JP3384264B2 - Heat conduction control device and resin molding die device - Google Patents

Heat conduction control device and resin molding die device

Info

Publication number
JP3384264B2
JP3384264B2 JP31737296A JP31737296A JP3384264B2 JP 3384264 B2 JP3384264 B2 JP 3384264B2 JP 31737296 A JP31737296 A JP 31737296A JP 31737296 A JP31737296 A JP 31737296A JP 3384264 B2 JP3384264 B2 JP 3384264B2
Authority
JP
Japan
Prior art keywords
heating source
temperature
mold
graphite sheet
heat conduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31737296A
Other languages
Japanese (ja)
Other versions
JPH10156832A (en
Inventor
大道 光明寺
川島  勉
直巳 西木
孝夫 井上
幸男 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP31737296A priority Critical patent/JP3384264B2/en
Publication of JPH10156832A publication Critical patent/JPH10156832A/en
Application granted granted Critical
Publication of JP3384264B2 publication Critical patent/JP3384264B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/52Heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/02Moulds or cores; Details thereof or accessories therefor with incorporated heating or cooling means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/52Heating or cooling
    • B29C2043/522Heating or cooling selectively heating a part of the mould to achieve partial heating, differential heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/02Moulds or cores; Details thereof or accessories therefor with incorporated heating or cooling means
    • B29C33/08Moulds or cores; Details thereof or accessories therefor with incorporated heating or cooling means for dielectric heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • B29C33/3828Moulds made of at least two different materials having different thermal conductivities

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電子機器や生産設
備等の温度差を有する物体間の熱伝導の制御方法、特に
熱の伝わり、熱量を効率よく制御する熱伝導制御装置及
び樹脂成形金型装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling heat conduction between objects having a temperature difference such as electronic equipment and production equipment, and more particularly, a heat conduction control device and a resin molding die for efficiently controlling heat transmission and heat quantity. It relates to a mold device.

【0002】[0002]

【従来の技術】加熱源と被加熱材といった温度差を有す
る物体の一方から他方への熱伝導により温度を伝える場
合に、これらの物体を接触させたり、離したりすること
により熱の伝わりをON−OFF制御していた。また、
他の方法として温度差を有する物体を接触させた状態
で、一方をヒータ等の加熱手段または冷却水等の冷却手
段などを用い、この加熱手段、冷却手段を制御すること
により温度制御を行ってきた。
2. Description of the Related Art When a temperature is transmitted by heat conduction from one side of an object having a temperature difference such as a heating source and a material to be heated to the other side, heat transfer is turned on by bringing these objects into contact with each other or separating them from each other. -It was controlled OFF. Also,
As another method, while the objects having a temperature difference are in contact with each other, one of them is provided with a heating means such as a heater or a cooling means such as cooling water, and the temperature is controlled by controlling the heating means and the cooling means. It was

【0003】このような熱伝導の制御を用いた従来の樹
脂成形金型装置について、図6、図7を用いて説明す
る。図6において、取付板34に上部金型35が固定さ
れており、金型は上部金型35と下部金型36とで構成
されている。上部金型35にはスプルー37を有するス
プルーブッシュ38がはめ込まれており、スプルー37
は金型内部への樹脂注入及び高圧ガス39の充填の注入
口となる。また、40はスプルー37を介して金型内部
への樹脂注入及び高圧ガスの充填を行う成形機ノズルで
ある。一方、下部金型36には、その下部金型36の一
部を構成する可動入子41が設けられており、可動入子
41は、高圧ガス39充填後、後退移動して成形品42
内部に中空部分を形成する。
A conventional resin molding die apparatus using such heat conduction control will be described with reference to FIGS. 6 and 7. In FIG. 6, an upper die 35 is fixed to a mounting plate 34, and the die is composed of an upper die 35 and a lower die 36. The upper mold 35 is fitted with a sprue bush 38 having a sprue 37.
Serves as an injection port for injecting resin into the mold and filling high-pressure gas 39. Further, 40 is a molding machine nozzle for injecting resin into the mold and filling high-pressure gas through the sprue 37. On the other hand, the lower mold 36 is provided with a movable insert 41 which constitutes a part of the lower mold 36. The movable insert 41 moves backward after being filled with the high-pressure gas 39, and a molded product 42.
Form a hollow part inside.

【0004】この金型装置において、ヒータ等を備えた
加熱源(図示せず)を上部金型35に接触させたり、離
したりすることで、上部金型35への熱の伝わりをON
−OFF制御していた。
In this mold apparatus, a heat source (not shown) having a heater or the like is brought into contact with or separated from the upper mold 35 to turn on heat transfer to the upper mold 35.
-It was controlled OFF.

【0005】次に、この金型装置を用いた成形方法につ
いて説明する。まず、上部金型35と下部金型36およ
び可動入子41によって金型を形成する。そして、ヒー
タ等の加熱源(図示せず)により、上部金型35を予熱
する。
Next, a molding method using this mold device will be described. First, a mold is formed by the upper mold 35, the lower mold 36, and the movable insert 41. Then, the upper mold 35 is preheated by a heating source (not shown) such as a heater.

【0006】次に前記金型内にスプルー37を通して成
形機ノズル40から樹脂を注入する。樹脂注入後、スプ
ルー37を通して成形機ノズル40から高圧ガスを金型
内に充填する。
Next, resin is injected from the molding machine nozzle 40 through the sprue 37 into the mold. After the resin is injected, the mold is filled with high-pressure gas from the molding machine nozzle 40 through the sprue 37.

【0007】次に可動入子41を所定位置まで後退させ
て、成形品42内部に中空部分を形成し、高圧ガス39
の圧力を保った状態で、成形品42を水冷などの冷却ブ
ロック(図示せず)により上部金型35を冷却すること
により冷却する。
Next, the movable insert 41 is retracted to a predetermined position to form a hollow portion inside the molded product 42, and the high pressure gas 39
The molded product 42 is cooled by cooling the upper mold 35 with a cooling block (not shown) such as water cooling while maintaining the pressure of 1.

【0008】その後、成形機ノズル40をスプルー37
から後退させ、大気中に高圧ガス39を放出した後、下
部金型36を後退させ、成形品42を取り出す。
Thereafter, the molding machine nozzle 40 is replaced with the sprue 37.
After releasing the high pressure gas 39 into the atmosphere, the lower mold 36 is retracted and the molded product 42 is taken out.

【0009】また、別の機構をもった金型の構成を図7
に示す。同図において、図6と同一物には同一番号を付
与し説明を省略する。図6と異なる点は、可動入子41
を持っておらず、上部金型35と下部金型36の間に存
在する中空領域に、樹脂を導入し成形する点である。加
熱、冷却は、下部金型36に設けられた加熱源43およ
び冷却源44によりなされる。
FIG. 7 shows the structure of a mold having another mechanism.
Shown in. In the figure, the same parts as those in FIG. 6 are designated by the same reference numerals and the description thereof will be omitted. The difference from FIG. 6 is that the movable insert 41
That is, the resin is introduced into a hollow region existing between the upper die 35 and the lower die 36 to mold the resin. Heating and cooling are performed by a heating source 43 and a cooling source 44 provided in the lower mold 36.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、従来の
ように加熱源43を接触させたり、離したりする方法
は、接触面の状態により熱伝導状態が変化し、温度が安
定して伝わらなかった。これは、上部金型35、下部金
型36と加熱源43との接触表面の精度が粗いことと、
上部金型35、下部金型36と加熱源43との間に空気
層ができることにより、金型と加熱源との密着性が悪
く、熱が均一に伝わらないためである。
However, in the conventional method of bringing the heating source 43 into contact with or away from the heating source 43, the heat conduction state changes depending on the state of the contact surface, and the temperature cannot be stably transmitted. This is because the precision of the contact surfaces of the upper mold 35, the lower mold 36 and the heating source 43 is rough,
This is because an air layer is formed between the upper die 35 and the lower die 36 and the heating source 43, so that the adhesion between the die and the heating source is poor and heat is not uniformly transmitted.

【0011】また、上述した加熱、冷却手段を制御して
温度制御を行うものは温度制御の応答性をよくするため
に加熱、冷却手段等の付属装置が大きくなり、装置の大
型化、あるいは装置の熱容量が大きくなり効率よい温度
制御が困難である。
Further, in the above-mentioned apparatus for controlling the temperature by controlling the heating / cooling means, in order to improve the responsiveness of the temperature control, the auxiliary equipment such as the heating / cooling means becomes large, so that the apparatus becomes large or the apparatus becomes large. Since the heat capacity of the battery becomes large, it is difficult to control the temperature efficiently.

【0012】[0012]

【課題を解決するための手段】上記目的を達成するた
め、本発明の熱伝導制御装置は、加熱源と被加熱材との
間に配置されたグラファイトシートと、前記加熱源と前
記被加熱材のいずれか一方から前記グラファイトシート
を加圧する手段と、前記加熱源の温度を制御する制御手
段とで構成される。
In order to achieve the above object, a heat conduction control device of the present invention is a graphite sheet disposed between a heating source and a material to be heated, the heating source and the material to be heated. Means for pressurizing the graphite sheet from one of the two, and a control means for controlling the temperature of the heating source.
It consists of steps .

【0013】また、本発明の樹脂成形金型装置は、上部
金型と下部金型とから構成される金型と、前記上部金型
に設けられた注入口と、前記注入口を介して金型内へ成
形材料の注入を行うノズルと、前記下部金型の前記注入
口側と反対側にグラファイトシートを介して設けられた
加熱源と、前記加熱源の温度を制御する制御手段と、前
記加熱源と前記下部金型のいずれか一方から前記グラフ
ァイトシートを加圧する手段とを備えたことを特徴とす
る樹脂成形金型装置を用いる。
Further, the resin molding die device of the present invention comprises a die composed of an upper die and a lower die, an injection port provided in the upper die, and a metal via the injection port. A nozzle for injecting the molding material into the mold, and a graphite sheet provided on the opposite side of the lower mold from the injection port side .
A heating source and a control means for controlling the temperature of the heating source;
The graph from either one of the heating source and the lower mold
And a means for pressing the weight sheet.
A resin molding die device is used.

【0014】また、本発明の樹脂成形金型装置は、上部
金型と下部金型とから構成される金型と、前記上部金型
に設けられた注入口と、前記注入口を介して金型内へ成
形材料の注入を行うノズルと、前記下部金型の前記注入
口側と反対側にグラファイトシートを介して、熱供給手
段を備えるたものである。
Further, the resin molding die device of the present invention includes a die composed of an upper die and a lower die, an injection port provided in the upper die, and a metal via the injection port. A nozzle for injecting a molding material into the mold and a heat supply means are provided on the side opposite to the injection port side of the lower mold via a graphite sheet.

【0015】また、この熱供給手段は、温度を制御する
装置を備えると好ましい。
Further, it is preferable that the heat supply means includes a device for controlling the temperature.

【0016】[0016]

【発明の実施の形態】(実施の形態1) 本発明の第1の実施の形態は、図1に示すように加熱源
3と被加熱材2との間に高配向性グラファイトシート1
を設けたものであり、特に高配向性グラファイトシート
1を加熱源3と被加熱材2との間に挟着し、加圧手段4
により押圧している。また、加熱源3の温度を制御する
制御手段5も設けている。ここで具体的に被加熱材2と
は銅、アルミニウム、セラミック、鉄等の金属系のもの
に発熱部材をいれたものであり、あるいはヒートパイ
プ、匡体、ペルチェ素子、フィン、冷却ファンなどであ
る。また加熱源は電子部品、ヒーターユニットなどであ
る。
BEST MODE FOR CARRYING OUT THE INVENTION (Embodiment 1) In the first embodiment of the present invention, as shown in FIG. 1, a highly oriented graphite sheet 1 is provided between a heating source 3 and a material 2 to be heated.
In particular, the highly oriented graphite sheet 1 is sandwiched between the heating source 3 and the material to be heated 2, and the pressurizing means 4 is provided.
Is pressed by. Further, a control means 5 for controlling the temperature of the heating source 3 is also provided. Here, specifically, the material to be heated 2 is a metal-based material such as copper, aluminum, ceramics, iron, etc., in which a heat generating member is inserted, or a heat pipe, an enclosure, a Peltier element, fins, a cooling fan, or the like. is there. The heating source is an electronic component, a heater unit, or the like.

【0017】この高配向性グラファイトシート1は横方
向の熱伝導性が銅以上であり、厚み方向の熱伝導性が上
記横方向に比べて2桁低い熱伝導異方性を有する。その
ため高温部と低温部の接触面の熱を、面内方向に分散さ
せ、面全体から低温部に効率よく熱を伝えることができ
る。
This highly oriented graphite sheet 1 has a thermal conductivity in the lateral direction of copper or more, and a thermal conductivity anisotropy in the thickness direction which is two orders of magnitude lower than that in the lateral direction. Therefore, the heat of the contact surface between the high temperature portion and the low temperature portion can be dispersed in the in-plane direction, and the heat can be efficiently transmitted from the entire surface to the low temperature portion.

【0018】本実施例で用いる高配向性グラファイトシ
ート1としては特開平3−75211号公報に記載され
ている高配向性グラファイトシートが好ましい。このシ
ートは、グラファイト結晶の配向方向が揃った高配向性
グラファイトシートであり、特に特定の高分子化合物フ
ィルムをグラファイト化したものはシート面方向の熱伝
導性が高いので、高効率の温度制御が可能となる。
As the highly oriented graphite sheet 1 used in this example, the highly oriented graphite sheet described in JP-A-3-75211 is preferable. This sheet is a highly-oriented graphite sheet in which the orientation directions of the graphite crystals are uniform. Particularly, a graphitized specific polymer compound film has high thermal conductivity in the sheet surface direction, so highly efficient temperature control is possible. It will be possible.

【0019】前記特定の高分子化合物として、各種ポリ
オキサジアゾール(POD)、ポリベンゾチアゾール
(PBT)、ポリベンゾビスチアゾール(PBBT)、
ポリベンゾオキサゾール(PBO)、ポリベンゾビスオ
キサゾール(PBBO)、各種ポリイミド(PI)、各
種ポリアミド(PA)、ポリフェニレンベンゾイミダゾ
ール(PBI)、ポリフェニレンベンゾビスイミダゾー
ル(PPBI)、ポリチアゾール(PT)、ポリパラフ
ェニレンビニレン(PPV)、ポリアミドイミド(PA
I)からなる群の中から選ばれる少なくとも1つを使用
することができる。
As the specific polymer compound, various polyoxadiazole (POD), polybenzothiazole (PBT), polybenzobisthiazole (PBBT),
Polybenzoxazole (PBO), polybenzobisoxazole (PBBO), various polyimides (PI), various polyamides (PA), polyphenylenebenzimidazole (PBI), polyphenylenebenzobisimidazole (PPBI), polythiazole (PT), polypara Phenylene vinylene (PPV), polyamide imide (PA
At least one selected from the group consisting of I) can be used.

【0020】上記各種ポリオキサジアゾールとしては、
ポリパラフェニレン−1,3,4−オキサジアゾールお
よびそれらの異性体がある。
As the above-mentioned various polyoxadiazoles,
There are polyparaphenylene-1,3,4-oxadiazoles and their isomers.

【0021】上記各種ポリイミドには下記の一般式
(1)で表される芳香族ポリイミドがある。
Among the various polyimides mentioned above, there are aromatic polyimides represented by the following general formula (1).

【0022】[0022]

【化1】 [Chemical 1]

【0023】[0023]

【化2】 [Chemical 2]

【0024】[0024]

【化3】 [Chemical 3]

【0025】上記各種ポリアミドには下記一般式(2)
で表される芳香族ポリアミドがある。
The above various polyamides have the following general formula (2)
There is an aromatic polyamide represented by

【0026】[0026]

【化4】 [Chemical 4]

【0027】使用されるポリイミド、ポリアミドはこれ
らの構造を有するものに限定されない。
The polyimide and polyamide used are not limited to those having these structures.

【0028】前記高分子化合物のフィルムをグラファイ
ト化する焼成条件は、特に限定されないが2000℃以
上、好ましくは3000℃近辺の温度域に達するように
焼成すると、より高配向性が優れたものができるために
好ましい。焼成は普通、不活性ガス中で行われる。最高
温度が2000℃未満で焼成する場合は、得られたグラ
ファイトシートは硬くて脆くなる傾向がある。焼成後、
更に必要に応じて圧延処理するようにしてもよい。
The firing conditions for graphitizing the film of the polymer compound are not particularly limited, but if it is fired so as to reach a temperature range of 2000 ° C. or higher, preferably around 3000 ° C., a more excellent orientation can be obtained. Preferred for. Firing is usually done in an inert gas. When the maximum temperature is less than 2000 ° C., the obtained graphite sheet tends to be hard and brittle. After firing
Further, rolling treatment may be carried out if necessary.

【0029】前記高分子化合物のフィルムのグラファイ
ト化は、例えば高分子化合物のフィルムを適当な大きさ
に切断し、3000℃に昇温してグラファイト化するプ
ロセスで製造される。焼成後、さらに必要に応じて圧延
処理される。
Graphitization of the polymer compound film is carried out by, for example, cutting the polymer compound film into an appropriate size and heating it to 3000 ° C. to graphitize it. After firing, it is further rolled if necessary.

【0030】このようにして得られる高配向性グラファ
イトシートは柔軟性があり、挟着状態において破損する
ことがなく密着性もよい。
The highly oriented graphite sheet thus obtained is flexible, has no damage in the sandwiched state, and has good adhesion.

【0031】ここで高配向性グラファイトシートを、加
熱源3と被加熱材2に挟着した場合(図1)と接着させ
た場合(図2)で、加熱状態をそれぞれ図3と4に示
す。図3(a)、図4(a)は被加熱材2の表面温度分
布を示したものであり、図3(b)、図4(b)は被加
熱材2の表面温度分布を各位置の表面温度を用いて示し
たものである。両者を比較すると、被加熱材2の表面温
度分布は図1のように挟着した場合の方がより均一な温
度分布となっていることがわかる。
Here, the heating state is shown in FIGS. 3 and 4 when the highly oriented graphite sheet is sandwiched between the heating source 3 and the material to be heated 2 (FIG. 1) and when it is bonded (FIG. 2). . 3A and FIG. 4A show the surface temperature distribution of the heated material 2, and FIG. 3B and FIG. 4B show the surface temperature distribution of the heated material 2 at each position. It is shown using the surface temperature of. Comparing the two, it can be seen that the surface temperature distribution of the material to be heated 2 is more uniform when sandwiched as shown in FIG.

【0032】これの理由は以下のとおりである。The reason for this is as follows.

【0033】図2において、高配向性グラファイトシー
ト1は内部に空気層6を有しており、この空気層6が熱
伝導を阻害する要因となっている。これに対して、図1
のように、高配向性グラファイトシート1を加熱源3と
被加熱材2とで挟着したものは高配向性グラファイトシ
ート1が押圧され空気層が存在せず、より均一な温度伝
達が可能となるからである。すなわち、図1と図2の違
いは、高配向性グラファイトシート1の圧縮率の違いで
あり、シートを圧縮することで、空気層6がなくなり熱
伝達がよくなったといえる。この点について、以下に詳
述する。
In FIG. 2, the highly oriented graphite sheet 1 has an air layer 6 inside, and this air layer 6 is a factor that hinders heat conduction. On the other hand,
In the case where the highly-oriented graphite sheet 1 is sandwiched between the heating source 3 and the material 2 to be heated as described above, the highly-oriented graphite sheet 1 is pressed and no air layer is present, and more uniform temperature transfer is possible. Because it will be. That is, the difference between FIG. 1 and FIG. 2 is the difference in the compressibility of the highly oriented graphite sheet 1, and it can be said that by compressing the sheet, the air layer 6 is eliminated and heat transfer is improved. This point will be described in detail below.

【0034】[0034]

【表1】 [Table 1]

【0035】表1は高配向性グラファイトシート1の圧
縮率と被加熱材2の表面温度の関係を示すものであり、
加熱源3の温度を100℃とし、圧縮率を変化させなが
ら温度変化を測定したものである。ここで被加熱材2は
S45Cの鉄材である。表1より圧縮率が大きくなると
温度の伝達性が良くなることがわかる。つまり、図1
は、圧縮率が70%に近く、高配向性グラファイトシー
ト1全体に均一な圧縮がされていて、一方、図2は、圧
縮率が0%近くであることが類推される。
Table 1 shows the relationship between the compressibility of the highly oriented graphite sheet 1 and the surface temperature of the heated material 2,
The temperature of the heating source 3 was set to 100 ° C., and the temperature change was measured while changing the compressibility. Here, the material to be heated 2 is an iron material of S45C. It can be seen from Table 1 that the higher the compressibility, the better the temperature transmissibility. That is, FIG.
It is inferred that the compression ratio is close to 70%, and the high orientation graphite sheet 1 is uniformly compressed as a whole, whereas in FIG. 2, the compression ratio is close to 0%.

【0036】また、高配向性グラファイトシート1は柔
軟性があるので挟着した場合、加熱源3、被加熱材2と
の密着性がよく熱伝導性が更に高まる。
Further, since the highly oriented graphite sheet 1 is flexible, when it is sandwiched, the adhesion to the heating source 3 and the material to be heated 2 is good and the thermal conductivity is further enhanced.

【0037】このように、本実施例では加熱源3と被加
熱材2との間に柔軟性及び熱伝導異方性を有する高配向
性グラファイトシート1を挟着し、加熱源3の温度を制
御する制御手段5とを備えた熱伝導制御装置であって、
従来の金属系に比べて熱伝導性が高く、熱伝導性異方性
を有し、また高温部(加熱源3)と低温部(被加熱材
2)とを密着してつなぐことができるので、早く、均一
に温度が伝達できる。このため、加熱源3の温度制御手
段5からの指令に対し、応答性の高い伝熱達が可能とな
る。
As described above, in this embodiment, the highly oriented graphite sheet 1 having flexibility and heat conduction anisotropy is sandwiched between the heating source 3 and the material 2 to be heated, and the temperature of the heating source 3 is controlled. A heat conduction control device comprising a control means 5 for controlling,
The thermal conductivity is higher than that of the conventional metal-based material, the thermal conductivity is anisotropic, and the high temperature portion (heating source 3) and the low temperature portion (heated material 2) can be closely connected to each other. Fast, uniform temperature transfer. Therefore, it is possible to reach the heat transfer with high responsiveness to the command from the temperature control means 5 of the heating source 3.

【0038】(実施の形態2) 本発明の他の実施形態として、高配向性グラファイトシ
ートを金型装置に用いた例について、以下に示す。図5
に、本発明の金型の構成を示す。同図において、図7と
同一物には同一番号を付与し説明を省略する。図7と異
なる点は、下部金型36と加熱源43の間、および加熱
源43と冷却源44の間に、高配向性グラファイトシー
ト45を設けた点である。ここで金型には鉄材(S45
C)のものを用いた。
(Embodiment 2) As another embodiment of the present invention, an example in which a highly oriented graphite sheet is used in a mold device will be shown below. Figure 5
The structure of the mold of the present invention is shown in FIG. In the figure, the same parts as those in FIG. 7 is different from FIG. 7 in that a highly oriented graphite sheet 45 is provided between the lower die 36 and the heating source 43 and between the heating source 43 and the cooling source 44. Here, iron material (S45
The one of C) was used.

【0039】この構成により、加熱源43で発生した熱
は、熱伝導性のよい高配向性グラファイトシート45を
通して被加熱材(下部金型36)に、加熱源43からの
熱を均一に、かつ素早く伝えることができる。この結
果、短い工程サイクルで樹脂成型品を成形でき、効率よ
く樹脂成形品を成形できる。
With this configuration, the heat generated by the heating source 43 is uniformly distributed from the heating source 43 to the material to be heated (lower die 36) through the highly oriented graphite sheet 45 having good thermal conductivity. Can communicate quickly. As a result, the resin molded product can be molded in a short process cycle, and the resin molded product can be efficiently molded.

【0040】更に熱の伝わりが早いので応答性が良く、
温度制御の応答性も良くなる。このように本実施の形態
の熱伝導制御装置は応答性が良く、樹脂成形品を作る際
の温度を均一に素早く変化できるので、樹脂成形品の品
質向上にもなる。
Since heat is transmitted faster, the response is good,
The responsiveness of temperature control is also improved. As described above, the heat conduction control device of the present embodiment has a good responsiveness and can change the temperature at the time of producing a resin molded product uniformly and quickly, which also improves the quality of the resin molded product.

【0041】このように本実施の形態の熱伝導制御装置
は、均一で、素早く熱を伝達でき、その制御性、応答性
もよくなる。また、樹脂成形金型装置に用いた場合には
効率よく、良質の樹脂成型品を得ることができる。
As described above, the heat conduction control device according to the present embodiment can uniformly and quickly transfer heat, and its controllability and responsiveness are also improved. Further, when used in a resin molding die device, a good quality resin molded product can be obtained efficiently.

【0042】[0042]

【発明の効果】以上のように本発明は、加熱源と被加熱
材との間に高配向性グラファイトシートを挟着し、加熱
源の温度を制御する手段とを備えた熱伝導制御装置であ
り、素早く、均一に温度が伝達でき、応答性の高い熱伝
導制御装置を提供できる。また、樹脂成形金型装置の温
度制御に用いると、均一な温度で熱伝達でき、応答性良
い温度制御ができるので、効率よく良質な樹脂成型品を
提供できる。
INDUSTRIAL APPLICABILITY As described above, the present invention is a heat conduction control device having means for controlling the temperature of a heating source by sandwiching a highly oriented graphite sheet between a heating source and a material to be heated. Therefore, it is possible to provide a heat conduction control device which can quickly and evenly transmit the temperature and has high responsiveness. Further, when it is used for temperature control of a resin molding die device, heat can be transferred at a uniform temperature and temperature control with good response can be performed, so that a high quality resin molded product can be efficiently provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施の形態である熱伝導制御装置を
示す図
FIG. 1 is a diagram showing a heat conduction control device according to an embodiment of the present invention.

【図2】本発明の他の実施の形態である熱伝導制御装置
を示す図
FIG. 2 is a diagram showing a heat conduction control device according to another embodiment of the present invention.

【図3】図1の表面温度分布を示す図FIG. 3 is a diagram showing the surface temperature distribution of FIG.

【図4】図2の表面温度分布を示す図FIG. 4 is a diagram showing the surface temperature distribution of FIG.

【図5】本発明の他の実施の形態を用いた金型装置を示
す図
FIG. 5 is a view showing a mold device according to another embodiment of the present invention.

【図6】従来の金型装置を示す図FIG. 6 is a view showing a conventional mold device.

【図7】従来の金型装置を示す図FIG. 7 is a view showing a conventional mold device.

【符号の説明】[Explanation of symbols]

1、7、13、20 高配向性グラファイトシート 2 被加熱材 3 加熱源 4 加圧手段 5 温度制御手段 6 空気層 8 ヒーター線 9 断熱材 10 パネル 11 枠 12 マイカシート 14 金属体 15 上金型 16 下金型 17 ヒータ 18 スタンパ 1,7,13,20 Highly oriented graphite sheet 2 Heated material 3 heating source 4 Pressurizing means 5 Temperature control means 6 air layer 8 heater wires 9 thermal insulation 10 panels 11 frames 12 Mica sheet 14 metal body 15 Upper mold 16 Lower mold 17 heater 18 Stamper

───────────────────────────────────────────────────── フロントページの続き (72)発明者 井上 孝夫 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 前田 幸男 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 平8−250502(JP,A) 特開 平4−31017(JP,A) 特開 昭63−78710(JP,A) (58)調査した分野(Int.Cl.7,DB名) B29C 43/00 - 43/58 B29C 33/00 - 33/76 B29C 45/00 - 45/84 F24J 3/00 H05B 3/20 C04B 35/00 C01B 31/00 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Takao Inoue 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Yukio Maeda 1006 Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd. (56) Reference JP-A-8-250502 (JP, A) JP-A-4-31017 (JP, A) JP-A-63-78710 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B29C 43/00-43/58 B29C 33/00-33/76 B29C 45/00-45/84 F24J 3/00 H05B 3/20 C04B 35/00 C01B 31/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 加熱源と被加熱材との間に配置されたグ
ラファイトシートと、前記加熱源と前記被加熱材のいず
れか一方から前記グラファイトシートを加圧する手段
と、前記加熱源の温度を制御する制御手段とを備えた熱
伝導制御装置。
1. A graphite sheet disposed between a heating source and a material to be heated, and means for pressurizing the graphite sheet from one of the heating source and the material to be heated.
And a heat conduction control device comprising a control means for controlling the temperature of the heating source .
【請求項2】 上部金型と下部金型とから構成される金
型と、前記上部金型に設けられた注入口と、前記注入口
を介して前記金型内へ成形材料の注入を行うノズルと、
前記下部金型の前記注入口側とは反対側にグラファイト
シートを介して、設けられた加熱源と、前記加熱源の温
度を制御する制御手段と、前記加熱源と前記下部金型の
いずれか一方から前記グラファイトシートを加圧する手
段とを備えたことを特徴とする樹脂成形金型装置。
2. A mold comprising an upper mold and a lower mold, an injection port provided in the upper mold, and a molding material is injected into the mold through the injection port. A nozzle,
A heating source provided on a side of the lower mold opposite to the injection port side via a graphite sheet, and a temperature of the heating source.
Control means for controlling the temperature, the heating source and the lower mold
A hand that pressurizes the graphite sheet from either one.
A resin molding die device comprising a step.
JP31737296A 1996-11-28 1996-11-28 Heat conduction control device and resin molding die device Expired - Fee Related JP3384264B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31737296A JP3384264B2 (en) 1996-11-28 1996-11-28 Heat conduction control device and resin molding die device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31737296A JP3384264B2 (en) 1996-11-28 1996-11-28 Heat conduction control device and resin molding die device

Publications (2)

Publication Number Publication Date
JPH10156832A JPH10156832A (en) 1998-06-16
JP3384264B2 true JP3384264B2 (en) 2003-03-10

Family

ID=18087522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31737296A Expired - Fee Related JP3384264B2 (en) 1996-11-28 1996-11-28 Heat conduction control device and resin molding die device

Country Status (1)

Country Link
JP (1) JP3384264B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6743384B2 (en) * 2001-03-19 2004-06-01 Honeywell International Inc. Anisotropic heat diffuser plate
WO2006134858A1 (en) * 2005-06-16 2006-12-21 Matsushita Electric Industrial Co., Ltd. Heat dissipating graphite sheet and electronic device using same
JP5069861B2 (en) * 2006-02-15 2012-11-07 株式会社カネカ Graphite film, thermal diffusion film using the same, and thermal diffusion method using the same.
JP4854353B2 (en) * 2006-03-23 2012-01-18 エスペック株式会社 Temperature control device and burn-in test device
JP5012426B2 (en) * 2007-11-06 2012-08-29 株式会社島津製作所 Temperature control device for reaction vessel
JP5060458B2 (en) * 2008-12-05 2012-10-31 トヨタ自動車株式会社 Die-cast mold and die-cast method
JP5430951B2 (en) * 2009-01-19 2014-03-05 株式会社日本製鋼所 Mold equipment
DE102009025164A1 (en) * 2009-06-12 2010-12-30 Günther Heisskanaltechnik Gmbh heater
US8529729B2 (en) * 2010-06-07 2013-09-10 Lam Research Corporation Plasma processing chamber component having adaptive thermal conductor
JP6043887B1 (en) * 2016-01-27 2016-12-14 株式会社山岡製作所 Thermal processing mold
JP6836474B2 (en) 2017-08-03 2021-03-03 三菱重工業株式会社 Manufacturing method for flexible mandrel and composite parts

Also Published As

Publication number Publication date
JPH10156832A (en) 1998-06-16

Similar Documents

Publication Publication Date Title
JP3384264B2 (en) Heat conduction control device and resin molding die device
US20190069389A1 (en) Heat-dissipating sheet having high thermal conductivity and its production method
US10946592B2 (en) Resistive heating-compression method and apparatus for composite-based additive manufacturing
US4268238A (en) Flow molding
CA2396652A1 (en) Method and apparatus for electrically heating a screed assembly in a paving machine
CN102745674B (en) Manufacturing mold and manufacturing method of flake graphite film
US20160247607A1 (en) ReBCO HIGH TEMPERATURE SUPERCONDUCTING WIRE BONDING DEVICE AND BONDING METHOD USING SAME
JP2001102436A (en) Electrostatic chuck and its manufacturing method
CN104495795A (en) Graphite flake and preparation method thereof
JP2000263577A5 (en)
WO1994001529A1 (en) Ceramic heating/cooling device
JP3991481B2 (en) Method for producing multilayer graphite sheet
WO1989007577A1 (en) Method of producing highly oriented graphite
KR20220016582A (en) Thick graphite foil and Method for making the same
EP0880872A1 (en) Device for heating a press tool, press having such device, and method of manufacture
JPH0517116A (en) Production of graphite
JP2553784B2 (en) Graphite manufacturing method
JPH0365505A (en) Low density swollen graphite molded product and preparation thereof
CN106560262B (en) Hot-working mould
CN110328959A (en) The method of worked copper base-graphite alkene composite material and copper-based-graphene composite material
JPH09156913A (en) Production of heat-conductive sheet and sputtering apparatus using the sheet
CN1218435A (en) Method and apparatus for manufacturing laminate
WO2014134791A1 (en) Heat conducting gasket and application thereof
JP2000265201A (en) Electrically heating type pressurizing sintering apparatus
CN216065539U (en) Clamp for manufacturing sintered silver thin pancake

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071227

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081227

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees