JP3386193B2 - Ground fault directional relay - Google Patents

Ground fault directional relay

Info

Publication number
JP3386193B2
JP3386193B2 JP18859493A JP18859493A JP3386193B2 JP 3386193 B2 JP3386193 B2 JP 3386193B2 JP 18859493 A JP18859493 A JP 18859493A JP 18859493 A JP18859493 A JP 18859493A JP 3386193 B2 JP3386193 B2 JP 3386193B2
Authority
JP
Japan
Prior art keywords
phase
voltage
circuit
ground fault
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18859493A
Other languages
Japanese (ja)
Other versions
JPH0746750A (en
Inventor
正彦 藤井
Original Assignee
光商工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 光商工株式会社 filed Critical 光商工株式会社
Priority to JP18859493A priority Critical patent/JP3386193B2/en
Publication of JPH0746750A publication Critical patent/JPH0746750A/en
Application granted granted Critical
Publication of JP3386193B2 publication Critical patent/JP3386193B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は非接地および高抵抗接地
の多相1回線送電線路の地絡方向継電器に関する。 【0002】 【従来の技術】地絡方向継電器は、図3に示すように、
送電線路に零相電圧検出器ZPCと零相変流器ZCTを
設けて、その検出電圧EZおよび検出電流IZを地絡方向
継電器DGRに取り込み、この地絡方向継電器DGRに
よってこれらの電圧と電流の値が設定値より大きいとき
はその位相比較を行ない、事故が零相変流器ZCTを境
にして電源側か負荷側かの方向を判別して、負荷側の地
絡事故のときに動作して保護動作を行う継電器である。 【0003】この零相電圧を検出する零相電圧検出器Z
PCは、R、S、T相それぞれにコンデンサC1,C
2,C3を接続し、それらの中性点と接地Eとの間にコ
ンデンサC4を挿入し、コンデンサC4と並列に変成器
T1を接続して変成器T1の2次側から出力電圧EZ
得るようにしている。 【0004】しかし、このような検出器では、R、S、
T相それぞれに耐圧の高い高価なコンデンサC1〜C3
を接続しなければならない為、装置が高価になると共
に、各コンデンサの静電容量の平衡を保つことが必要で
ある為、設置作業、管理等が面倒なものとなる欠点があ
った。 【0005】また、この他にも図4に示すように、R、
S、T相それぞれに変成器T2〜T4の一次側の一端を
接続し、他端を接地し、各変成器T2〜T4の二次側を
直列に接続し、端子A1,A2間に現れる電圧に基づい
て地絡事故を検出するようにしたものも実施されている
が、各相に変成器T2〜T4を接続しなければならない
為、装置が高価になる欠点があった。 【0006】そこで、本願の出願人は先に非接地あるい
は高抵抗接地の多相一回線送電線路のうちの1相にのみ
相電圧検出器を設け、この検出相の健全時の相電圧を遅
延回路で反転した出力電圧、若しくは、R、S、T相が
全て健全であるときに補助電源で相電圧検出器の出力電
圧と大きさが等しく極性が反対な出力電圧を得、これら
出力電圧と相電圧検出器から検出された地絡事故時の相
電圧とを合成回路で合成してその差によって零相電圧を
得るようになし、1相にのみ相電圧検出器を設けること
で、従来例に比べて非常に経済的な構成の地絡検出器を
提案した。(特公平4−27775号、以下、先願と略
称する。) 【0007】 【発明が解決しようとする課題】前記の先願の発明は、
1相にのみ相電圧検出器を設ければ良いので、従来の高
圧コンデンサ3回路分に比して装置が簡単で、工事等の
手数も省け、また、3相の各コンデンサの静電容量を合
わせる必要もなく、設置作業管理等が簡単である、とい
う優れた効果を有する。 【0008】しかし、検出相の健全時の相電圧を遅延回
路で遅延した後反転して形成するので、遮断器を投入し
たとき遅延回路によって健全時の相電圧が形成されるま
での時間、相電圧検出器から地絡事故時に相当する相電
圧が合成回路から出力され誤動作するおそれがあるの
で、その間、合成回路で出力を出さないようにロックす
る必要がある。この出力にロックをかけると、送電線路
の負荷側で地絡事故が発生しているときに遮断器を投入
すると零相電圧信号が得られず、地絡方向継電器は動作
できないという課題が生じた。 【0009】即ち、地絡方向継電器は、所定期間内又は
定期的に送電線路の電源を切って精密な点検が行われ
る。又、改修工事等でも遮断器を遮断させ電線路の電源
を切る。このとき、何等かの事由により、負荷側に地絡
状態が形成されたままの状態で遮断器が投入されること
を考慮しなければならない。このとき、合成回路の出力
がロックされていると、地絡方向継電器は動作せず、従
って、電源側の他の地絡方向継電器を動作させることに
なり、事故を他に波及させる。 【0010】以上の点に鑑み、本発明は、この先願の発
明において、負荷側で地絡事故発生中に遮断器を投入し
たとき、その地絡電流値が設定値以上であれば動作して
遮断器を再び遮断するようにした此の種の継電器を提供
することを目的とする。 【0011】 【課題を解決するための手段】、本発明における上記の
課題を解決するためのは、非接地及び高抵抗接地の多相
1回線送電線路の1相の相電圧を検出し、この検出電圧
と、該検出電圧を遅延回路で検出した後反転させて形成
した相電圧健全時の電圧とを合成して地絡電圧を取り出
し、この地絡電圧と前記送電線路に設けた零相検出手段
により検出した零相電流との位相比較により、地絡事故
の方向を判断して負荷側であり、且つ地絡電圧及び零相
電流が設定値以上のときに動作出力信号を出力して遮断
器を遮断するようにした地絡方向継電器において、遮断
器投入時に前記検出した相電圧が遅延回路の出力側で
立するまでの時間の間、前記合成された地絡電圧の出力
をロックするとともに、零相電流信号が設定値以上ある
ときに動作出力信号を出力して遮断器を遮断する手段
を、遅延回路の出力側設ける。 【0012】 【作用】送電線路の遮断器が投入され、相電圧健全時の
電圧が遅延回路の出力側で確立(形成)するまでの時間
の間は地絡電圧の出力はロックされ、且つ送電線路の負
荷側に地絡事故またはそれと同じ状態が生じている場合
で、零相電流が設定レベル以上流れた場合は、出力信号
を出し、遮断器を遮断する。 【0013】 【実施例】以下、本発明を図面に示す実施例に基づいて
説明する。図1は本発明の一実施例の回路構成図で、1
はコンデンサC5,C6、変成器T5から成り、T相−
大地間の電圧を検出する相電圧検出器、2は合成回路、
3はBBD(BucketBrigade Devic
e)等から成る遅延回路、4は反転回路、5は第2のレ
ベル検出回路、6は零相変流器、7は増幅器、8は第1
のレベル検出回路、9は第1のアンドゲートで、増幅器
7,合成回路2を介した第3のアンドゲート14,第1
のレベル検出回路8および第2のレベル検出回路5の出
力信号を入力し、これら各回路の出力信号が同時に入力
されたとき出力信号bを出し、OR回路10を介して動
作出力信号Cが出力される。この動作出力信号で遮断器
CBを動作させ遮断する。11は第3のレベル検出回路
で、遮断器CBの投入時、相電圧検出器1より相電圧を
得て遅延回路3により健全時の相電圧を造り出せる時間
t秒の間、出力Vaは“0”の状態を保ち、この間イン
バーター12で反転条件で“1”とし、第2のアンドゲ
ート13へ供給する。この第2のアンドゲート13は、
第1のレベル検出回路8の零相電流信号I0とインバー
ター12からの信号を入力し、アンド条件が成立したと
き、OR回路10に出力信号aを出力する。一方、第3
のレベル検出回路11の出力Vaが“1”になる時間t
秒間入力を与え、合成回路の出力をロックしておく。 【0014】次に、動作を説明する。 【0015】相電圧検出器1内の変成器T5の出力電圧
は合成回路2及び遅延回路3に加えられる。遅延回路3
は変成器T5の出力電圧を相電圧の周期Tの整数倍(N
倍)、即ちTN秒遅延させて反転回路4に加え、反転回
路4は遅延回路3の出力電圧を反転して合成回路2に加
え、合成回路2は変成器T5の出力電圧と反転回路4の
出力電圧とを合成して地絡電圧と大きさ及び位相の等し
い電圧を出力する。従って、地絡事故がない場合は、変
成器T5の出力電圧と反転回路4の出力電圧とは絶対値
が等しく、極性が反対のものとなるので、合成回路2の
出力電圧は零となり、また地絡事故が発生した場合は、
変成器T5の出力電圧と反転回路4の出力電圧とは大き
さと位相が異なるものとなるので、合成回路2の出力電
圧は地絡電圧に等しいものとなる。 【0016】第2のレベル検出回路5は予め設定されて
いる設定レベルを超えたときその出力信号を“1”と
し、第1のアンドゲート9に入力する。また、第1のレ
ベル検出回路8は、零相変流器6の検出電流が設定レベ
ルより大となったとき出力信号I0を出し、第1のアン
ドゲート9に入力され、この第1のアンドゲート9は、
増幅器7を介して変流器6から加えられる電流の位相と
合成回路2の出力電圧との位相とに基づいて、地絡事故
が電源側、負荷側の何れで発生したかの方向を判断し、
負荷側で発生したと判断した場合に出力信号を出し、そ
の出力信号はOR回路10を介して動作出力信号Cを出
力し、遮断器CBを遮断させる。 【0017】次に、遮断器CBを開放した状態のとき
に、遮断器CBの負荷側で地絡事故発生中に遮断器CB
を投入した場合を図2(A),(B)のタイムチャート
によって説明する。 【0018】図2(A)はR,S相のどちらかの相の地
絡事故時を想定したもので、今、遮断器CBを投入する
と、遮断器CBより負荷側の送電線路が充電される。こ
のとき、相電圧検出器1から地絡事故状態の相電圧が検
出されて遅延回路3の出力がt秒間遅れて“1”になる
までの間、第2のアンドゲート13の入力は“1”の状
態になる。また、零相変流器6からは零相電流が検出さ
れて第1のレベル検出回路8に入力され、その電流値が
設定値を超えていれば零相電流信号I0が出力され、こ
れら2つの信号が第2のアンドゲート13に入力され
る。従って、アンドゲート13から出力信号aが出さ
れ、OR回路10を介して動作出力信号cを出力して投
入した遮断器CBを再び遮断する。遮断器を投入したと
き、相電圧検出器1からの出力信号は、合成回路2に入
力されるが、遅延回路3、反転回路4で健全時相電圧を
造り出せる時間、合成回路2の出力はレベル検出回路1
1でロックされ、第3のアンドゲート14からは出力さ
れない。 【0019】図2(B)ではT相の完全地絡事故を想定
したものである。遮断器CBが投入され、負荷側の送電
線路が充電されても、相電圧検出器1がT相に接続され
ており、地絡事故時の相電圧は検出されない。 【0020】従って、第3のレベル検出回路11の出力
は“0”の状態を保ち続けるので、第2のアンドゲート
13の入力を“1”の状態になり続ける。このとき、零
相変流器6からは零相電流が検出されて第1のレベル検
出回路8に入力され、その電流値が設定値を超えていれ
ば零相電流信号I0が出力され、これら2つの信号が第
2のアンドゲート13に入力される。 【0021】よって、アンドゲート13から出力信号a
が出され、OR回路10を介して動作出力信号Cを出力
して投入した遮断器CBを再び遮断する。不完全地絡の
場合は図2(A)と同様となる。 【0022】尚、本実施例に於いては相電圧検出器1と
してコンデンサ形のものを示したが、これに限られるの
ではなく、リアクトル形等の検出器を用いても良いこと
は勿論である。また、本実施例に於いては反転回路4を
介して遅延回路3の出力電圧を合成回路2に加えるよう
にしたが、遅延回路3の遅延時間をt/2(2N+1)
とすれば反転回路4を用いる必要はない。また、本実施
例に於いてはT相に相電圧検出器1を接続するようにし
たが、R、S相に接続するようにしても良いことは勿論
である。 【0023】 【発明の効果】以上のように本発明は、1相に設けた地
絡検出器で、地絡が検出できるので、高圧コンデンサ3
回路分に比して装置が簡単で、しかも3相の各コンデン
サの静電容量を合わせる必要もないので、工事の手間、
設置場所の省略化等が図れる上に、更に、地絡事故が発
生中に遮断器を投入しても確実に動作して遮断器を遮断
し、他の回線等への事故の波及を防止するという優れた
効果を発揮する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ground-fault directional relay for an ungrounded and high-resistance grounded polyphase one-line transmission line. 2. Description of the Related Art As shown in FIG.
Power transmission line to be provided the zero-phase voltage detector ZPC and the zero-phase current transformer ZCT, captures the detected voltage E Z and the detection current I Z ground fault directional relay DGR, and these voltages by the earth fault directional relay DGR When the value of the current is larger than the set value, the phase is compared, and the direction of the fault is determined on the power supply side or the load side with respect to the zero-phase current transformer ZCT. It is a relay that operates and performs a protection operation. A zero-phase voltage detector Z for detecting this zero-phase voltage
PC has capacitors C1 and C for R, S and T phases, respectively.
2, C3 connect, insert the capacitor C4 between their neutral and ground E, the output voltage E Z from the secondary side of the transformer T1 by connecting the transformer T1 in parallel with the capacitor C4 I'm trying to get. However, in such a detector, R, S,
Expensive capacitors C1 to C3 with high withstand voltage for each T phase
Must be connected, so that the apparatus becomes expensive, and it is necessary to maintain the balance of the capacitance of each capacitor, so that installation work, management and the like are troublesome. [0005] In addition, as shown in FIG.
One end of the primary side of the transformers T2 to T4 is connected to each of the S and T phases, the other end is grounded, the secondary sides of the transformers T2 to T4 are connected in series, and the voltage appearing between the terminals A1 and A2. However, there has been a disadvantage that the transformers T2 to T4 must be connected to each phase, so that the apparatus becomes expensive. Accordingly, the applicant of the present application has previously provided a phase voltage detector only in one phase of a non-grounded or high-resistance grounded polyphase one-line transmission line, and delays the phase voltage of this detected phase when it is normal. When the output voltage inverted by the circuit or the R, S, and T phases are all sound, the auxiliary power supply obtains an output voltage having the same magnitude and opposite polarity as the output voltage of the phase voltage detector. By combining a phase voltage at the time of a ground fault detected by the phase voltage detector with a combining circuit and obtaining a zero-phase voltage based on the difference, a phase voltage detector is provided for only one phase. A very economical ground fault detector is proposed. (Japanese Patent Publication No. 4-27775, hereinafter abbreviated to the prior application) [0007] The invention of the prior application is
Since it is sufficient to provide a phase voltage detector only for one phase, the device is simpler than the conventional three high-voltage capacitor circuits, the work and the like are omitted, and the capacitance of each capacitor of the three phases is reduced. There is no need to match, and there is an excellent effect that installation work management and the like are simple. However, since the phase voltage of the detection phase when the sound phase is normal is delayed by a delay circuit and then inverted, the phase voltage is formed by turning on the circuit breaker. Since there is a possibility that a phase voltage corresponding to a ground fault is output from the voltage detector from the combining circuit and malfunctions, it is necessary to lock the combining circuit so that no output is output during that time. When this output is locked, a zero-phase voltage signal cannot be obtained if a breaker is turned on when a ground fault has occurred on the load side of the transmission line, and the ground fault directional relay cannot operate. . That is, the ground fault directional relay is subjected to precise inspection by turning off the power of the transmission line within a predetermined period or periodically. Also, in case of renovation work, the circuit breaker is cut off and the power supply of the power line is turned off. At this time, it is necessary to consider that the circuit breaker is closed in a state where the ground fault state is formed on the load side for some reason. At this time, if the output of the synthesis circuit is locked, the ground fault directional relay does not operate, so that another ground fault directional relay on the power supply side is operated, thereby spreading the accident to another. In view of the above points, the present invention relates to the invention of the prior application, in which, when the circuit breaker is turned on during the occurrence of a ground fault on the load side, if the ground fault current value is equal to or greater than a set value, the circuit is activated. It is an object of the invention to provide a relay of this kind in which the circuit breaker is switched off again. [0011] In order to solve the above-mentioned problems in the present invention, a phase voltage of one phase of an ungrounded and high-resistance grounded multi-phase one-line transmission line is detected, and this is detected. The detected voltage is combined with a voltage at the time of sound phase voltage formed by detecting and inverting the detected voltage with a delay circuit to obtain a ground fault voltage, and this ground fault voltage and a zero-phase detection provided on the transmission line are extracted. the phase comparison between the zero-phase current detected by the means, a load side to determine the direction of the ground fault, and ground voltage and zero sequence
In a ground fault directional relay that outputs an operation output signal when the current is equal to or more than a set value to shut off the circuit breaker, when the circuit breaker is turned on, the detected phase voltage is confirmed at the output side of the delay circuit. Output of the combined ground fault voltage during the time until
And the zero-phase current signal exceeds the set value
Means for occasionally outputting an operation output signal to shut off the circuit breaker is provided on the output side of the delay circuit. The time from when the circuit breaker of the transmission line is turned on until the voltage when the phase voltage is normal is established (formed) at the output side of the delay circuit.
During the locked output of the ground fault voltage, and when the same state ground fault or a load side of the power transmission line has occurred, when flowing zero-phase current is larger than a predetermined level, out the output signal , Shut off the circuit breaker. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described with reference to embodiments shown in the drawings. FIG. 1 is a circuit diagram of an embodiment of the present invention.
Is composed of capacitors C5 and C6 and a transformer T5.
Phase voltage detector for detecting the voltage between the ground, 2 is a synthesis circuit,
3 is BBD (BucketBrigade Device)
e) delay circuit, 4 an inverting circuit, 5 a second level detecting circuit, 6 a zero-phase current transformer, 7 an amplifier, and 8 a first
Is a first AND gate, a third AND gate 14 via the amplifier 7 and the synthesizing circuit 2, and a first AND gate 9.
The output signals of the level detection circuit 8 and the second level detection circuit 5 are inputted. When the output signals of these circuits are inputted simultaneously, the output signal b is outputted, and the operation output signal C is outputted through the OR circuit 10. Is done. The circuit breaker CB is operated and cut off by the operation output signal. Reference numeral 11 denotes a third level detection circuit. When the circuit breaker CB is turned on, the output Va is “t” during a time t seconds during which a phase voltage can be obtained from the phase voltage detector 1 and a normal phase voltage can be produced by the delay circuit 3. The state of "0" is maintained, and during this time, "1" is set by the inverter 12 under the inversion condition and supplied to the second AND gate 13. This second AND gate 13
The zero-phase current signal I 0 of the first level detection circuit 8 and a signal from the inverter 12 are input, and when the AND condition is satisfied, an output signal a is output to the OR circuit 10. Meanwhile, the third
Time t when the output Va of the level detection circuit 11 of FIG.
Input is given for a second and the output of the synthesis circuit is locked. Next, the operation will be described. The output voltage of the transformer T5 in the phase voltage detector 1 is applied to the synthesizing circuit 2 and the delay circuit 3. Delay circuit 3
Sets the output voltage of the transformer T5 to an integral multiple of the period T of the phase voltage (N
Multiplied), that is, delayed by TN seconds and added to the inverting circuit 4, the inverting circuit 4 inverts the output voltage of the delay circuit 3 and adds it to the combining circuit 2, and the combining circuit 2 outputs the output voltage of the transformer T5 and the output voltage of the inverting circuit 4. The output voltage is combined with the ground fault voltage to output a voltage having the same magnitude and phase. Therefore, if there is no ground fault, the output voltage of the transformer T5 and the output voltage of the inverting circuit 4 are equal in absolute value and opposite in polarity, so that the output voltage of the synthesizing circuit 2 becomes zero, and If a ground fault occurs,
Since the output voltage of the transformer T5 and the output voltage of the inverting circuit 4 have different magnitudes and phases, the output voltage of the combining circuit 2 becomes equal to the ground fault voltage. The second level detection circuit 5 sets its output signal to "1" when it exceeds a preset level, and inputs it to the first AND gate 9. Further, the first level detection circuit 8 outputs an output signal I 0 when the detection current of the zero-phase current transformer 6 becomes larger than the set level, and the output signal I 0 is inputted to the first AND gate 9. AND gate 9
Based on the phase of the current applied from the current transformer 6 via the amplifier 7 and the phase of the output voltage of the synthesis circuit 2, it is determined whether the ground fault has occurred on the power supply side or the load side. ,
If it is determined that the load has occurred, an output signal is output, and the output signal outputs an operation output signal C via the OR circuit 10 to shut off the circuit breaker CB. Next, when the circuit breaker CB is in the open state, the circuit breaker CB is disconnected during a ground fault on the load side of the circuit breaker CB.
Will be described with reference to the time charts of FIGS. 2A and 2B. FIG. 2A is based on the assumption that a ground fault has occurred in either of the R and S phases. When the circuit breaker CB is turned on, the transmission line on the load side of the circuit breaker CB is charged. You. At this time, the input of the second AND gate 13 is “1” until the phase voltage in the ground fault state is detected from the phase voltage detector 1 and the output of the delay circuit 3 becomes “1” after a delay of t seconds. "State. Further, a zero-phase current is detected from the zero-phase current transformer 6 and input to the first level detection circuit 8. If the current value exceeds a set value, a zero-phase current signal I 0 is output. Two signals are input to the second AND gate 13. Therefore, the output signal a is output from the AND gate 13, and the operation output signal c is output via the OR circuit 10, and the turned-off circuit breaker CB is cut off again. When the circuit breaker is turned on, the output signal from the phase voltage detector 1 is input to the synthesizing circuit 2, but the output of the synthesizing circuit 2 takes a time during which the delay circuit 3 and the inverting circuit 4 can produce a healthy time phase voltage. Level detection circuit 1
The signal is locked at 1 and is not output from the third AND gate 14. FIG. 2 (B) is based on the assumption that a T-phase complete ground fault has occurred. Even if the circuit breaker CB is turned on and the transmission line on the load side is charged, the phase voltage detector 1 is connected to the T phase, and the phase voltage at the time of the ground fault is not detected. Therefore, the output of the third level detection circuit 11 keeps the state of "0", so that the input of the second AND gate 13 keeps the state of "1". At this time, a zero-phase current is detected from the zero-phase current transformer 6 and input to the first level detection circuit 8, and if the current value exceeds a set value, a zero-phase current signal I 0 is output. These two signals are input to the second AND gate 13. Therefore, the output signal a from the AND gate 13
Is output, the operation output signal C is output via the OR circuit 10, and the turned-off circuit breaker CB is cut off again. The case of an incomplete ground fault is the same as in FIG. In this embodiment, a capacitor type detector is shown as the phase voltage detector 1. However, the present invention is not limited to this, and it is needless to say that a reactor type detector or the like may be used. is there. In the present embodiment, the output voltage of the delay circuit 3 is applied to the synthesis circuit 2 via the inversion circuit 4, but the delay time of the delay circuit 3 is set to t / 2 (2N + 1).
Then, it is not necessary to use the inverting circuit 4. Further, in the present embodiment, the phase voltage detector 1 is connected to the T phase, but may be connected to the R and S phases. As described above, according to the present invention, a ground fault can be detected by a ground fault detector provided in one phase.
The equipment is simpler than the circuit, and there is no need to match the capacitance of each of the three-phase capacitors.
In addition to simplifying the installation location, even if a breaker is turned on during a ground fault accident, it will operate reliably and shut off the circuit breaker to prevent the accident from spreading to other lines. It exerts an excellent effect.

【図面の簡単な説明】 【図1】本発明の一実施例の回路構成図 【図2】本発明を説明するためのタイムチャート (A)はR、S相地絡の場合、(B)はT相地絡の場合 【図3】従来例の地絡方向継電器の構成図 【図4】従来例の説明図 【符号の説明】 1…相電圧検出器 2…合成回路 3…遅延回路 4…反転回路 5,8,11…レベル検出回路 6…零相変流器 7…増巾器 9,13,14…アンドゲート 10…OR回路 12…インバーター[Brief description of the drawings] FIG. 1 is a circuit configuration diagram of an embodiment of the present invention. FIG. 2 is a time chart for explaining the present invention. (A) R and S phase ground fault, (B) T phase ground fault FIG. 3 is a configuration diagram of a conventional earth fault directional relay; FIG. 4 is an explanatory view of a conventional example. [Explanation of symbols] 1 ... Phase voltage detector 2 ... Synthesis circuit 3. Delay circuit 4: Inverting circuit 5, 8, 11 ... level detection circuit 6. Zero-phase current transformer 7 ... Amplifier 9,13,14 ... and gate 10 ... OR circuit 12… Inverter

Claims (1)

(57)【特許請求の範囲】 【請求項1】 非接地及び高抵抗接地の多相1回線送電
線路の1相の相電圧を検出し、この検出電圧と、該検出
電圧を遅延回路で遅延した後反転させて形成した相電圧
健全時の電圧とを合成して地絡電圧を取り出し、この地
絡電圧と前記送電線路に設けた零相電流検出手段により
検出した零相電流信号との位相比較により、地絡事故の
方向を判断して負荷側であり、且つ地絡電圧及び零相電
流が設定値以上のときに動作出力信号を出力して遮断器
を遮断するようにした地絡方向継電器において、遮断器
投入時に前記検出した相電圧が遅延回路の出力側で確立
するまでの時間の間、前記合成された地絡電圧の出力を
ロックするとともに、零相電流信号が設定値以上である
ときに動作出力信号を出力して遮断器を遮断する手段
、遅延回路の出力側に設けたことを特徴とする地絡方
向継電器。
(57) [Claim 1] A phase voltage of one phase of a non-grounded and high-resistance grounded polyphase one-line transmission line is detected, and this detected voltage and the detected voltage are delayed by a delay circuit. Then, the ground voltage is taken out by synthesizing the phase voltage when the phase voltage is normal and formed by inverting the phase voltage, and the phase of the ground fault voltage and the zero-phase current signal detected by the zero-phase current detection means provided on the transmission line. by comparison, load due side der to determine the direction of the ground fault, and ground voltage and zero-phase electricity
In a ground-fault directional relay that outputs an operation output signal when a current is equal to or greater than a set value and shuts off the circuit breaker, a time until the detected phase voltage is established at the output side of the delay circuit when the circuit breaker is turned on. The output of the combined ground fault voltage
Locked and the zero-phase current signal is above the set value
Means for interrupting the circuit breaker and outputs an operation output signal when
The ground fault directional relay, characterized in that the only set on the output side of the delay circuit.
JP18859493A 1993-07-30 1993-07-30 Ground fault directional relay Expired - Lifetime JP3386193B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18859493A JP3386193B2 (en) 1993-07-30 1993-07-30 Ground fault directional relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18859493A JP3386193B2 (en) 1993-07-30 1993-07-30 Ground fault directional relay

Publications (2)

Publication Number Publication Date
JPH0746750A JPH0746750A (en) 1995-02-14
JP3386193B2 true JP3386193B2 (en) 2003-03-17

Family

ID=16226396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18859493A Expired - Lifetime JP3386193B2 (en) 1993-07-30 1993-07-30 Ground fault directional relay

Country Status (1)

Country Link
JP (1) JP3386193B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10598715B2 (en) 2015-08-25 2020-03-24 Eaton Intelligent Power Limited System and method for automatic high resistance ground pulse activation and detection

Also Published As

Publication number Publication date
JPH0746750A (en) 1995-02-14

Similar Documents

Publication Publication Date Title
US4329727A (en) Directional power distance relay
US4453191A (en) Overvoltage directional relay
EP0637865B1 (en) Transformer differential relay
JPS60501986A (en) Phase relay for AC power transmission line protection
JPS5893422A (en) Protecting device for high voltage transmission line
US4433353A (en) Positive sequence undervoltage distance relay
JP3386193B2 (en) Ground fault directional relay
JP2676704B2 (en) Differential protection relay
US4819119A (en) Faulted phase selector for single pole tripping and reclosing schemes
JP2001352663A (en) Method and apparatus for detecting electrical leak in low-voltage ground electrical circuit
JP2985437B2 (en) Test method and circuit for ground fault directional relay
JP3019363B2 (en) Ground fault display of distribution line
JPH0427775B2 (en)
JP2543313B2 (en) Ground fault detector
JP2001016765A (en) Coordinating lock control circuit and protection relay device
JP2594682B2 (en) Transformer protection relay
RU95113247A (en) Method and device for ground fault protection of generator stator winding
JP2002027661A (en) Leakage detection/protection method and apparatus for commonly grounded circuit
SU1728915A1 (en) Device for protecting from single-phase fault to earth for mains with isolated neutral conductor
JP2602299Y2 (en) Zero-phase voltage detector connected to insulator capacitor
JPH0771375B2 (en) Method and apparatus for instantaneous detection of ground fault line
JP2705198B2 (en) Ground fault detector
JPH0311921A (en) Ground-fault detecting and protecting device
SU1737599A1 (en) Device for protection of network with insulated neutrals against single-phase short-circuit to ground
JPH01264530A (en) Ground fault circuit selector

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100110

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110110

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110110

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120110

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120110

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140110

Year of fee payment: 11

EXPY Cancellation because of completion of term