JP3383240B2 - Capacitive displacement sensor - Google Patents
Capacitive displacement sensorInfo
- Publication number
- JP3383240B2 JP3383240B2 JP17926099A JP17926099A JP3383240B2 JP 3383240 B2 JP3383240 B2 JP 3383240B2 JP 17926099 A JP17926099 A JP 17926099A JP 17926099 A JP17926099 A JP 17926099A JP 3383240 B2 JP3383240 B2 JP 3383240B2
- Authority
- JP
- Japan
- Prior art keywords
- frequency
- capacitance
- change
- displacement
- voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
- Transmission And Conversion Of Sensor Element Output (AREA)
Description
【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は水面の変位や振動物
体や揺動物体の変位を、容量の変化として測定する容量
式変位センサに関するものである。
【0002】
【従来の技術】従来の容量式変位センサの一例を、図5
に示したブロック回路図により説明する。図5におい
て、1は変位計測対象物で例えば水槽の水の水面2の変
化を測定するものである。3は容量電極4とLC発振器
5とからなる容量センサで、被計測面である水面2と容
量電極4の計測面6との距離Hが狭くなると、測定間の
静電容量が大となりLC発振器5の発振周波数Fh は低
下し、距離Hが広がると測定間の静電容量が小となりL
C発振器5の発振周波数Fh は高くなる。7は参照周波
数発振器で、LC発振器5の発振周波数Fh に関連した
所要の参照周波数Fr を発振できるようになっており、
測定範囲の最大の距離Hに対応するLC発振器5の発振
周波数Fh よりも、若干高い周波数に設定してある。
【0003】8は検波回路でLC発振器5の発振周波数
Fh と参照周波数発振器7の参照周波数Fr との差の信
号であるビート周波数Fb を出力するものである。9は
周波数・電圧変換器(F−V変換器)で、ビート周波数
Fb が基準となる周波数よりも低くなると直流出力電圧
Vf も基準電圧よりも低くなり、高くなると直流出力電
圧Vf は基準電圧よりも高くなる。10はF−V変換器
9の出力電圧を距離Hに変換する電圧−距離変換器(V
−H変換器)である。従って、水面2の位置が基準面に
位置しているときの、水面2と容量センサ3との距離H
0 を基準として、基準となるビート周波数Fb を設定す
れば、水面2の位置が基準面より下がれば、距離Hは広
がりH+ となり、発振周波数Fh が高くなるためビート
周波数Fb は低下し、F−V変換器9の直流出力電圧V
f は低下する。
【0004】また、水面2の位置が基準面より上がれ
ば、距離Hは狭くなりH- となり、発振周波数Fh が低
くなるためビート周波数Fb は高くなり、F−V変換器
9の直流出力電圧Vf は高くなる。従って、このF−V
変換器9の直流出力電圧Vf の変化をV−H変換器10
で距離Hに換算することにより、水面の所定位置の上下
変化(変位)を測定することができる。ただし、距離H
の変化に対する静電容量の変化は非直線であるため、所
要の換算処理によって読み取るようにする必要がある。
なお、F−V変換器9の直流出力電圧Vf が変化した場
合、その直流出力電圧Vf を距離H0 に対応する基準電
圧に追従するように、サーボ機構により容量センサ3を
上下させ、その変化量(距離)を読み取るように構成す
ることもできる。
【0005】
【発明が解決しようとする課題】図5に示した従来の容
量式変位センサは、容量電極4と測定面6との距離Hが
小さい場合、例えば容量電極4の径が20φmmに対し、
測定範囲(変位)が2mm以下の場合は、容量電極4と測
定面6との間の静電容量は略1/Hに比例するため、静
電容量が十分大きく測定精度を保つことができる。しか
しながら、容量電極4の径に比較し距離Hが同等以上の
場合、例えば容量電極4の径が20φmmに対し、測定範
囲が20mm以上の場合は、距離Hの変化に対し静電容量
の変化は略1/Hに比例して極めて小さくなり、LC発
振器周波数Fh の変化が少なくなり、容量センサ3を構
成する各部品の温度特性や経時変化による周波数ドリフ
トが大きく発生し、このため測定結果に誤差が生じ、信
頼性の点で問題があった。本発明は、容量センサ3のド
リフトに影響を受けることがなく、変位が大きな測定対
象であっても測定精度を維持することのできる信頼性の
高い容量式変位センサを提供するものである。
【0006】
【課題を解決するための手段】本発明の容量式変位セン
サは、変位計測対象面と容量電極との距離の変化を静電
容量の変化として検出して、LC発振器の発振周波数を
可変せしめる容量センサと、該容量センサの発振周波数
と所定の関係を有する参照周波数を発振する参照周波数
発振器と、前記容量センサの発振周波数と前記参照周波
数発振器の参照周波数との差のビート周波数を発生せし
める検波回路と、該検波回路のビート周波数出力を電圧
に変換するF−V変換器とから構成された容量式変位セ
ンサにおいて、前記容量センサを前記変位測定対象面に
対して一定の振幅でかつ低周期で微小振動せしめる微小
振動発生器と、前記F−V変換器から出力される前記ビ
ート周波数に重畳された前記微小振動に基づく静電容量
の変化による低周波の振幅を電圧に変換して検出する低
周波交流増幅器とを備え、前記変位測定対象面の変位に
基づく静電容量の変化を前記微小振動に基づく低周波の
振幅の変化として検出し、該振幅を電圧値に変換すると
共に、変換された該電圧値から変位量を求めるようにし
たものである。
【0007】
【発明の実施の形態】図1は容量式変位センサの一実施
例を示すブロック回路図である。なお、図5に示した従
来例と同一部分は同一記号で示し、その説明を省略す
る。図1において、11は微動信号発生器で例えば20
Hz程度の低周期の微動信号を発生させるものである。
12は微動駆動部で微動信号発生器11の信号を一定振
幅の機械的微小振動に変換するもので、微動信号発生器
11と微動駆動部12とが一体となった、例えばバイブ
レーターなどの微小振動発生器13として構成される。
この微小振動発生器13による微小振動は容量センサ3
に加えられる。14は低周波交流増幅器、15はリニア
化回路、16は出力増幅器である。
【0008】次に図1に示して容量式変位センサの動作
を説明する。容量センサ3の計測面6と変位計測対象物
1の例えば水槽の水面2との静電容量に基づき、LC発
振器5は発振周波数Fh を発生する。このとき容量セン
サ3は、20Hz程度の低周波により微小振動を行う。
そのためLC発振器5の4MHz前後の発振周波数Fh
に、前記低周波の微小振動による静電容量変化に伴う周
波数変化分が重畳されて検波回路8に出力される。この
低周波の微小振動に対応して出力される低周波の振幅
は、前述の距離Hにより定まる静電容量に関係して、距
離Hが狭ければ標準の振幅より大きくなり、広ければ標
準の振幅より小さくなる。
【0009】検波回路8からは参照周波数発振器7の参
照周波数Fr により、ビート周波数が出力され、F−V
変換器9でビート周波数Fb の高低に基づいて変換され
た直流出力電圧Vf は、例えば図2に示すように、変位
値0である距離H=0を電圧3Vとして、距離Hがプラ
ス10mmの場合約1.4V、距離Hがマイナス10mmの
場合約8.7VのH−Vf 特性図として表される。この
直流出力電圧Vf は、前述の20Hz程度の低周波が重
畳された場合の具体的なF−V変換器9の直流出力電圧
Vf の波形は、例えば図3に示すような波形となる。即
ち、波形aは水面2が基準面に位置している状態で、容
量センサ3との距離Hが基準となる距離H0における波
形で、ビート周波数に対応する出力電圧約3Vに重畳さ
れた交流電圧波形として出力される。
【0010】波形bは水面2が基準面より下がった状態
で、容量センサ3との距離Hが広がった状態における波
形で、同様に出力電圧約2.1Vに重畳された交流電圧
波形として出力されるが、この低周波の波形の振幅は波
形aよりも振幅が小さくなっている。波形cは水面2が
基準面より上がった状態で、容量センサ3との距離Hが
狭くなった状態における波形で、同様に出力電圧5.5
Vに重畳された交流電圧波形として出力されるが、この
低周波の波形の振幅は波形aよりも振幅が大きくなって
いる。
【0011】次に図4のH−A特性図は、F−V変換器
9の出力を低周波交流増幅器14により処理することに
よって得られた出力微分電圧Aと距離Hとの関係を示す
もので、図2及び図3に示したF−V変換器9の出力に
含まれる微小振動に対応する交流波形の振幅を、各距離
(変位)H(10mm〜0〜−10mm)における1mmの変
位に対する出力電圧の変化分として示しているものであ
る。即ち、図2のH−Vf 特性図に示されているよう
に、距離Hが0mmにおける1mmの電圧の変化分は0.2
7V、距離Hが−6mmにおける1mmの電圧の変化分は
0.6V、距離Hが4mmにおける1mmの電圧の変化分は
0.17Vとして表されているように、各距離H毎の1
mmの変位に対する出力電圧の変化分を特性図として示し
ているものである。
【0012】従って、低周波交流増幅器14の出力微分
電圧Aを検出することにより、距離Hを読み取ることが
できる。なお、出力微分電圧AはH−A特性図のように
非直線であるため、出力微分電圧Aから変位量(距離
H)を容易に検出できるようにするため、リニア化回路
15を設けると共に、出力増幅器16を設けて変位量
(距離H)を直接読み取れるようにしてもよい。また、
従来例で説明したように、低周波交流増幅器14の出力
微分電圧Aを、変位量0における距離H0に対応する基
準電圧に追従するように、サーボ機構により容量センサ
3を上下させ、その変化量(距離)を読み取るように構
成するようにしてもよい。
【0013】前述した本発明の実施例は、水面などの水
平面の変位を計測する例について説明したが、変位計測
対象面2は垂直でも傾斜面であっても計測できることは
当然である。また、容量電極4の面積の大きさ、変位計
測対象面2と容量電極4との距離Hとその間の静電容
量、LC発振回路の特性、参照周波数発振器の発信周波
数、微小振動発生器13の振動振幅と振動周期などは、
変位計測対象物の特性や測定環境により適宜選定するこ
とができる。
【0014】
【発明の効果】以上詳細に説明したように、本発明によ
る容量式変位センサは、変位計測対象面と容量電極の測
定面との間の距離の変化を静電容量の変化として検出す
る容量センサを低周期で微小振動せしめ、この微小振動
のによる静電容量の変化の振幅を電圧値として検出し、
この電圧値を距離に変換することにより変位計測対象面
の変位として求めるものであるため、容量センサの温度
特性によるドリフトや部品の経時変化に伴うドリフトな
どがあっても、その変位量が低周波の交流電圧の振幅値
として検出されることにより、前述したドリフトの影響
を被ることが殆どなく、正確であって信頼性の高い変位
量の計測を行い得るものである。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a capacitive displacement sensor for measuring displacement of a water surface or displacement of a vibrating or shaking animal as a change in capacitance. 2. Description of the Related Art An example of a conventional capacitive displacement sensor is shown in FIG.
This will be described with reference to the block circuit diagram shown in FIG. In FIG. 5, reference numeral 1 denotes an object to be measured for displacement, for example, for measuring a change in the water surface 2 of a water tank. Reference numeral 3 denotes a capacitance sensor including a capacitance electrode 4 and an LC oscillator 5. When the distance H between the water surface 2, which is the surface to be measured, and the measurement surface 6 of the capacitance electrode 4 is reduced, the capacitance between the measurements is increased, and the LC oscillator is increased. 5, the oscillation frequency Fh decreases, and as the distance H increases, the capacitance between the measurements decreases and L
The oscillation frequency Fh of the C oscillator 5 increases. Reference numeral 7 denotes a reference frequency oscillator which can oscillate a required reference frequency Fr related to the oscillation frequency Fh of the LC oscillator 5,
The frequency is set to be slightly higher than the oscillation frequency Fh of the LC oscillator 5 corresponding to the maximum distance H of the measurement range. A detection circuit 8 outputs a beat frequency Fb, which is a signal representing a difference between the oscillation frequency Fh of the LC oscillator 5 and the reference frequency Fr of the reference frequency oscillator 7. Reference numeral 9 denotes a frequency / voltage converter (FV converter). When the beat frequency Fb becomes lower than the reference frequency, the DC output voltage Vf also becomes lower than the reference voltage, and when the beat frequency Fb becomes higher, the DC output voltage Vf becomes higher than the reference voltage. Will also be higher. Reference numeral 10 denotes a voltage-to-distance converter (V) that converts the output voltage of the FV converter 9 to a distance H.
-H converter). Therefore, when the position of the water surface 2 is located on the reference surface, the distance H between the water surface 2 and the capacitance sensor 3
If the reference beat frequency Fb is set with reference to 0, if the position of the water surface 2 is lower than the reference surface, the distance H becomes wider H + and the oscillation frequency Fh becomes higher, so that the beat frequency Fb becomes lower, DC output voltage V of -V converter 9
f decreases. On the other hand, if the position of the water surface 2 is higher than the reference surface, the distance H becomes shorter and becomes H-, the oscillation frequency Fh becomes lower, the beat frequency Fb becomes higher, and the DC output voltage Vf of the FV converter 9 becomes higher. Will be higher. Therefore, this FV
The change in the DC output voltage Vf of the converter 9 is
, The vertical change (displacement) of a predetermined position on the water surface can be measured. However, the distance H
Since the change in the capacitance with respect to the change is non-linear, it is necessary to read the change by a required conversion process.
When the DC output voltage Vf of the FV converter 9 changes, the servo sensor moves the capacitance sensor 3 up and down so that the DC output voltage Vf follows the reference voltage corresponding to the distance H0. (Distance) can also be configured to be read. [0005] In the conventional capacitive displacement sensor shown in FIG. 5, when the distance H between the capacitive electrode 4 and the measuring surface 6 is small, for example, the diameter of the capacitive electrode 4 is 20 mm. ,
When the measurement range (displacement) is 2 mm or less, the capacitance between the capacitance electrode 4 and the measurement surface 6 is approximately proportional to 1 / H, so that the capacitance is sufficiently large and the measurement accuracy can be maintained. However, when the distance H is equal to or greater than the diameter of the capacitance electrode 4, for example, when the diameter of the capacitance electrode 4 is 20 mm and the measurement range is 20 mm or more, the change in the capacitance with respect to the change in the distance H It becomes extremely small in proportion to approximately 1 / H, the change in the LC oscillator frequency Fh becomes small, and the frequency drift due to the temperature characteristic and the aging change of each component constituting the capacitive sensor 3 occurs. And there was a problem in reliability. The present invention provides a highly reliable capacitive displacement sensor that is not affected by the drift of the capacitive sensor 3 and that can maintain measurement accuracy even for a measurement object having a large displacement. A capacitive displacement sensor according to the present invention detects a change in the distance between a displacement measurement target surface and a capacitive electrode as a change in capacitance and changes the oscillation frequency of an LC oscillator. A variable capacitance sensor, a reference frequency oscillator that oscillates a reference frequency having a predetermined relationship with the oscillation frequency of the capacitance sensor, and a beat frequency that is the difference between the oscillation frequency of the capacitance sensor and the reference frequency of the reference frequency oscillator In a capacitive displacement sensor comprising a detecting circuit to be operated and an FV converter for converting a beat frequency output of the detecting circuit into a voltage, the capacitive sensor has a constant amplitude with respect to the displacement measurement target surface and A micro-vibration generator that causes micro-vibration at a low frequency; and a change in capacitance based on the micro-vibration superimposed on the beat frequency output from the FV converter. A low-frequency AC amplifier that converts a low-frequency amplitude into a voltage and detects the change, thereby detecting a change in capacitance based on the displacement of the displacement measurement target surface as a change in low-frequency amplitude based on the minute vibration Then, the amplitude is converted into a voltage value, and a displacement amount is obtained from the converted voltage value. FIG. 1 is a block circuit diagram showing an embodiment of a capacitive displacement sensor. Note that the same parts as those of the conventional example shown in FIG. 5 are denoted by the same reference numerals, and description thereof will be omitted. In FIG. 1, reference numeral 11 denotes a fine movement signal generator, for example, 20.
It generates a fine movement signal having a low cycle of about Hz.
Reference numeral 12 denotes a fine movement driving unit which converts the signal of the fine movement signal generator 11 into mechanical minute vibration having a constant amplitude. The fine movement signal generator 11 and the fine movement driving unit 12 are integrated, for example, a minute vibration of a vibrator or the like. It is configured as a generator 13.
The minute vibration generated by the minute vibration generator 13 is
Is added to 14 is a low-frequency AC amplifier, 15 is a linearization circuit, and 16 is an output amplifier. Next, the operation of the capacitive displacement sensor will be described with reference to FIG. The LC oscillator 5 generates an oscillation frequency Fh based on the capacitance between the measurement surface 6 of the capacitance sensor 3 and the surface 2 of the displacement measurement object 1, for example, a water tank. At this time, the capacitance sensor 3 performs minute vibration at a low frequency of about 20 Hz.
Therefore, the oscillation frequency Fh of about 4 MHz of the LC oscillator 5
Is superimposed on the frequency change due to the capacitance change due to the low frequency minute vibration, and output to the detection circuit 8. The low-frequency amplitude output in response to the low-frequency micro-vibration is larger than the standard amplitude if the distance H is short, and the standard amplitude if the distance H is wide, in relation to the capacitance determined by the distance H. It becomes smaller than the amplitude. The beat frequency is output from the detection circuit 8 by the reference frequency Fr of the reference frequency oscillator 7, and F-V
The DC output voltage Vf converted by the converter 9 based on the level of the beat frequency Fb is, for example, as shown in FIG. 2, when the distance H = 0, which is a displacement value 0, is 3 V and the distance H is plus 10 mm. When the distance H is about 1.4 V and the distance H is minus 10 mm, the H-Vf characteristic chart of about 8.7 V is shown. When the DC output voltage Vf is superimposed with the low frequency of about 20 Hz, the specific DC output voltage Vf of the FV converter 9 has a waveform as shown in FIG. 3, for example. That is, the waveform a is a waveform at a distance H0 where the distance H to the capacitance sensor 3 is a reference when the water surface 2 is located on the reference surface, and the AC voltage superimposed on the output voltage of about 3 V corresponding to the beat frequency. Output as a waveform. A waveform b is a waveform in a state in which the water surface 2 is lower than the reference surface and the distance H from the capacitance sensor 3 is widened, and is similarly output as an AC voltage waveform superimposed on the output voltage of about 2.1 V. However, the amplitude of the low-frequency waveform is smaller than the amplitude of the waveform a. The waveform c is a waveform in a state where the water surface 2 is higher than the reference surface and the distance H from the capacitance sensor 3 is narrow, and similarly, the output voltage 5.5
It is output as an AC voltage waveform superimposed on V, and the amplitude of this low-frequency waveform is larger than that of waveform a. Next, the HA characteristic diagram of FIG. 4 shows the relationship between the output differential voltage A obtained by processing the output of the FV converter 9 by the low-frequency AC amplifier 14 and the distance H. The amplitude of the AC waveform corresponding to the micro-vibration included in the output of the FV converter 9 shown in FIGS. 2 and 3 is calculated by changing the amplitude of each distance (displacement) H (10 mm to 0 to -10 mm) by 1 mm. Is shown as a change in the output voltage with respect to. That is, as shown in the H-Vf characteristic diagram of FIG. 2, the change of the voltage of 1 mm when the distance H is 0 mm is 0.2%.
As shown in FIG. 7, a change in a voltage of 1 mm at a distance H of −6 mm is 0.6 V, and a change of a voltage of 1 mm at a distance H of 4 mm is 0.17 V.
FIG. 9 is a characteristic diagram showing a change in output voltage with respect to a displacement of mm. Accordingly, the distance H can be read by detecting the output differential voltage A of the low-frequency AC amplifier 14. Since the output differential voltage A is non-linear as shown in the HA characteristic diagram, a linearization circuit 15 is provided in order to easily detect the displacement (distance H) from the output differential voltage A. An output amplifier 16 may be provided so that the displacement amount (distance H) can be directly read. Also,
As described in the conventional example, the capacitance sensor 3 is moved up and down by the servo mechanism so that the output differential voltage A of the low-frequency AC amplifier 14 follows the reference voltage corresponding to the distance H0 at the displacement amount 0, and the change amount (Distance) may be configured to be read. In the above-described embodiment of the present invention, an example of measuring the displacement of a horizontal surface such as a water surface has been described. However, it is natural that the displacement measurement target surface 2 can be measured whether it is a vertical surface or an inclined surface. Also, the size of the area of the capacitance electrode 4, the distance H between the displacement measurement target surface 2 and the capacitance electrode 4 and the capacitance between them, the characteristics of the LC oscillation circuit, the transmission frequency of the reference frequency oscillator, The vibration amplitude and vibration period
It can be appropriately selected according to the characteristics of the displacement measurement target and the measurement environment. As described above in detail, the capacitive displacement sensor according to the present invention detects a change in the distance between the displacement measurement target surface and the measurement surface of the capacitance electrode as a change in the capacitance. Micro-vibration at a low frequency, and detects the amplitude of the change in capacitance due to this micro-vibration as a voltage value.
Since this voltage value is converted into a distance to obtain the displacement of the displacement measurement target surface, even if there is a drift due to the temperature characteristics of the capacitive sensor or a drift due to aging of components, the amount of displacement is low frequency. Is detected as the amplitude value of the AC voltage, the displacement is hardly affected by the drift described above, and the displacement amount can be measured accurately and with high reliability.
【図面の簡単な説明】
【図1】本発明の容量式変位センサの一実施例を示すブ
ロック回路図である。
【図2】本発明の容量式変位センサにおける変位量に対
応するビート周波数とその出力電圧との関係の一例を示
すH−Vf 特性図である。
【図3】本発明の容量式変位センサにおけるF−V変換
器の出力に含まれる微小振動に対応する出力電圧波形の
幾つかの例を示す波形図である。
【図4】本発明の容量式変位センサにおける低周波交流
増幅器の出力である出力微分電圧Aと距離Hとの関係を
示すH−A特性図である。
【図5】従来の容量式変位センサの一例を示すブロック
回路図である。
【符号の説明】
1 変位計測対象物
2 変位計測対象物の計測面
3 容量センサ
4 容量電極
5 LC発振器
6 容量電極の計測面
7 参照周波数発振器
8 検波回路
9 ビート周波数−電圧変換器(F−V変換器)
10 電圧−距離変換器(V−H変換器)
11 微動信号発生器
12 微動駆動部
13 微小振動発生器
14 低周波交流増幅器
15 リニア化回路
16 出力増幅器BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block circuit diagram showing one embodiment of a capacitive displacement sensor according to the present invention. FIG. 2 is an H-Vf characteristic diagram showing an example of a relationship between a beat frequency corresponding to a displacement amount and an output voltage thereof in the capacitive displacement sensor of the present invention. FIG. 3 is a waveform chart showing some examples of output voltage waveforms corresponding to minute vibrations included in the output of the FV converter in the capacitive displacement sensor of the present invention. FIG. 4 is an HA characteristic diagram showing a relationship between an output differential voltage A, which is an output of a low-frequency AC amplifier, and a distance H in the capacitive displacement sensor of the present invention. FIG. 5 is a block circuit diagram showing an example of a conventional capacitive displacement sensor. [Description of Signs] 1 Displacement measurement object 2 Measurement surface of displacement measurement object 3 Capacitance sensor 4 Capacitance electrode 5 LC oscillator 6 Measurement surface of capacitance electrode 7 Reference frequency oscillator 8 Detection circuit 9 Beat frequency-voltage converter (F- V converter) 10 Voltage-distance converter (VH converter) 11 Fine motion signal generator 12 Fine motion driver 13 Micro vibration generator 14 Low frequency AC amplifier 15 Linearization circuit 16 Output amplifier
Claims (1)
化を静電容量の変化として検出して、LC発振器の発振
周波数を可変せしめる容量センサと、 該容量センサの発振周波数と所定の関係を有する参照周
波数を発振する参照周波数発振器と、 前記容量センサの発振周波数と前記参照周波数発振器の
参照周波数との差のビート周波数を発生せしめる検波回
路と、 該検波回路のビート周波数出力を電圧に変換するF−V
変換器とから構成された容量式変位センサにおいて、 前記容量センサを前記変位測定対象面に対して一定の振
幅でかつ低周期で微小振動せしめる微小振動発生器と、 前記F−V変換器から出力される前記ビート周波数に重
畳された前記微小振動に基づく静電容量の変化による低
周波の振幅を電圧に変換して検出する低周波交流増幅器
とを備え、 前記変位測定対象面の変位に基づく静電容量の変化を前
記微小振動に基づく低周波の振幅の変化として検出し、
該振幅を電圧値に変換すると共に、変換された該電圧値
から変位量を求めるようにしたことを特徴とする容量式
変位センサ。(57) [Claim 1] A capacitance sensor for detecting a change in the distance between a displacement measurement target surface and a capacitance electrode as a change in capacitance and varying the oscillation frequency of an LC oscillator; A reference frequency oscillator that oscillates a reference frequency having a predetermined relationship with the oscillation frequency of the capacitance sensor; a detection circuit that generates a beat frequency that is the difference between the oscillation frequency of the capacitance sensor and the reference frequency of the reference frequency oscillator; FV to convert beat frequency output of circuit to voltage
A displacement type vibration sensor comprising: a transducer; and a micro-vibration generator for causing the capacitance sensor to micro-vibrate with a constant amplitude and a low cycle with respect to the displacement measurement target surface, and an output from the FV converter. A low-frequency AC amplifier that converts a low-frequency amplitude due to a change in capacitance based on the minute vibration superimposed on the beat frequency to be detected into a voltage, and detects the voltage. Detecting a change in capacitance as a change in low-frequency amplitude based on the minute vibration,
A capacitance type displacement sensor wherein the amplitude is converted into a voltage value, and a displacement amount is obtained from the converted voltage value.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17926099A JP3383240B2 (en) | 1999-06-25 | 1999-06-25 | Capacitive displacement sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17926099A JP3383240B2 (en) | 1999-06-25 | 1999-06-25 | Capacitive displacement sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001004431A JP2001004431A (en) | 2001-01-12 |
JP3383240B2 true JP3383240B2 (en) | 2003-03-04 |
Family
ID=16062750
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17926099A Expired - Lifetime JP3383240B2 (en) | 1999-06-25 | 1999-06-25 | Capacitive displacement sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3383240B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005280189A (en) * | 2004-03-30 | 2005-10-13 | Seiko Epson Corp | Liquid droplet detector and liquid droplet detection method |
JP4779119B2 (en) * | 2004-05-07 | 2011-09-28 | 国立大学法人金沢大学 | Visualization sensor |
JP4324012B2 (en) * | 2004-05-20 | 2009-09-02 | 日立オムロンターミナルソリューションズ株式会社 | Displacement detection device and displacement detection method |
CN101975603B (en) * | 2010-10-27 | 2015-05-20 | 长沙开元仪器股份有限公司 | Liquid level detector |
JP2020085452A (en) | 2018-11-15 | 2020-06-04 | オムロン株式会社 | Proximity sensor unit and distance observation device |
CN109739364B (en) * | 2019-03-25 | 2023-09-22 | 延锋伟世通电子科技(上海)有限公司 | Touch display device with vibration feedback |
CN113155012B (en) * | 2021-01-25 | 2022-11-01 | 上海兰宝传感科技股份有限公司 | Capacitive proximity switch sensor |
-
1999
- 1999-06-25 JP JP17926099A patent/JP3383240B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2001004431A (en) | 2001-01-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5367925B1 (en) | Pressure sensor using MEMS resonator | |
US10578435B2 (en) | Quality factor compensation in microelectromechanical system (MEMS) gyroscopes | |
US8056389B2 (en) | Sensor self-test transfer standard | |
US11841229B2 (en) | Driving circuit, method for driving a MEMS gyroscope and a corresponding MEMS gyroscope | |
JP2010286368A (en) | Physical quantity detector and method of controlling the physical quantity detector, abnormality diagnosis system, and method of diagnosing abnormality | |
JP3383240B2 (en) | Capacitive displacement sensor | |
JP5348408B2 (en) | Physical quantity detection device, physical quantity detection device abnormality diagnosis system, and physical quantity detection device abnormality diagnosis method | |
GB2318232A (en) | Adaptive threshold circuit | |
JP2000081335A (en) | Yaw rate sensor | |
JPH09218040A (en) | Self-diagnostic method for angular speed sensor | |
JPS63154915A (en) | Drive-detection circuit of vibrator | |
JP2010286371A (en) | Physical quantity detector, abnormality diagnosis system of the same, and abnormality diagnosis method of the same | |
JPH0735646A (en) | Apparatus for measuring characteristic of leaf spring | |
US6316942B1 (en) | Electrical potential sensor | |
JP5589171B2 (en) | Circuit for physical quantity detection device | |
US20140260647A1 (en) | Pressure sensor stabilization | |
JPH10332504A (en) | Pressure sensor | |
JP5353358B2 (en) | Vacuum gauge | |
JP5320087B2 (en) | Physical quantity detection device, physical quantity detection system, and zero point voltage adjustment method for physical quantity detection device | |
JP3482464B2 (en) | Mass measuring device | |
SU721678A1 (en) | Method and device for determining two components of mechanical oscillations of a structure | |
RU2006126723A (en) | METHOD FOR MEASURING THE GAP BETWEEN ELECTRODES AND MOBILE WEIGHT OF A MICROMECHANICAL DEVICE AND A DEVICE FOR ITS IMPLEMENTATION | |
JP2000206263A (en) | Earthquake sensor | |
SU564548A1 (en) | String balancing displacement pick-up | |
JP5277495B2 (en) | Sensitivity measurement method of angular velocity sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
R150 | Certificate of patent or registration of utility model |
Ref document number: 3383240 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081220 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091220 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101220 Year of fee payment: 8 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101220 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111220 Year of fee payment: 9 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121220 Year of fee payment: 10 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121220 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131220 Year of fee payment: 11 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |