sol is allowed to stand still, the color phenomena appear again in a short time. Further, in the stationary state, depending on the properties of the silica sol, the play of color phenomenon may occur continuously or the light may blink. That is, in a region where the mutual repulsion between silica particles is weak, specifically, in a mixed solvent system of a water-organic solvent having a low particle concentration or containing a predetermined amount of salt, the luminescence may sometimes flicker. The dispersion medium of the deionized silica sol includes:
One or a mixture of two or more of water and an organic solvent such as water and an alcohol such as methanol and ethanol, and ethylene glycol can be used. [0013] The concentration of silica particles in the silica sol is 0.1.
The range of 01 to 20% by volume is preferred. If it is lower than 0.01% by volume, the distance between the particles becomes longer and the mutual repulsion does not work. On the other hand, if it is higher than 20% by volume, the mutual repulsive force becomes too strong, and the structure of the dispersion becomes an apparently uniform phase, so that the play-color phenomenon does not appear. The average particle size of the silica particles is preferably 0.55 μm or less, particularly preferably in the range of 0.045 to 0.55 μm. If it is larger than 0.55 μm, the play of color phenomenon cannot be visually observed, and the silica particles tend to settle with the passage of time, and it is difficult to obtain a stable silica sol. On the other hand, 0.
If it is smaller than 045 μm, a clear play color will not be exhibited. The silica particles preferably have a uniform particle size, and a coefficient of variation (CV value) represented by the following equation is preferably 15% or less. CV = (σ / D) × 100 [%] In the above equation, σ: standard deviation, D: average particle diameter. Further, the individual silica particles are monodispersed, and the ratio of the aggregated particles is preferably 10% or less of the total number of particles. The present invention will be described more specifically with reference to the following examples. Example 1 Silica particle dispersion sol having an average particle size of 0.04 μm (catalyst SI-45P, manufactured by Catalyst Chemical Industry Co., Ltd., silica concentration 4)
0% by weight) and 600 g of water glass and 233 of pure water.
It was diluted to 0 g to prepare a seed particle dispersion. This dispersion was heated to 98 ° C., and while maintaining this concentration, a silicic acid solution (silica concentration 4% by weight) was added at 22 g / hr for about 9 hours. After completion of the addition, the mixture was aged at this temperature for 1 hour, cooled, concentrated to an SiO 2 concentration of 10% by weight with an ultrafiltration membrane, and further concentrated to 20% by weight with an evaporator.
Average particle size 0.06 μm, CV value 6.5%, aggregation rate 1.6
% Silica particles in which monodispersed silica particles were obtained. One part of this sol was taken, a cation exchange resin was added and stirred, and after the pH became 3 or less, the resin was separated by filtration, and then an anion exchange resin was added and stirred. After the pH reached 7, the resin was separated by filtration, and a cation exchange resin was added again to adjust the pH to 2.8. This was aged at 80 ° C. for 10 hours, cooled, and the resin was separated by filtration. When this sol was diluted with pure water to a silica concentration of 0.86% by volume, it became a sol emitting playful colors. This play color disappears when the sol is vibrated, but the play color appears immediately upon standing. Example 2 A silica particle-dispersed sol having an average particle size of 0.10 μm (Cataloid SI-100P, manufactured by Catalyst Chemical Industry Co., Ltd.) was used in Example 1.
And treated with an ion exchange resin. Aging condition 90
When diluted with pure water in the same manner as in Example 1 except that the temperature was changed to 8 ° C. and 8 hours, the same free color was developed. Example 3 In Example 2, when the silica concentration was changed to 6.82% by volume, a play color was developed. The play color of the sol was not affected by the vibration, and always maintained the play color. Example 4 About 30 cc of a mixture of a cation exchange resin and an anion exchange resin was added to 100 g of a silica particle dispersion sol having an average particle size of 0.08 μm (catalyst SI-80P, manufactured by Kasei Kagaku Kogyo KK).
And then aged at 80 ° C. for 10 hours. After cooling, the resin was diluted with pure water without filtration to obtain a silica concentration of 0.86% by volume. Example 5 215 g of spherical silica having an average particle size of 0.08 μm was dispersed in a mixed solution of 1,000 g of ethyl alcohol, 43 g of water, and 357 g of 28% aqueous ammonia to prepare a seed particle dispersion. This seed particle dispersion was placed in an autoclave, heated to 120 ° C., and while maintaining the temperature, 1952 g of a mixed solution of ethyl alcohol / water / ammonia (weight ratio: 1.0 / 0.3 / 0.1) and Ethyl silicate (28% by weight as SiO 2 ) 369
g was added at the same time. After the whole amount was added, the mixture was aged at 150 ° C. for 1 hour, then concentrated to an SiO 2 concentration of 10% by weight with an ultrafiltration membrane, further concentrated to 20% by weight with an evaporator, and had an average particle size of 0.11 μm and a CV value of 4%. A silica sol having a monodispersion of 0.2% and silica particles having an agglomeration ratio of 0.2% was obtained. A part of the silica sol is taken, a cation exchange resin is added thereto, and the mixture is stirred. After the pH reaches 3.1, the resin is separated by filtration, and then an anion exchange resin is added, followed by stirring. After the pH reached 7.3, the resin was filtered off. Take about 100 cc of the above silica sol in a beaker, add about 10 cc of a mixture of a cation exchange resin and an anion exchange resin,
When the silica concentration was adjusted to 0.23% by volume by adding distilled water, a sol having a flickering free color was obtained. When the sol was vibrated, the play color disappeared. However, when the sol was allowed to stand, the sol immediately returned to the original blinking sol. Example 6 In Example 5, a cation exchange resin was further added to silica sol treated with a cation exchange resin and an anion exchange resin to adjust the pH to 2.8. This was aged at 90 ° C. for 8 hours and then cooled. This sol was placed in a beaker and diluted with pure water to a silica concentration of 4.35% by volume, whereby a sol having a flickering free color was obtained. This play color disappeared when vibration was applied, but flickered immediately upon standing still. Example 7 A mixture of a cation exchange resin and an anion exchange resin was added to the silica sol obtained in Example 5 before the treatment with the ion exchange resin.
After aging for 1 hour at 0 ° C., the mixture was cooled and left at room temperature for 3 weeks with the resin contained. The resin was separated by filtration, and distilled water was added to make the silica concentration 4.65% by volume. A flashing sol was obtained. Example 8 The same sol after filtering out the same resin as in Example 7 was added with NaCl.
Was added to make a silica concentration of 8.41% by volume and a salt concentration of 2.5 × 10 −5 mol / l, and a sol having a flickering free color was obtained. Example 9 In Example 5, a mixture of a cation exchange resin and an anion exchange resin was added to the silica sol treated with the ion exchange resin, and at the same time, purified ethanol and pure water were added to obtain a silica concentration of 0. When a sol of a water / ethanol mixed solvent having a concentration of 0.73% by volume and an ethanol concentration of 30% by volume was used, a blinking free color was developed. Example 10 In Example 9, when the ethanol content was 60% by volume and the silica concentration was 1.31% by volume, a flickering free color appeared. Example 11 In Example 9, when ethanol was set at 60% by volume and silica concentration was set at 3.77% by volume, a flickering free color was developed. Example 12 In Example 9, when the content of ethylene glycol was set to 30% by volume and the silica concentration was set to 0.55% by volume, a flickering free color was developed. Example 13 In Example 9, when the content of ethylene glycol was set to 60% by volume and the concentration of silica was set to 1.02% by volume, a flickering free color was developed. Example 14 A silica particle-dispersed sol having an average particle size of 0.08 μm (Cataloid SI-80P, manufactured by Kako Kagaku Kogyo Co., Ltd.) was treated with an ion-exchange resin in the same manner as in Example 5, and then purified ethanol. And pure water, and further a mixture of a cation exchange resin and an anion exchange resin was added to form a sol of a water / ethanol mixed solvent having a silica concentration of 0.73% by volume and an ethanol concentration of 30% by volume. Color developed. Example 15 A silica particle-dispersed sol having an average particle size of 0.20 μm (Cataloid SI-200P, manufactured by Catalyst Chemical Industry Co., Ltd.) was used in Example 1.
When a sol of a water / ethanol mixed solvent having a silica concentration of 0.73% by volume and an ethanol concentration of 30% by volume was prepared in the same manner as in Example 4, a flickering play color was developed. Example 16 A silica particle-dispersed sol having an average particle size of 0.08 μm (Cataloid SI-80P, manufactured by Catalyst Chemical Industry Co., Ltd.) was used in Example 14.
In the same manner as described above, the silica concentration was 1.74% by volume, the solvent concentration was ethanol 30% by volume, ethylene glycol 30% by volume,
When a sol of a mixed solvent of water / ethanol / ethylene glycol was used, a flickering free color was developed. Example 17 Distilled water was added to the sol after the treatment with the ion exchange resin obtained in Example 5 to adjust the silica concentration to 6.5% by volume.
A sol emitting free color was obtained but did not blink. Example 18 After adjusting the silica concentration to 17% by volume in Example 17,
When a mixture of a cation exchange resin and an anion exchange resin was added, a sol emitting playful color was obtained, but did not blink. Example 19 A mixture of a cation-exchange resin and an anion-exchange resin was added to a silica particle-dispersed sol having an average particle size of 0.16 μm (catalyst SI-160P, manufactured by Kasei Kagaku Co., Ltd.)
After aging for 1 hour, the mixture was cooled and left at room temperature for 2 weeks while containing the resin. The resin was separated by filtration, and distilled water was added to adjust the silica concentration to 0.06% by volume. A sol was obtained. COMPARATIVE EXAMPLE 1 A silica particle-dispersed sol having an average particle size of 0.10 μm (Cataloid SI-100P, manufactured by Catalyst Chemical Industry Co., Ltd.) was placed in a beaker, and diluted with distilled water to a silica concentration of 0.86% by volume. The mixture was stirred and turned into a sol which only turned cloudy, and did not develop free color. COMPARATIVE EXAMPLE 2 A silica particle-dispersed sol having an average particle size of 0.04 μm (Cataloid SI-45P, manufactured by Kasei Kasei Kogyo Co., Ltd.) was deionized in the same manner as in Example 5, purified ethanol was added, and the silica concentration was reduced. A sol of a water / ethanol solvent of 0.73% by volume and 30% by volume of ethanol was prepared. A transparent sol was obtained, but no play was observed. COMPARATIVE EXAMPLE 3 A silica particle-dispersed sol having an average particle size of 0.60 μm (catalyst SI-600P, manufactured by Catalyst Chemical Industry Co., Ltd.) was used in Example 5.
After deionization in the same manner as described above, purified ethanol was added to obtain a sol of a water / ethanol solvent having a silica concentration of 0.73% by volume and ethanol of 30% by volume. A cloudy sol was obtained, but no play was observed. The above Examples and Comparative Examples are shown in Table 1 together with the electrical conductivity of the silica sol. The electric conductivity was measured with a conductivity meter (Toa Denpa Kogyo KK, CM-11P). In the column of play color observation, 色 indicates that play color was developed, 、 indicates that play color flickered, and X indicates that play color was not developed. [0040] [Table 1] average particle diameter CV aggregation rate concentration conductivity observation of the silica particles Silica electric solvent color play (μm) (%) (% ) ( volume%) (μS / cm) Example 1 0.06 6.5 1.6 0.86 4.8 Water ○ Example 2 0.10 4.9 2.0 0.91 5.7 Water ○ Example 3 0.10 4.9 2.0 6.82 63.5 Water ○ Example 4 0.08 6.0 1.8 0.86 3.2 Water ○ Example 5 0.11 4.2 0.2 0.23 1.2 Water ☆ Example 6 0.11 4.2 0.2 4.35 16.3 Water ☆ Example 7 0.11 4.2 0.2 4.65 14.2 Water ☆ Example 8 0.11 4.2 0.2 8.41 28.9 Water ☆ Example 9 0.11 4.2 0.2 0.73 1.0 Water / Et ☆ Example 10 0.11 4.2 0.2 1.31 1.1 Water / Et ☆ Example 11 0.11 4.2 0.2 3.77 3.1 Water / Et ☆ Example 12 0.11 4.2 0.2 0.55 0.9 Water / Eg ☆ Example 13 0.11 4.2 0.2 1.02 1.1 Water / Eg ☆ Example 14 0.08 6.0 1.8 0.73 1.0 Water / Et ☆ Example 15 0.20 5.0 2.0 0.73 1.0 Water / Et ☆ Example 16 0.08 6.0 1.8 1.74 1.2 Water / Et / Eg ☆ Example 17 0.11 4.2 0.2 6.50 15.6 Water ○ Example 18 0.11 4.2 0.2 17.00 71. 3 water ○ Example 19 0.16 10.0 3.0 0.06 0.6 water ☆ Comparative example 1 0.10 4.9 2.0 0.86 1 × 10 3 water × Comparative example 2 0.04 5.6 2.0 0.73 1.8 water / Et × Comparative example 3 0.60 8.2 2.2 0.73 1.3 water / Et × Note: Et; ethanol, Eg; ethylene glycol The silica sol of the present invention is a silica sol exhibiting a completely new opal-like play color, and its glow is beautiful and specific. The opal-like play color is not only optically stable, but also the silica sol itself has high chemical stability. Therefore, this silica sol can be used as a cosmetic compound such as a lotion, an additive for paints, dyes and pigments, a display for a display device, an additive for various interior materials and exterior materials.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−208880(JP,A) 特開 昭63−285112(JP,A) 特開 昭58−41740(JP,A) 特開 平2−293314(JP,A) 特開 平5−320022(JP,A) 特公 平1−23411(JP,B2) 米国特許4451388(US,A) (58)調査した分野(Int.Cl.7,DB名) C01B 33/00 - 39/54 ──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-5-208880 (JP, A) JP-A-63-285112 (JP, A) JP-A-58-41740 (JP, A) JP-A-2- 293314 (JP, A) JP-A-5-320022 (JP, A) Japanese Patent Publication No. 1-23411 (JP, B2) US Patent 4,451,388 (US, A) (58) Fields investigated (Int. Cl. 7 , DB) Name) C01B 33/00-39/54

Claims (1)

(57)【特許請求の範囲】 【請求項1】 平均粒径が0.045〜0.55μmの
範囲にあり、粒径の変動係数が15%以下であるシリカ
粒子が水または水−有機溶媒に分散したシリカゾルであ
って、電気伝導度が560μS/cm以下であることを特
徴とするオパール様の遊色を呈するシリカゾル。
(57) [Claim 1] Silica particles having an average particle diameter in the range of 0.045 to 0.55 μm and a coefficient of variation of the particle diameter of 15% or less are water or a water-organic solvent. A silica sol exhibiting an opal-like free color, wherein the silica sol has an electric conductivity of 560 μS / cm or less.
JP27326291A 1991-09-25 1991-09-25 Silica sol Expired - Lifetime JP3390458B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27326291A JP3390458B2 (en) 1991-09-25 1991-09-25 Silica sol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27326291A JP3390458B2 (en) 1991-09-25 1991-09-25 Silica sol

Publications (2)

Publication Number Publication Date
JPH0585716A JPH0585716A (en) 1993-04-06
JP3390458B2 true JP3390458B2 (en) 2003-03-24

Family

ID=17525382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27326291A Expired - Lifetime JP3390458B2 (en) 1991-09-25 1991-09-25 Silica sol

Country Status (1)

Country Link
JP (1) JP3390458B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001191025A (en) 1999-11-04 2001-07-17 Dainippon Printing Co Ltd Method for manufacturing high molecular fine particle composite body
JP2011063481A (en) * 2009-09-17 2011-03-31 Nippon Chem Ind Co Ltd Flake like silica presenting opal like color play effect, and method for manufacturing the same
JP2011245187A (en) * 2010-05-31 2011-12-08 Kyocera Corp Opal ornamental article and method for producing the same
JP6195524B2 (en) * 2014-01-28 2017-09-13 日揮触媒化成株式会社 Hydrophobic silica powder and method for producing the same
JP6322474B2 (en) * 2014-05-08 2018-05-09 日揮触媒化成株式会社 Hydrophobic silica powder, rubber molding composition containing the same, and method for producing the same

Also Published As

Publication number Publication date
JPH0585716A (en) 1993-04-06

Similar Documents

Publication Publication Date Title
KR940009929B1 (en) Absorbing precipitated silica and composition based thereon
KR101197386B1 (en) Process for manufacture of nanometric, monodisperse, and stable metallic silver and product obtained therefrom
JP5524094B2 (en) Process for producing fumed metal oxide dispersion
US4076549A (en) Amorphous precipitated siliceous pigments for cosmetic or dentifrice use and methods for their preparation
KR101352587B1 (en) Silica sol dispersed in organic solvent and process for producing the same
US4581217A (en) Process for preparing silica base for dentifrice
EP2678399A2 (en) Process for preparing aqueous colloidal silica sols of high purity from alkali metal silicate solutions
GB2229715A (en) Aqueous colloidal dispersion of fumed silica without a stabilizer
JP2009018960A (en) Production and use of polysilicate particulate material
DE10312970A1 (en) Fumed silica powder and dispersion thereof
JP3390458B2 (en) Silica sol
GB2229432A (en) Aqueous colloidal dispersion of fumed silica, acid and stabilizer
JPH06199515A (en) Production of acidic silica sol
Okubo Large single crystals of colloidal silica spheres appearing in deionized and diluted suspension
DE69615358T2 (en) TYPE P ZEOLITE WITH SMALL PARTICLE SIZE
US4038098A (en) Amorphous precipitated siliceous pigments for cosmetic or dentrifice use and methods for their production
JP3758391B2 (en) High-purity silica aqueous sol and method for producing the same
JP3362793B2 (en) Method for producing silica sol
JP3453872B2 (en) Method for producing zinc oxide-containing spherical silica
JP2001019421A (en) Liquid dispersion of silica and its production
JP5678648B2 (en) ZSM-5 fine particles and method for producing the same
DE102011017783A1 (en) Preparing an aqueous colloidal silica sol, useful to e.g. prepare silica, comprises mixing a water-soluble alkali metal silicate with an acidifying agent, followed by contacting with e.g. a basic anion exchange resin of hydroxyl type
JP2003514744A (en) Colloidal dispersion of cerium compound containing cerium III, method for producing the same and use thereof
US3342748A (en) Stable alkaline colloidal silica sols of low viscosity and processes for preparing same
JP3025233B2 (en) Ionic colloid system that reversibly crystallizes due to temperature change and method for producing colloid crystal using the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100117

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110117

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110117

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120117

Year of fee payment: 9

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120117

Year of fee payment: 9