JP3382854B2 - Treatment method for gas containing pollutant components - Google Patents

Treatment method for gas containing pollutant components

Info

Publication number
JP3382854B2
JP3382854B2 JP17486698A JP17486698A JP3382854B2 JP 3382854 B2 JP3382854 B2 JP 3382854B2 JP 17486698 A JP17486698 A JP 17486698A JP 17486698 A JP17486698 A JP 17486698A JP 3382854 B2 JP3382854 B2 JP 3382854B2
Authority
JP
Japan
Prior art keywords
pollutant
gas
ozone
reaction layer
adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17486698A
Other languages
Japanese (ja)
Other versions
JP2000005563A (en
Inventor
順 泉
昭典 安武
成之 朝長
博之 蔦谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP17486698A priority Critical patent/JP3382854B2/en
Priority to KR1019990023259A priority patent/KR100358624B1/en
Priority to CA002276114A priority patent/CA2276114C/en
Priority to NO993086A priority patent/NO993086L/en
Priority to US09/338,325 priority patent/US6503469B2/en
Priority to DE69930443T priority patent/DE69930443T2/en
Priority to AU35775/99A priority patent/AU716634B2/en
Priority to EP99112034A priority patent/EP0967002B1/en
Priority to AT99112034T priority patent/ATE320842T1/en
Publication of JP2000005563A publication Critical patent/JP2000005563A/en
Application granted granted Critical
Publication of JP3382854B2 publication Critical patent/JP3382854B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はオゾンの酸化分解作
用により汚染成分を無害化する汚染成分含有ガスの処理
方法に関し、特に大量のガス中に含まれる微量の汚染成
分の無害化又は比較的高濃度の他の汚染成分と共存する
比較的低濃度の特定汚染成分の無害化に適した汚染成分
含有ガスの処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating a pollutant-containing gas for detoxifying pollutant components by the oxidative decomposition of ozone, and particularly for detoxifying or relatively high level of a trace amount of pollutant components contained in a large amount of gas. The present invention relates to a method of treating a pollutant-containing gas suitable for detoxifying a relatively low-concentration specific pollutant that coexists with other pollutant having a high concentration.

【0002】[0002]

【従来の技術】各種有機系汚染物、悪臭成分などの汚染
成分を含有するガスの無害化処理方法の一つとしてオゾ
ンによる酸化分解処理方法がある。オゾンは自己分解性
を有することから、処理済のガス中に残存して人体に影
響を及ぼす危険性は少なく、クリーンな処理剤として今
後さらに利用分野が拡大していくものと予測される。オ
ゾンによる処理は、汚染成分含有ガス中にオゾン発生器
(オゾナイザー)からのオゾン含有ガスを注入すること
によって行うが、通常は処理対象ガス中の汚染成分の濃
度は非常に希薄なため、汚染成分の酸化分解に寄与する
前に分解するオゾンの割合も多く、無害化効率が低いと
いう問題がある。また、近年、各種環境汚染物質の中で
特に毒性の強いダイオキシンが大きな問題となってお
り、ごみ焼却炉の排ガスなどのダイオキシンを含有する
排ガスの処理方法の開発が望まれている。ダイオキシン
はオゾンによる酸化分解が可能であるが、通常ダイオキ
シンが含まれるごみ焼却炉の排ガスなどにはダイオキシ
ン以外に多量のVOC(有機揮発性物質)、SOx、N
Oxなどの有害成分が含まれており、それらの濃度はダ
イオキシンに対し10〜100倍にも達している。その
ため、これらのダイオキシン含有ガスにオゾンを注入し
てもVOCなどとの反応により消費されてしまい、ダイ
オキシンの酸化分解に寄与できない。
2. Description of the Related Art Oxidative decomposition treatment method using ozone is one of the detoxifying treatment methods for gases containing various organic pollutants and pollutant components such as malodorous components. Since ozone has self-decomposability, there is little risk that it will remain in the treated gas and affect the human body, and it is expected that the field of application will further expand as a clean treatment agent in the future. The treatment with ozone is carried out by injecting the ozone-containing gas from the ozone generator (ozonizer) into the pollutant-containing gas, but the concentration of the pollutant in the gas to be treated is usually very dilute There is a problem that the detoxification efficiency is low because a large proportion of ozone is decomposed before it contributes to the oxidative decomposition of. In recent years, dioxin, which is particularly toxic among various environmental pollutants, has become a big problem, and development of a method for treating exhaust gas containing dioxin such as exhaust gas from a refuse incinerator has been desired. Dioxins can be oxidatively decomposed by ozone, but in the exhaust gas of garbage incinerators that normally contain dioxin, in addition to dioxins, a large amount of VOC (organic volatile substances), SOx, N
It contains harmful components such as Ox, and their concentration reaches 10 to 100 times that of dioxins. Therefore, even if ozone is injected into these dioxin-containing gases, they are consumed by the reaction with VOC or the like and cannot contribute to the oxidative decomposition of dioxin.

【0003】[0003]

【発明が解決しようとする課題】本発明はこのような従
来技術における問題点を解決し、汚染成分含有ガス中に
含まれる汚染成分を効率よくオゾン処理することがで
き、また、他の多量の有害成分とともに含まれるダイオ
キシンなどの特定汚染成分を優先的に分解し、無害化す
ることができる汚染成分含有ガスの処理方法を提供する
ことを目的とする。
SUMMARY OF THE INVENTION The present invention solves the problems in the prior art as described above, makes it possible to efficiently treat the pollutant components contained in the pollutant-containing gas with ozone, and to eliminate the problems of other large amounts. An object of the present invention is to provide a method for treating a pollutant-containing gas, which is capable of decomposing and detoxifying a particular pollutant such as dioxin contained together with a harmful ingredient.

【0004】[0004]

【課題を解決するための手段】本発明者らは汚染成分含
有ガスのオゾンによる処理方法について種々検討の結
果、処理対象ガス中の汚染成分とオゾンを共吸着する高
シリカ吸着剤を用い、予め汚染成分を吸着濃縮した吸着
剤表面にオゾンを供給し、前記汚染成分を酸化分解する
ことにより微量の汚染成分を確実に処理することがで
き、かつオゾンの処理効率を大幅に向上できること、さ
らにダイオキシンのようなある種の特定汚染成分につい
ては、他の多量の汚染成分と共存する場合であっても選
択的な吸着が可能で、吸着濃縮した状態でオゾンによる
酸化分解が可能となることを見出し、本発明を完成し
た。すなわち、本発明は次の(1)〜(3)の態様を含
むものである。 (1)汚染成分含有ガスの処理方法において、前記汚染
成分を吸着し、かつオゾンを吸着する高シリカペンタシ
ルゼオライト、脱アルミニウムフォージャサイト、メソ
ポーラスシリケート又はこれらのうちの2種以上の混合
物からなる高シリカ吸着剤を充填した反応層に、前記汚
染成分含有ガスを導入して前記汚染成分を前記吸着剤に
吸着させ、清浄化ガスを前記反応層から流出させ、前記
汚染成分含有ガスの導入を停止した後、前記汚染成分を
吸着した前記反応層にオゾン含有ガスを導入して前記吸
着剤表面で前記汚染成分を酸化分解することを特徴とす
る汚染成分含有ガスの処理方法。
As a result of various studies on the method of treating pollutant-containing gas with ozone, the inventors of the present invention used a high silica adsorbent that co-adsorbs the pollutant and ozone in the gas to be treated. By supplying ozone to the surface of the adsorbent that has adsorbed and concentrated pollutant components and by oxidizing and decomposing the pollutant components, it is possible to reliably treat a trace amount of pollutant components, and it is possible to significantly improve the treatment efficiency of ozone. It has been found that certain types of specific pollutants such as can be selectively adsorbed even when they coexist with a large amount of other pollutants, and that they can be oxidatively decomposed by ozone in an adsorbed and concentrated state. The present invention has been completed. That is, the present invention includes the following aspects (1) to (3) . (1) In the method for treating a pollutant-containing gas, a high silica pentac which adsorbs the pollutant and also adsorbs ozone.
Zeolite, dealumination faujasite, meso
Porous silicate or a mixture of two or more of these
The reaction layer filled with high silica adsorbent comprising from the object, the introduced a contaminant-containing gas to adsorb the contaminant on the adsorbent, drained cleaned gas from said reaction layer, wherein the contaminant-containing gas After the introduction of the pollutant is stopped, an ozone-containing gas is introduced into the reaction layer having adsorbed the pollutant to oxidize and decompose the pollutant on the surface of the adsorbent, thereby treating the pollutant-containing gas.

【0005】(2)複数の汚染成分を含有するガスの処
理方法において、前記汚染成分のうち特定の汚染成分を
選択的に吸着し、かつオゾンを吸着する高シリカペンタ
シルゼオライト、脱アルミニウムフォージャサイト、メ
ソポーラスシリケート又はこれらのうちの2種以上の混
合物からなる高シリカ吸着剤を充填した反応層に、前記
ガスを導入して前記特定の汚染成分を前記吸着剤に選択
的に吸着させ、その他の汚染成分を含有するガスを前記
反応層から流出させてその他の汚染成分は別途無害化処
理し、前記汚染成分含有ガスの導入を停止した後、前記
特定の汚染成分を吸着した前記反応層にオゾン含有ガス
を導入して前記吸着剤表面で前記特定の汚染成分を酸化
分解することを特徴とする汚染成分含有ガスの処理方
法。
(2) In a method for treating a gas containing a plurality of pollutant components, a high silica penta that selectively adsorbs a particular pollutant component among the pollutant components and adsorbs ozone.
Sil zeolite, dealuminated faujasite,
Soporous silicate or a mixture of two or more of these
In a reaction layer filled with a high silica adsorbent composed of a compound, the gas is introduced to selectively adsorb the specific pollutant component to the adsorbent, and a gas containing other pollutant component is discharged from the reaction layer. The other pollutant components are allowed to flow out, and the other pollutant components are separately detoxified, and after the introduction of the pollutant component-containing gas is stopped, an ozone-containing gas is introduced into the reaction layer that has adsorbed the specific pollutant component, and the adsorbent surface A method for treating a pollutant-containing gas, which comprises oxidizing and decomposing the specific pollutant.

【0006】(3)前記汚染成分又は前記特定の汚染成
分がダイオキシンであることを特徴とする前記(1)又
は(2)の汚染成分含有ガスの処理方法
(3) The method for treating a pollutant-containing gas according to (1) or (2) above, wherein the pollutant or the specific pollutant is dioxin .

【0007】本発明で使用する高シリカ吸着剤は、処理
対象の汚染成分とオゾンを共吸着する(汚染成分とオゾ
ンの両方を吸着する)ものであり、吸着剤表面で汚染成
分をオゾンにより酸化分解させるものである。このよう
な吸着剤として本発明では高シリカペンタシルゼオライ
ト(シリカライト又はSiO2 /Al2 3 比が高いZ
SM−5)、脱アルミニウムフォージャサイト(超安定
Y型ゼオライト:USY)、メソポーラスシリケート
(MCM−41、FSM−16、テトラエトキシシラン
をシリカ源とする低温酸性合成メソポーラスシリケート
、又は低分子ケイ酸をシリカ源とする低温酸性合成メ
ソポーラスシリケートなど)又はこれらのうちの2種
以上の混合物からなる高シリカ吸着剤を使用する。
The high silica adsorbent used in the present invention co-adsorbs the pollutant component to be treated and ozone (adsorbs both the pollutant component and ozone), and the pollutant component is oxidized by ozone on the adsorbent surface. It is something that can be disassembled . The present invention adsorbents such as this high-silica pentasil zeolite (silicalite or SiO 2 / Al 2 O 3 ratio is high Z
SM-5), dealuminated faujasite (ultrastable Y-type zeolite: USY), low temperature acidic synthetic mesoporous silicate mesoporous silicate (MCM-41, FSM-16 , tetraethoxysilane and silica source, or a low molecular Low temperature acidic synthetic mesoporous silicates using silica as a silica source) or two of these
A high silica adsorbent consisting of the above mixture is used.

【0008】前記高シリカ吸着剤のうち、高シリカペン
タシルゼオライトは、シリカ源としてケイ酸ナトリウム
やヒュームドシリカを使用し、有機テンプレートとして
テトラプロピルアンモニウムブロミドを使用して150
〜180℃程度で水熱合成を行って得られるSiO2
Al2 3 比10〜1000程度のペンタシルゼオライ
トである。脱アルミニウムフォージャサイトは、SiO
2 /Al2 3 比5程度のNa−Y型ゼオライトをアン
モニア水で処理することによりゼオライト骨格のAlの
大半を除去して得られたSiO2 /Al2 3 比10〜
400の超安定Y型ゼオライト(USY)である。
Among the high silica adsorbents, the high silica pentasil zeolite uses sodium silicate or fumed silica as a silica source and tetrapropylammonium bromide as an organic template.
SiO 2 / obtained by performing hydrothermal synthesis at about 180 ° C
It is a pentasil zeolite having an Al 2 O 3 ratio of about 10 to 1000. Aluminum-free faujasite is SiO
A SiO 2 / Al 2 O 3 ratio of 10 to 10 obtained by removing most of the Al in the zeolite skeleton by treating Na-Y type zeolite with a 2 / Al 2 O 3 ratio of about 5 with ammonia water.
400 ultra stable Y zeolite (USY).

【0009】メソポーラスシリケートは10〜1000
オングストロームのメソ孔を有するシリカ系多孔質体で
あって、種々の製造方法があり、製造条件等によりSi
2/Al2 3 比10から実質的にSiO2 のみのも
のまで得られている。例えば、MCM−41はモービル
社により開発された温度140℃、pH13.5、シリ
カ源として水ガラス、ケイ酸ナトリウム、有機テンプレ
ートとしてカチオン系界面活性剤(炭素数8以上)を使
用して得られる比表面積1600m2 /g程度、SiO
2 /Al2 3 比1000程度のシリカ系多孔質体であ
る。FMS−16は同じく黒田、稲垣等により開発され
たカネマイトにカチオン系界面活性剤をインターカレー
ションして得られたMCM−41と類似の構造のSiO
2 /Al 2 3 比1000程度のシリカ系多孔質体であ
る。また、低温メソポーラスシリケートはstuck
y等により提唱された方法、すなわち、シリカ源として
テトラエトキシシラン(TEOS)を、有機テンプレー
トとしてカチオン系界面活性剤を使用して室温下にpH
1以下で合成するものであり、低温メソポーラスシリケ
ートは本発明等が開発した方法、すなわち、シリカ源
として縮重合したシリカを含まないケイ酸を、有機テン
プレートとしてカチオン系界面活性剤を使用して室温p
H1以下で合成するものである。これらの低温メソポー
ラスシリケートは製造条件等によりSiO2 /Al2
3 比10から実質的にSiO2 のみのものまで得ること
ができる。
Mesoporous silicates are 10 to 1000
Silica-based porous material with angstrom mesopores
There are various manufacturing methods, and depending on the manufacturing conditions, etc.
O2/ Al2O3Ratio 10 to substantially SiO2Only
Has been obtained. For example, MCM-41 is a mobile
Temperature 140 ℃, pH 13.5, Siri developed by the company
Water source, sodium silicate, organic template
Use a cationic surfactant (more than 8 carbon atoms)
Specific surface area of 1600m2/ G, SiO
2/ Al2O3It is a silica-based porous body with a ratio of about 1000.
It FMS-16 was also developed by Kuroda, Inagaki, etc.
Intercalation with cationic surfactant in kanemite
Of SiO 2 having a structure similar to MCM-41
2/ Al 2O3It is a silica-based porous body with a ratio of about 1000.
It Also, low temperature mesoporous silicate is stuck
The method proposed by Y. et al., ie, as a silica source
Tetraethoxysilane (TEOS) is used as an organic template.
PH at room temperature using a cationic surfactant
Synthesized at 1 or less, low temperature mesoporous siliqu
Is a method developed by the present invention, that is, a silica source.
The silica-free silicic acid that has been polycondensed as
Room temperature p using cationic surfactant as plate
It is synthesized below H1. These low temperature mesopores
Las silicate is made of SiO depending on manufacturing conditions.2/ Al2O
3Ratio 10 to substantially SiO2To get only the ones
You can

【0010】また、本発明者らの実験結果によれば、こ
れらの高シリカ吸着剤の中でもSiO2 /Al2 3
70以上の高シリカペンタシルゼオライト、SiO2
Al 2 3 比20以上の脱アルミニウムフォージャサイ
ト、SiO2 /Al2 3 比20以上のメソポーラスシ
リケートが、ダイオキシン及びオゾンの吸着能が高く、
吸着したオゾンの分解率も低いので好ましい吸着剤であ
る。これらの中では高シリカペンタシルゼオライトはオ
ゾン吸着能は高いがオゾン分解率が若干高い傾向にあ
り、オゾン吸着能及び分解率を勘案するとSiO2 /A
2 3 比20以上のメソポーラスシリケートが最も良
好な性能を示し、次いでSiO2 /Al23 比20以
上の脱アルミニウムフォージャサイト、SiO2 /Al
2 3 比70以上の高シリカペンタシルゼオライトの順
である。
Further, according to the experimental results of the present inventors, this
Among these high silica adsorbents, SiO2/ Al2O3ratio
70 or more high silica pentasil zeolite, SiO2/
Al 2O3De-aluminized forge size of 20 or more
G, SiO2/ Al2O3A mesoporous material with a ratio of 20 or more
The silicate has a high dioxin and ozone adsorption capacity,
Since the decomposition rate of adsorbed ozone is low, it is a preferable adsorbent.
It Among these, high silica pentasil zeolite is
The ozone adsorption capacity is high, but the ozone decomposition rate tends to be slightly higher.
In consideration of ozone adsorption capacity and decomposition rate, SiO2/ A
l2O3A mesoporous silicate with a ratio of 20 or more is the best
Shows good performance, then SiO2/ Al2O320 or more
Top dealuminated faujasite, SiO2/ Al
2O3High silica pentasil zeolite with a ratio of 70 or more
Is.

【0011】これらの吸着剤はそれぞれ使用目的に応じ
て単独又は混合物の形で粒状、ペレット状、ラシヒリン
グ状、ハニカム状など任意の形状に成形して使用する。
また、吸着剤充填塔の被処理ガス入口側に高濃度オゾン
の吸着性能の高いメソポーラスシリケートを、処理済み
ガスの出口側に低濃度オゾンの吸着性能の高い脱アルミ
ニウムフォージャサイトを充填した2層構造の吸着剤層
としてオゾンの使用効率を高めることもできる。
These adsorbents may be used alone or in the form of a mixture depending on the purpose of use by molding them into any shape such as granules, pellets, Raschig rings, and honeycombs.
In addition, the adsorbent-filled tower has a two-layer structure in which the treated gas inlet side is filled with mesoporous silicate having high adsorption performance for high-concentration ozone and the outlet side of treated gas is dealuminated faujasite with high adsorption performance for low-concentration ozone. It is also possible to increase the use efficiency of ozone as the adsorbent layer of the structure.

【0012】[0012]

【発明の実施の形態】前記本発明の方法(1)において
は、先ず汚染成分含有ガスを前記高シリカ吸着剤を充填
した反応層に導入して汚染成分を吸着させる。反応層出
口ガス中の未吸着の汚染成分の濃度が許容値を超えた時
点で汚染成分含有ガスの導入を停止する。吸着工程から
酸化分解工程への切り換えは反応層の出口や反応層内に
配置したセンサーによる汚染成分濃度に基づいて決定す
ることもできるが、処理対象ガスの性状がわかってお
り、汚染成分濃度に大きな変動がない場合には、予め吸
着時間を設定しておき、所定時間毎に切り換えるように
するなど、任意の方法をとることができる。また、必要
により、前記反応層の後端部に未吸着領域を残した状態
で汚染成分含有ガスの導入を停止するようにすれば、後
の酸化分解工程も含めて全工程を通じて反応層出口ガス
への前記汚染成分の流出を完全に防止することができ
る。
BEST MODE FOR CARRYING OUT THE INVENTION In the method (1) of the present invention, a pollutant-containing gas is first introduced into a reaction layer filled with the high silica adsorbent to adsorb the pollutant. When the concentration of the unadsorbed pollutant component in the reaction layer outlet gas exceeds the allowable value, the introduction of the pollutant-containing gas is stopped. Switching from the adsorption process to the oxidative decomposition process can be determined based on the concentration of pollutant components from the outlet of the reaction layer or a sensor placed in the reaction layer, but the properties of the gas to be treated are known and If there is no large fluctuation, an arbitrary method can be taken, such as setting the adsorption time in advance and switching the adsorption time every predetermined time. In addition, if necessary, if the introduction of the pollutant-containing gas is stopped while leaving an unadsorbed region at the rear end of the reaction layer, the reaction layer outlet gas is exhausted throughout the entire process including the subsequent oxidative decomposition step. It is possible to completely prevent the outflow of the contaminated component to the.

【0013】次に前記吸着工程において汚染成分を吸着
した高シリカ吸着剤の反応層にオゾン含有ガスを導入す
る。オゾンによる汚染成分の酸化分解の反応速度は吸着
剤表面における汚染成分濃度〔D1〕とオゾン濃度〔O
3 〕の積、すなわち〔D1〕×〔O3 〕に比例すること
から、本発明では汚染成分とオゾンを共吸着する高シリ
カ吸着剤を用い、予め汚染成分を吸着濃縮した吸着剤表
面においてオゾンと反応させるため、高い反応速度を確
保でき、汚染成分を効率的に除去することができるとと
もに、オゾンを有効に使用することができる。吸着工程
の温度は15〜100℃の範囲、好ましくは25〜50
℃の範囲が適当である。
Next, an ozone-containing gas is introduced into the reaction layer of the high silica adsorbent that has adsorbed the contaminant components in the adsorption step. The reaction rate of oxidative decomposition of pollutant components by ozone depends on the pollutant component concentration [D1] and ozone concentration [O] on the surface of the adsorbent.
3 ], that is, [D1] × [O 3 ], the high silica adsorbent that co-adsorbs the pollutant and ozone is used in the present invention. Since it reacts with, it is possible to secure a high reaction rate, to efficiently remove pollutant components, and to effectively use ozone. The temperature of the adsorption step is in the range of 15-100 ° C, preferably 25-50.
A range of ° C is suitable.

【0014】この方法は、空気などの希釈ガス中に含ま
れる汚染成分を濃縮した状態でオゾン処理することがで
きるので、各種VOCなどを含む工場排ガスなどの処理
に有効である。
This method is effective for treating factory exhaust gas containing various VOCs, etc., because it is possible to perform ozone treatment in a state where pollutant components contained in a diluent gas such as air are concentrated.

【0015】オゾンの添加量は汚染成分1モルに対し1
〜20モル、好ましくは3〜10モルの範囲が適当であ
る。オゾンはそれ自体公知の無声放電方式、紫外線ラン
プ方式、水電解方式などいずれの方式のものでも適用で
きる。酸化分解工程の温度は15〜100℃の範囲、好
ましくは25〜50℃の範囲が適当である。
The amount of ozone added is 1 for 1 mol of pollutant.
The range of -20 mol, preferably 3-10 mol is suitable. Ozone can be applied by any of the known methods such as a silent discharge method, an ultraviolet lamp method, and a water electrolysis method. The temperature of the oxidative decomposition step is appropriately in the range of 15 to 100 ° C, preferably 25 to 50 ° C.

【0016】本発明の方法において、反応層からのオゾ
ンの流出を完全に防ぐために、活性炭やアルミナ系化合
物などのオゾン分解剤充填層を反応層の出口側に設けて
もよい。
In the method of the present invention, in order to completely prevent the outflow of ozone from the reaction layer, an ozone decomposing agent-packed layer such as activated carbon or an alumina compound may be provided on the outlet side of the reaction layer.

【0017】本発明により汚染成分含有ガスを処理する
場合の基本操作は前記のとおりであるが、前記高シリカ
吸着剤を充填した反応層を2つ以上有する吸着反応器を
使用し、各反応層において前記汚染成分を前記吸着剤に
吸着させる吸着工程と、前記汚染成分が既に吸着されて
いる反応層にオゾン含有ガスを導入して前記吸着剤表面
で前記汚染成分を酸化分解する酸化分解工程とを順次繰
り返すようにする。このようにして複数の高シリカ吸着
剤反応層を交互に吸着工程及び酸化分解工程とすること
によって、汚染成分含有ガスを連続的に処理することが
できる。なお、通常の場合、吸着工程に比較して酸化分
解工程は短時間で済むので、酸化分解が終了し吸着工程
に移るまでの間はガスの導出入を止め待機状態とすれば
よい。また、3つ以上の反応層を有する吸着反応器の場
合には、吸着工程にある反応層の数を酸化分解工程にあ
る反応層よりも多くすることもできる。
The basic operation for treating the pollutant-containing gas according to the present invention is as described above, but an adsorption reactor having two or more reaction layers filled with the high silica adsorbent is used, and each reaction layer is used. An adsorption step of adsorbing the pollutant component to the adsorbent, and an oxidative decomposition step of introducing an ozone-containing gas into the reaction layer in which the pollutant component is already adsorbed to oxidatively decompose the pollutant component on the adsorbent surface. Repeat in sequence. In this manner, the plurality of high-silica adsorbent reaction layers are alternately subjected to the adsorption step and the oxidative decomposition step, whereby the pollutant-containing gas can be continuously treated. In the normal case, the oxidative decomposition step is shorter than the adsorption step. Therefore, the introduction and exit of the gas may be stopped and the apparatus may be in a standby state until the oxidative decomposition is completed and the step proceeds to the adsorption step. Further, in the case of an adsorption reactor having three or more reaction layers, the number of reaction layers in the adsorption step can be larger than that in the oxidative decomposition step.

【0018】前記本発明(2)の方法では、先ず複数の
汚染成分を含有するガスを前記高シリカ吸着剤の反応層
に導入して、前記複数の汚染成分中のダイオキシンなど
処理対象とする特定の汚染成分を選択吸着させる。反応
層出口ガス中の特定の汚染成分の濃度が許容値を超えた
時点で前記複数の汚染成分を含有するガスの導入を停止
する。吸着工程から酸化分解工程への切り換えは反応層
の出口や反応層内に配置したセンサーによる汚染成分濃
度に基づいて決定することもできるが、処理対象ガスの
性状がわかっており、汚染成分濃度に大きな変動がない
場合には、予め吸着時間を設定しておき、所定時間毎に
切り換えるようにするなど、任意の方法をとることがで
きる。また、必要により、前記反応層の後端部に前記特
定汚染成分の未吸着領域を残した状態でガスの導入を停
止するようにすれば、後の酸化分解工程も含めて全工程
を通じて反応層出口ガスへの前記特定汚染成分の流出を
完全に防止することができる。
In the method of the present invention (2), first, a gas containing a plurality of pollutant components is introduced into the reaction layer of the high silica adsorbent, and a specific target such as dioxin in the plurality of pollutant components is treated. Selectively adsorb the pollutant component of. When the concentration of the specific pollutant component in the reaction layer outlet gas exceeds the allowable value, the introduction of the gas containing the plurality of pollutant components is stopped. Switching from the adsorption process to the oxidative decomposition process can be determined based on the concentration of pollutant components from the outlet of the reaction layer or a sensor placed in the reaction layer, but the properties of the gas to be treated are known and If there is no large fluctuation, an arbitrary method can be taken, such as setting the adsorption time in advance and switching the adsorption time every predetermined time. In addition, if necessary, if the introduction of gas is stopped while leaving the non-adsorbed region of the specific pollutant component at the rear end of the reaction layer, the reaction layer is removed through the entire process including the subsequent oxidative decomposition process. It is possible to completely prevent outflow of the specific pollutant component to the outlet gas.

【0019】次に前記吸着工程において特定の汚染成分
を選択吸着した高シリカ吸着剤の反応層にオゾン含有ガ
スを導入する。前記のとおりオゾンも高シリカ吸着剤に
吸着されるので吸着剤相中における特定の汚染成分濃度
〔D2〕とオゾン濃度〔O3〕の積〔D2〕・〔O3
は、処理対象の特定の汚染成分を含有するガスに直接オ
ゾンを注入した場合に比較して飛躍的に大きくなり、し
かも処理対象ガス中に含まれる他の汚染成分によってオ
ゾンが消費されることもないので、この酸化分解工程に
おいて前記特定の汚染成分は極めて効率よく酸化分解さ
れ、吸着剤は再生される。
Next, in the adsorption step, an ozone-containing gas is introduced into the reaction layer of the high silica adsorbent which has selectively adsorbed a specific pollutant component. Specific contaminant concentration [D2] and ozone concentration in the adsorbent phase because they are attracted to the ozone high silica adsorbent as the [O 3] of the product [D2] - [O 3]
Is significantly larger than when ozone is directly injected into a gas containing a specific pollutant to be treated, and ozone may be consumed by other pollutant contained in the gas to be treated. Since it is not present, the specific pollutant component is oxidatively decomposed extremely efficiently in this oxidative decomposition step, and the adsorbent is regenerated.

【0020】前記吸着工程において前記特定の汚染成分
を選択吸着して除去した後の他の汚染成分を含むガス
は、別工程において、通常行われている活性炭吸着法な
どの適当な方法により処理することによって無害化すれ
ばよい。比較的多量のVOCなどの他の汚染成分と比較
的少量のダイオキシンなどの特定の汚染成分を含むガス
を直接処理する場合、特定の汚染成分は除去されないで
排出される場合が多いが、本発明の方法は前記特定の汚
染成分は別途選択除去されているので、特定の汚染成分
が排出される恐れはない。
The gas containing other pollutant components after selectively adsorbing and removing the specific pollutant components in the adsorption step is treated in a separate step by a suitable method such as a commonly used activated carbon adsorption method. It can be made harmless by doing so. When a gas containing a relatively large amount of other pollutant such as VOC and a relatively small amount of a particular pollutant such as dioxin is directly treated, the particular pollutant is often not removed but discharged. In the method (1), since the specific pollutant is selectively removed separately, there is no fear that the specific pollutant will be discharged.

【0021】この方法は、空気などの希釈ガス中に含ま
れ、しかも比較的多量の他の汚染成分と共存する比較的
少量の特定の汚染成分を、選択吸着により濃縮した状態
でオゾン処理することができ、特に少量だが有害性の強
い特定の汚染成分を含むガスの処理に好適である。この
場合、前記特定の汚染成分は他の汚染成分に比較して吸
着されやすいものであることが必要である。このような
処理を行うのに適した複数の汚染成分を含有するガスの
例として、ダイオキシンを含有するごみ焼却炉排ガスが
ある。
According to this method, a relatively small amount of a specific pollutant contained in a diluent gas such as air and coexisting with a relatively large amount of other pollutant is subjected to ozone treatment in a concentrated state by selective adsorption. In particular, it is suitable for treating a gas containing a small amount of a highly harmful harmful component. In this case, it is necessary that the specific pollutant component be more easily adsorbed than other pollutant components. An example of a gas containing a plurality of pollutant components suitable for performing such treatment is a waste incinerator exhaust gas containing dioxin.

【0022】この方法においても、前記高シリカ吸着剤
を充填した反応層を2つ以上有する吸着反応器を使用
し、各反応層において前記特定の汚染成分を前記吸着剤
に吸着させる吸着工程と、前記特定の汚染成分が既に吸
着されている反応層にオゾン含有ガスを導入して前記吸
着剤表面で前記特定の汚染成分を酸化分解する酸化分解
工程とを順次繰り返すようにし、複数の高シリカ吸着剤
反応層を交互に吸着工程及び酸化分解工程とすることに
よって、複数の汚染成分を含有するガス(特定の汚染成
分を含有するガス)を連続的に処理することができる。
Also in this method, an adsorption step of using an adsorption reactor having two or more reaction layers filled with the high silica adsorbent, and adsorbing the specific contaminant component to the adsorbent in each reaction layer, The ozone-containing gas is introduced into the reaction layer in which the specific pollutant has already been adsorbed, and the oxidative decomposition step of oxidizing and decomposing the specific pollutant on the surface of the adsorbent is sequentially repeated to obtain a plurality of high silica adsorbates. By alternately setting the agent reaction layer to the adsorption step and the oxidative decomposition step, a gas containing a plurality of pollutant components (a gas containing a specific pollutant component) can be continuously treated.

【0023】本発明の方法において、前記汚染成分又は
特定の汚染成分を吸着した反応層にオゾン含有ガスを導
入する際の導入方向は特に制限はないが、前記汚染成分
又は特定の汚染成分やオゾンが反応層から流出すること
を極力防止するために、オゾン含有ガスを被処理ガスと
逆の方向から導入するのが好ましい。
In the method of the present invention, the introduction direction of the ozone-containing gas is not particularly limited when the ozone-containing gas is introduced into the reaction layer in which the pollutant component or the specific pollutant component is adsorbed. In order to prevent as much as possible from flowing out of the reaction layer, it is preferable to introduce the ozone-containing gas in the direction opposite to the gas to be treated.

【0024】次に図面を参照して本発明の実施態様を更
に具体的に説明する。図1は本発明の方法による汚染成
分含有ガス又は複数の汚染成分を含有するガス(特定の
汚染成分を含有するガス)の処理プロセスの第1の実施
態様を示す説明図である。以下の説明において汚染成分
含有ガス又は複数の汚染成分を含有するガスを処理対象
ガス、汚染成分含有ガス中の汚染成分又は複数の汚染成
分を含有するガス中の特定の汚染成分を処理対象成分と
する。図1において吸着反応器1は高シリカ吸着剤を充
填した反応層2を有している。先ず吸着工程の際にはガ
ス導入管3(オゾン処理済みガス導出管5)のバルブ1
3を閉じバルブ10を開き、吸着処理済みガス導出管4
のバルブ12を開き、オゾン発生器6に接続する配管の
バルブ11を閉じた状態としておき、バルブ10を介し
て処理対象ガス7を導入する。処理対象ガス7が汚染成
分含有ガスの場合には汚染成分が吸着除去され、吸着処
理済みガス導出管4を経て排出される吸着処理済みガス
8中の汚染成分の含有量が許容値以下であるときにはそ
のまま大気に放出することができる。処理対象ガス7が
複数の汚染成分を含有するガスの場合には特定の汚染成
分が吸着除去され、吸着処理済みガス導出管4を経て排
出される吸着処理済みガス8中の特定の汚染成分の含有
量はが許容値以下であっても、他の汚染成分は除去され
ていないため、別途必要な処理を行ったのち大気中に放
出される。
Embodiments of the present invention will be described more specifically with reference to the drawings. FIG. 1 is an explanatory view showing a first embodiment of a treatment process of a pollutant-containing gas or a gas containing a plurality of pollutant components (a gas containing a specific pollutant component) according to the method of the present invention. In the following description, a pollutant-containing gas or a gas containing a plurality of pollutants is a target gas, a pollutant in a pollutant-containing gas or a specific pollutant in a gas containing a plurality of pollutants is a target component. To do. In FIG. 1, the adsorption reactor 1 has a reaction layer 2 filled with a high silica adsorbent. First, in the adsorption process, the valve 1 of the gas introduction pipe 3 (ozone-treated gas discharge pipe 5)
3 is closed, the valve 10 is opened, and the adsorption-treated gas outlet pipe 4 is closed.
The valve 12 is opened, the valve 11 of the pipe connected to the ozone generator 6 is kept closed, and the gas 7 to be treated is introduced through the valve 10. When the processing target gas 7 is a pollutant-containing gas, the pollutant is adsorbed and removed, and the content of the pollutant in the adsorption-treated gas 8 discharged through the adsorption-treated gas outlet pipe 4 is equal to or less than the allowable value. Sometimes it can be released directly to the atmosphere. When the gas 7 to be treated is a gas containing a plurality of pollutant components, a particular pollutant component is adsorbed and removed, and a specific pollutant component in the adsorbed gas 8 discharged through the adsorbed gas outlet pipe 4 is removed. Even if the content is less than the permissible value, other pollutant components are not removed, so it is released into the atmosphere after performing necessary treatment separately.

【0025】処理対象成分の吸着量が増加して、吸着処
理済みガス8中の処理対象成分の濃度が許容値を超えた
時点でバルブ10及びバルブ12を閉じて処理対象ガス
の導入を止め、バルブ11及びバルブ13を開いてオゾ
ン発生器6から反応層2内にオゾンを導入する。導入さ
れたオゾンは高シリカ吸着剤表面に吸着濃縮されている
処理対象成分を酸化分解する。通常の場合、バルブ13
を経て排出される排ガス中には処理対象成分及びオゾン
は含まれていないか、極めて低濃度であり、そのまま大
気中に放出することができる。なお、ここでは吸着工程
から酸化分解工程への切り換えを吸着処理済みガス中の
処理対象成分を分析することによって行うこととした
が、前記のとおり排ガス等の処理対象ガスの性状がわか
っており、処理対象物濃度に大きな変動がない場合に
は、予め時間を設定しておき、所定時間毎に切り換える
ようにするなど、任意の方法をとることができる。処理
対象成分の有害性が高い場合などには反応層の後端部に
未吸着の吸着剤領域を残した状態で工程切り換えを行え
ば安全である。なお、必要に応じてリークオゾンを分解
するオゾン分解剤層を反応層の後流側に設けてもよい。
When the adsorption amount of the component to be treated increases and the concentration of the component to be treated in the adsorbed gas 8 exceeds the allowable value, the valves 10 and 12 are closed to stop the introduction of the gas to be treated, The valves 11 and 13 are opened to introduce ozone from the ozone generator 6 into the reaction layer 2. The introduced ozone oxidizes and decomposes the components to be treated that are adsorbed and concentrated on the surface of the high silica adsorbent. Normally, the valve 13
The component to be treated and ozone are not contained in the exhaust gas discharged through the exhaust gas or have an extremely low concentration, and can be directly discharged to the atmosphere. In addition, here, it was decided to switch from the adsorption step to the oxidative decomposition step by analyzing the components to be treated in the adsorption-treated gas, but as described above, the properties of the gases to be treated such as exhaust gas are known, When there is no large fluctuation in the concentration of the object to be treated, an arbitrary method can be adopted, such as setting a time in advance and switching the time every predetermined time. When the components to be treated are highly harmful, it is safe to carry out the process switching while leaving the unadsorbed adsorbent region at the rear end of the reaction layer. If necessary, an ozone decomposing agent layer that decomposes leak ozone may be provided on the downstream side of the reaction layer.

【0026】図2は本発明の方法による処理対象ガスの
処理プロセスの第2の実施態様を示す説明図である。こ
のプロセスにおいては2個の高シリカ吸着剤を充填した
反応層22a、22bを有する吸着反応器21を使用
し、一方の反応層を吸着工程、他方の反応層を酸化分解
工程とする。図2において反応層22aが吸着工程にあ
り、処理対象ガス27はガス導入管23のバルブ31を
通って反応層22aに導入され、処理対象成分を吸着除
去された後、処理対象成分の濃度が許容値以下の吸着処
理済みガス28として吸着処理済みガス導出管24から
バルブ33を経て系外へ排出され、必要により別途処理
を行った後、大気中に放出される。この間、バルブ3
2、34、35及び37は閉じられている。
FIG. 2 is an explanatory view showing a second embodiment of the process for treating the gas to be treated by the method of the present invention. In this process, an adsorption reactor 21 having reaction layers 22a and 22b filled with two high silica adsorbents is used, and one reaction layer is an adsorption step and the other reaction layer is an oxidative decomposition step. In FIG. 2, the reaction layer 22a is in the adsorption step, and the gas to be treated 27 is introduced into the reaction layer 22a through the valve 31 of the gas introduction pipe 23, and after the components to be treated are adsorbed and removed, the concentration of the components to be treated is changed. The adsorbed gas 28 having an allowable value or less is discharged from the adsorbed gas outlet pipe 24 through the valve 33 to the outside of the system, and is separately processed as necessary, and then released into the atmosphere. During this time, valve 3
2, 34, 35 and 37 are closed.

【0027】処理対象成分の吸着量が増加して、吸着処
理済みガス28中の処理対象成分の濃度が許容値を超え
た時点でバルブ31及び33を閉じ、バルブ32及び3
4を開いて処理対象ガス27を高シリカ吸着剤を充填し
た反応層22bに通すようにし、反応層22bを吸着工
程とする。一方、処理対象成分を吸着している反応層2
2aは酸化分解工程とし、バルブ35及びバルブ37を
開いてオゾン発生器26から反応層22a内にオゾンを
導入する。この間、バルブ36及びバルブ38は閉じら
れている。反応層22a内に導入されたオゾンは高シリ
カ吸着剤表面に吸着濃縮されている処理対象成分を酸化
分解する。通常の場合、バルブ37を経てオゾン処理済
みガス導出管25から排出される分解後のオゾン処理済
みガス29中には処理対象成分及びオゾンは含まれてい
ないか、極めて低濃度であり、そのまま大気中に放出す
ることができる。なお、必要に応じてリークオゾンを分
解するオゾン分解剤層を反応層の後流側に設けてもよ
い。
When the adsorption amount of the component to be treated increases and the concentration of the component to be treated in the adsorption-processed gas 28 exceeds the allowable value, the valves 31 and 33 are closed and the valves 32 and 3 are closed.
4 is opened to allow the gas 27 to be treated to pass through the reaction layer 22b filled with the high silica adsorbent, and the reaction layer 22b is used as an adsorption step. On the other hand, the reaction layer 2 that adsorbs the component to be treated
2a is an oxidative decomposition step, and the valves 35 and 37 are opened to introduce ozone from the ozone generator 26 into the reaction layer 22a. During this time, the valve 36 and the valve 38 are closed. Ozone introduced into the reaction layer 22a oxidizes and decomposes the components to be treated that are adsorbed and concentrated on the surface of the high silica adsorbent. In the normal case, the decomposed ozone-treated gas 29 discharged from the ozone-treated gas outlet pipe 25 through the valve 37 does not contain the component to be treated and ozone or has an extremely low concentration, and is kept in the atmosphere as it is. Can be released inside. If necessary, an ozone decomposing agent layer that decomposes leak ozone may be provided on the downstream side of the reaction layer.

【0028】このようにして2個の高シリカ吸着剤を充
填した反応層22a、22bを交互に吸着工程及び酸化
分解工程とすることによって、処理対象ガスを連続的に
処理することができる。なお、通常の場合、吸着工程に
比較して酸化分解工程は短時間で済むので、酸化分解が
終了し吸着工程に移るまでの間はバルブを閉じて待機状
態とすればよい。
By thus alternately providing the reaction layers 22a and 22b filled with the two high silica adsorbents with the adsorption step and the oxidative decomposition step, the gas to be treated can be continuously treated. Note that, in the usual case, the oxidative decomposition step is shorter than the adsorption step, so the valve may be closed and put into a standby state until the oxidative decomposition is completed and the step proceeds to the adsorption step.

【0029】図3は本発明の方法による処理対象ガスの
処理プロセスの第3の実施態様を示す説明図である。図
3において円筒形の吸着反応器41は複数に区分された
高シリカ吸着剤を充填した反応層が軸を中心にして円盤
状に配置された形式のもので、吸着ゾーン42及び酸化
分解ゾーン43とに区分されており、全体が中心軸回り
に回転することにより各反応層が順次、吸着工程及び酸
化分解工程を繰り返すようになっている。ガス導入管4
4から吸着ゾーンにある反応層に導入された処理対象ガ
ス45は処理対象成分を吸着除去され、吸着処理済みガ
ス導出管46から処理対象成分の濃度が許容値以下の吸
着処理済みガス47として系外へ排出され、必要により
別途処理を行った後、大気中に放出される。
FIG. 3 is an explanatory view showing a third embodiment of the process for treating the gas to be treated by the method of the present invention. In FIG. 3, a cylindrical adsorption reactor 41 is of a type in which a plurality of divided reaction layers filled with a high silica adsorbent are arranged in a disk shape around an axis, and an adsorption zone 42 and an oxidative decomposition zone 43 are provided. By dividing the whole into rotation around the central axis, each reaction layer sequentially repeats the adsorption step and the oxidative decomposition step. Gas introduction pipe 4
The gas to be treated 45 introduced into the reaction layer in the adsorption zone from No. 4 has the components to be treated adsorbed and removed, and from the adsorption-treated gas lead-out pipe 46, the gas as an adsorption-treated gas 47 in which the concentration of the components to be treated is equal to or lower than an allowable value is used as a system. It is discharged to the outside, treated separately if necessary, and then released into the atmosphere.

【0030】吸着ゾーン42において処理対象成分を吸
着した反応層は吸着反応器41の回転により酸化分解ゾ
ーン43に移行し、オゾン発生器48からオゾン含有ガ
スを導入される。導入されたオゾンは高シリカ吸着剤表
面に吸着濃縮されている処理対象成分を酸化分解する。
通常の場合、オゾン処理済みガス導出管49を経て排出
されるオゾン処理済みガス50中には処理対象成分及び
オゾンは含まれていないか、極めて低濃度なので、その
まま大気中に放出することができる。なお、必要に応じ
てリークオゾンを分解するオゾン分解剤層を反応層の後
流側に設けてもよい。また、図には吸着反応器41を2
等分して吸着ゾーン42及び酸化分解ゾーン43とする
例を示したが、両方のゾーンの割合は吸着工程と酸化分
解工程の所要時間等に応じて適宜設定すればよい。さら
に、必要により吸着工程と酸化分解工程との境界を明確
にするため、ガスの導入導出を行わない中間ゾーンを設
けてもよい。
The reaction layer in which the component to be treated is adsorbed in the adsorption zone 42 moves to the oxidative decomposition zone 43 by the rotation of the adsorption reactor 41, and the ozone-containing gas is introduced from the ozone generator 48. The introduced ozone oxidizes and decomposes the components to be treated that are adsorbed and concentrated on the surface of the high silica adsorbent.
In the normal case, the ozone-treated gas 50 discharged through the ozone-treated gas outlet pipe 49 does not contain the component to be treated and ozone or has an extremely low concentration, and thus can be directly emitted to the atmosphere. . If necessary, an ozone decomposing agent layer that decomposes leak ozone may be provided on the downstream side of the reaction layer. Also, the figure shows two adsorption reactors 41.
Although an example in which the adsorption zone 42 and the oxidative decomposition zone 43 are equally divided is shown, the ratio of both zones may be appropriately set according to the time required for the adsorption step and the oxidative decomposition step. Further, if necessary, in order to clarify the boundary between the adsorption step and the oxidative decomposition step, an intermediate zone in which gas is not introduced or led may be provided.

【0031】[0031]

【実施例】以下、実施例により本発明の効果を実証す
る。 (実施例1)印刷工場の排気ガスを模擬してイソプロピ
ルアルコール(IPA)を100ppm含有する空気を
用い、図1の装置で無害化処理を行った。直径70c
m、高さ150cmの円筒形の反応層に、メソポーラス
シリケート(SiO2 /Al23 =1000)、脱ア
ルミニウムフォージャサイト(SiO2 /Al2 3
70)、高シリカぺンタシルゼオライト(SiO2 /A
2 3 =40)、及び市販のシリカゲル(比較例)を
それぞれ2m3 充填し、吸着温度を25℃に設定し、前
記模擬ガスを空塔速度2m/secで供給し、反応層の
出口側にIPA濃度センサーを付設して常時測定した。
IPA濃度センサーが1ppmの値(許容値)を示した
時点で前記模擬ガスの供給を停止し、吸着処理工程を終
了した。吸着処理可能時間はメソポーラスシリケートが
約2時間、脱アルミニウムフォージャサイトが約1.5
時間、高シリカぺンタシルゼオライトが約1.2時間、
及びシリカゲルが約0.5時間であった。その後、弁を
切り換えて吸着工程から酸化分解工程に移し、反応層を
酸化分解温度である25℃に保持し、水電解オゾン発生
装置でO3 :20%、O2 :76%、H2 O:4%から
なるオゾン含有ガスを発生させ、模擬ガスと逆の供給方
向で空塔速度0.01m/secで供給してIPAの酸
化分解を行った。その際の反応層の出口におけるIPA
濃度及びO3 濃度を測定し、時系列的な変化を調べた。
前記の吸着処理時間から、IPAの吸着量はメソポーラ
スシリケート>脱アルミニウムフォージャサイト>高シ
リカぺンタシルゼオライト>シリカゲルの順で小さくな
り、また、メソポーラスシリケートと脱アルミニウムフ
ォージャサイトと高シリカぺンタシルゼオライトでは、
酸化分解処理を開始してから約1時間後に反応層からの
3 のリークが始まるので、この間に吸着したIPAは
3 により分解されたものと推定された。しかし、シリ
カゲルでは、酸化分解処理を開始してから約0.2時間
でO3 がリークした。
EXAMPLES The effects of the present invention will be demonstrated below with reference to examples. (Example 1) An exhaust gas of a printing plant was simulated, and air containing 100 ppm of isopropyl alcohol (IPA) was used to perform detoxification treatment with the apparatus of FIG. Diameter 70c
m, a height of 150 cm in a cylindrical reaction layer, mesoporous silicate (SiO 2 / Al 2 O 3 = 1000), dealumination faujasite (SiO 2 / Al 2 O 3 =
70), high silica pentasyl zeolite (SiO 2 / A
l 2 O 3 = 40) and a commercially available silica gel (comparative example) were each filled in an amount of 2 m 3 , the adsorption temperature was set to 25 ° C., the simulated gas was supplied at a superficial velocity of 2 m / sec, and the reaction layer exited. An IPA concentration sensor was attached to the side for constant measurement.
When the IPA concentration sensor showed a value of 1 ppm (permissible value), the supply of the simulation gas was stopped and the adsorption treatment step was completed. The adsorption treatment time is about 2 hours for mesoporous silicate and about 1.5 for dealumination faujasite.
Hours, high silica pentasyl zeolite is about 1.2 hours,
And silica gel for about 0.5 hours. After that, the valve is switched to move from the adsorption step to the oxidative decomposition step, the reaction layer is maintained at the oxidative decomposition temperature of 25 ° C., and O 3 : 20%, O 2 : 76%, H 2 O is used in the water electrolysis ozone generator. : Ozone-containing gas consisting of 4% was generated, and was supplied at a superficial velocity of 0.01 m / sec in the supply direction opposite to that of the simulated gas to oxidize and decompose IPA. IPA at the exit of the reaction layer at that time
The concentration and the O 3 concentration were measured and the time-series change was examined.
From the above adsorption treatment time, the adsorption amount of IPA becomes smaller in the order of mesoporous silicate> dealuminated faujasite> high silica pentasyl zeolite> silica gel. Further, mesoporous silicate, dealuminated faujasite and high silica pentasite. With sil-zeolite,
About 1 hour after the start of the oxidative decomposition treatment, leakage of O 3 from the reaction layer started, so it was presumed that the IPA adsorbed during this period was decomposed by O 3 . However, with silica gel, O 3 leaked about 0.2 hours after the start of the oxidative decomposition treatment.

【0032】[0032]

【発明の効果】本発明の方法によれば、高シリカ吸着剤
を使用して汚染成分含有ガスから汚染成分を吸着濃縮
し、吸着剤表面でオゾンと反応させるので効率よく汚染
成分を分解除去することができ、オゾンの利用効率も従
来のオゾン処理に比較して飛躍的に向上する。また、比
較的多量の他の汚染成分と共存する比較的含有量の少な
い特定汚染成分を含む複数の汚染成分を含有するガスか
ら、特定汚染成分を吸着濃縮し、吸着剤相中でオゾンと
反応させることにより、前記濃縮効果に加えて、他の汚
染成分によるオゾンの分解も防ぐことができ、特定汚染
成分の重点的な除去が可能である。例えば、ごみ焼却炉
排ガスのようなダイオキシン以外に多量の有害成分を含
むダイオキシン含有ガスからダイオキシンのみを選択吸
着し、ダイオキシンを吸着した吸着剤充填層にオゾンを
導入して共吸着させることにより、オゾンの利用率を飛
躍的に向上させることができ、効率的なダイオキシン含
有ガスの処理が可能となる。すなわち、従来、ダイオキ
シン含有ガスへの適用が困難であったオゾン処理を利用
して極めて効率的、かつ安全なダイオキシン含有ガスの
処理プロセスの構築を可能とした。更に、本発明の方法
によれば大量の処理対象ガス中に直接オゾンを導入する
場合に比較してオゾン関連設備をコンパクトにすること
ができる。
According to the method of the present invention, the high silica adsorbent is used to adsorb and condense the pollutant from the pollutant-containing gas and to react with ozone on the surface of the adsorbent to efficiently decompose and remove the pollutant. Therefore, the utilization efficiency of ozone is dramatically improved as compared with the conventional ozone treatment. In addition, a specific pollutant is adsorbed and concentrated from a gas containing a plurality of pollutants including a relatively small amount of the pollutant that coexists with a relatively large amount of other pollutants, and reacts with ozone in the adsorbent phase. By doing so, in addition to the above-described concentration effect, it is possible to prevent decomposition of ozone due to other pollutant components, and it is possible to remove specific pollutant components in a focused manner. For example, by selectively adsorbing only dioxin from a dioxin-containing gas containing a large amount of harmful components other than dioxin such as waste incinerator exhaust gas, by introducing ozone into the adsorbent-packed layer that adsorbed dioxin and co-adsorbing it, ozone It is possible to dramatically improve the utilization rate of dioxin and to efficiently process the dioxin-containing gas. That is, it has become possible to construct an extremely efficient and safe treatment process for dioxin-containing gas by utilizing ozone treatment which has been difficult to apply to dioxin-containing gas. Furthermore, according to the method of the present invention, ozone-related equipment can be made compact as compared with the case where ozone is directly introduced into a large amount of gas to be treated.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法による汚染成分含有ガス処理プロ
セスの第1の実施態様を示す説明図。
FIG. 1 is an explanatory view showing a first embodiment of a pollutant-containing gas treatment process according to the method of the present invention.

【図2】本発明の方法による汚染成分含有ガス処理プロ
セスの第2の実施態様を示す説明図。
FIG. 2 is an explanatory view showing a second embodiment of a pollutant-containing gas treatment process according to the method of the present invention.

【図3】本発明の方法による汚染成分含有ガス処理プロ
セスの第3の実施態様を示す説明図。
FIG. 3 is an explanatory view showing a third embodiment of a pollutant-containing gas treatment process according to the method of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 蔦谷 博之 長崎県長崎市深堀町五丁目717番1号 三菱重工業株式会社 長崎研究所内 (56)参考文献 特開 平2−115096(JP,A) 特開 平9−220438(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01D 53/34 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroyuki Tsutaya 5-171-1 Fukahori-cho, Nagasaki-shi, Nagasaki Mitsubishi Heavy Industries, Ltd. Nagasaki Research Institute (56) Reference Japanese Patent Laid-Open No. 2-115096 (JP, A) Kaihei 9-220438 (JP, A) (58) Fields surveyed (Int.Cl. 7 , DB name) B01D 53/34

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 汚染成分含有ガスの処理方法において、
前記汚染成分を吸着し、かつオゾンを吸着する高シリカ
ペンタシルゼオライト、脱アルミニウムフォージャサイ
ト、メソポーラスシリケート又はこれらのうちの2種以
上の混合物からなる高シリカ吸着剤を充填した反応層
に、前記汚染成分含有ガスを導入して前記汚染成分を前
記吸着剤に吸着させ、清浄化ガスを前記反応層から流出
させ、前記汚染成分含有ガスの導入を停止した後、前記
汚染成分を吸着した前記反応層にオゾン含有ガスを導入
して前記吸着剤表面で前記汚染成分を酸化分解すること
を特徴とする汚染成分含有ガスの処理方法。
1. A method for treating a pollutant-containing gas, comprising:
High silica that adsorbs the pollutant and also adsorbs ozone
Pentasil zeolite, dealumination forge
Or mesoporous silicate or two or more of these
The pollutant-containing gas is introduced into the reaction layer filled with the high-silica adsorbent composed of the above mixture so that the pollutant is adsorbed by the adsorbent, and the cleaning gas is allowed to flow out from the reaction layer. A method for treating a pollutant-containing gas, which comprises introducing ozone-containing gas into the reaction layer having adsorbed the pollutant to oxidatively decompose the pollutant on the surface of the adsorbent after stopping the introduction of the pollutant. .
【請求項2】 複数の汚染成分を含有するガスの処理方
法において、前記汚染成分のうち特定の汚染成分を選択
的に吸着し、かつオゾンを吸着する高シリカペンタシル
ゼオライト、脱アルミニウムフォージャサイト、メソポ
ーラスシリケート又はこれらのうちの2種以上の混合物
からなる高シリカ吸着剤を充填した反応層に、前記ガス
を導入して前記特定の汚染成分を前記吸着剤に選択的に
吸着させ、その他の汚染成分を含有するガスを前記反応
層から流出させてその他の汚染成分は別途無害化処理
し、前記汚染成分含有ガスの導入を停止した後、前記特
定の汚染成分を吸着した前記反応層にオゾン含有ガスを
導入して前記吸着剤表面で前記特定の汚染成分を酸化分
解することを特徴とする汚染成分含有ガスの処理方法。
2. A method for treating a gas containing a plurality of pollutant components, wherein the high silica pentasil selectively adsorbs a specific pollutant component among the pollutant components and also adsorbs ozone.
Zeolite, dealuminated faujasite, mesopo
-Lass silicates or mixtures of two or more of these
The reaction layer filled with high silica adsorbents consisting of the gas is introduced by selective adsorption of the particular contaminant in the adsorbent, allowed to flow out of the gas containing other contaminating components from the reaction layer And other pollutant components are separately detoxified, and after the introduction of the pollutant-containing gas is stopped, the ozone-containing gas is introduced into the reaction layer that has adsorbed the specified pollutant, and the specified gas is adsorbed on the adsorbent surface. A method for treating a pollutant-containing gas, which comprises oxidizing and decomposing the pollutant of the above.
【請求項3】 前記汚染成分又は前記特定の汚染成分が
ダイオキシンであることを特徴とする請求項1又は2に
記載の汚染成分含有ガスの処理方法。
3. The method for treating a pollutant-containing gas according to claim 1 or 2, wherein the pollutant or the specific pollutant is dioxin.
JP17486698A 1998-06-22 1998-06-22 Treatment method for gas containing pollutant components Expired - Fee Related JP3382854B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP17486698A JP3382854B2 (en) 1998-06-22 1998-06-22 Treatment method for gas containing pollutant components
CA002276114A CA2276114C (en) 1998-06-22 1999-06-21 Method for processing polluted fluid containing pollutants
KR1019990023259A KR100358624B1 (en) 1998-06-22 1999-06-21 Method for processing polluted fluid containing pollutants
US09/338,325 US6503469B2 (en) 1998-06-22 1999-06-22 Method for processing polluted fluid containing pollutants
NO993086A NO993086L (en) 1998-06-22 1999-06-22 Process for processing contaminated fluid
DE69930443T DE69930443T2 (en) 1998-06-22 1999-06-22 Process for the treatment of contaminated fluid
AU35775/99A AU716634B2 (en) 1998-06-22 1999-06-22 Method for processing polluted fluid containing pollutants
EP99112034A EP0967002B1 (en) 1998-06-22 1999-06-22 Method for processing polluted fluid
AT99112034T ATE320842T1 (en) 1998-06-22 1999-06-22 METHOD FOR TREATING CONTAMINATED FLUID

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17486698A JP3382854B2 (en) 1998-06-22 1998-06-22 Treatment method for gas containing pollutant components

Publications (2)

Publication Number Publication Date
JP2000005563A JP2000005563A (en) 2000-01-11
JP3382854B2 true JP3382854B2 (en) 2003-03-04

Family

ID=15986035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17486698A Expired - Fee Related JP3382854B2 (en) 1998-06-22 1998-06-22 Treatment method for gas containing pollutant components

Country Status (1)

Country Link
JP (1) JP3382854B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180043824A (en) 2015-09-30 2018-04-30 후타무라 가가쿠 가부시키가이샤 Ozone oxidative decomposition treatment method of VOC and / or gaseous inorganic reducing compound in gas
US10493423B2 (en) 2015-09-30 2019-12-03 Futamura Kagaku Kabushiki Kaisha Purification treatment method of liquid containing harmful substance, and purification treatment device of liquid containing harmful substance for carrying out said method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103990351B (en) * 2014-05-31 2016-05-25 蔡博 A kind of purification recovery device of volatile organic waste gas

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180043824A (en) 2015-09-30 2018-04-30 후타무라 가가쿠 가부시키가이샤 Ozone oxidative decomposition treatment method of VOC and / or gaseous inorganic reducing compound in gas
US10493423B2 (en) 2015-09-30 2019-12-03 Futamura Kagaku Kabushiki Kaisha Purification treatment method of liquid containing harmful substance, and purification treatment device of liquid containing harmful substance for carrying out said method
US10549235B2 (en) 2015-09-30 2020-02-04 Futamura Kagaku Kabushiki Kaisha Ozone oxidation decomposition treatment method for VOCs and/or gaseous inorganic reducing compounds in gas

Also Published As

Publication number Publication date
JP2000005563A (en) 2000-01-11

Similar Documents

Publication Publication Date Title
KR100470747B1 (en) Method and apparatus for eliminating the stench and volatile organic compounds in the polluted air
CN101391177B (en) Gas purification method of low concentration organic compound
EP1852172A1 (en) Removal of contaminants with ozone
KR100358624B1 (en) Method for processing polluted fluid containing pollutants
KR101700269B1 (en) Plasma catalyst adsorption purification apparatus capable of generating ozone and removing ozone and purification method using the same
CN101322916B (en) Sulfur-containing compound gas cleaning filter medium device and method as well as used catalyst adsorption material thereof
JP3382854B2 (en) Treatment method for gas containing pollutant components
JP2009297629A (en) Hazardous component-containing liquid treatment method and apparatus
JPS6348574B2 (en)
JP3382857B2 (en) Method and apparatus for treating harmful substance-containing gas
KR100331210B1 (en) Method And Apparatus For Processing Polluted Gas Containing Harmful Substances
JPS61200837A (en) Treatment of exhaust gas
JP3553336B2 (en) Exhaust gas denitration treatment method and apparatus
JP3611278B2 (en) Treatment method for contaminated water
JP2653300B2 (en) Deodorizing device
JP4512994B2 (en) Water treatment system
JP2009082785A (en) Method and apparatus for treating gas containing harmful substance
JP2008253613A (en) Atmosphere purifying method and purifying system for work area for processing polychlorinated biphenyl and dioxins
KR200359604Y1 (en) Catalytic oxidation adsorption tower
KR100445220B1 (en) Apparatus and method for removing voc by electromagnetic beam and adsorbent of the same
JP2001113125A (en) Device and method for treating waste gas
JP2005342555A (en) Method for treating contaminative component-containing gas by using adsorbent
JP2003053132A (en) Exhaust gas treating agent and exhaust gas treating equipment utilizing the same
JP2002035542A (en) Method for treating lean gaseous hydrocarbon contained in waste gas and apparatus for practicing the method
JP2023124395A (en) Non-circulating deodorizing method of odorous gas and non-circulating deodorizing device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071220

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081220

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091220

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091220

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101220

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101220

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111220

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111220

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121220

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131220

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees