JP3382440B2 - Control method of negative pressure pump - Google Patents
Control method of negative pressure pumpInfo
- Publication number
- JP3382440B2 JP3382440B2 JP33936995A JP33936995A JP3382440B2 JP 3382440 B2 JP3382440 B2 JP 3382440B2 JP 33936995 A JP33936995 A JP 33936995A JP 33936995 A JP33936995 A JP 33936995A JP 3382440 B2 JP3382440 B2 JP 3382440B2
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- negative pressure
- pump
- tank
- δpb
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T17/00—Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
- B60T17/02—Arrangements of pumps or compressors, or control devices therefor
Landscapes
- Engineering & Computer Science (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Valves And Accessory Devices For Braking Systems (AREA)
- Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
- Control Of Positive-Displacement Pumps (AREA)
Description
【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は,負圧タンクの内圧
を所定範囲内に維持すべく前記負圧タンクに接続された
負圧ポンプの作動・停止を制御する負圧ポンプの制御方
法に関する。
【0002】
【従来の技術】ガソリンエンジンにより走行する車両は
吸気通路に発生する負圧を利用してブレーキ装置の負圧
ブースタを作動させているが,電気モータを走行用駆動
源とする電動車両は前記吸気負圧を利用することができ
ないため,ポンプ用モータにより駆動される負圧ポンプ
が発生する負圧を負圧タンクに蓄えて負圧ブースタを作
動させている。しかしながら,負圧ポンプを常時作動さ
せておくとエネルギーロスが増大するため,負圧タンク
のタンク内絶対圧が上昇して上限値に達したときに負圧
ポンプを作動させてタンク内絶対圧を低下させ,その結
果タンク内絶対圧が低下して下限値に達したときに負圧
ポンプを停止させるようになっている。
【0003】
【発明が解決しようとする課題】ところで,負圧ブース
タの能力を決定する大気圧とタンク内絶対圧との相対圧
を一定に保持すべく,図8(a)に示すように,大気圧
よりもそれぞれ一定の相対圧分だけ低いタンク内絶対圧
を上限値(ポンプ作動圧)及び下限値(ポンプ停止圧)
とし,タンク内絶対圧が上限値に達したときに負圧ポン
プを作動させ,下限値に達したときに負圧ポンプを停止
させるようにした場合を考える。このとき,大気圧が充
分に高ければ問題はないが,標高が高くなって大気圧が
低くなると,タンク内絶対圧の下限値が負圧ポンプが発
生可能な最大能力を下回ってしまい,負圧ポンプが連続
運転状態になってしまう可能性がある。
【0004】このような不具合を解消すべく,図8
(b)に示すように,タンク内絶対圧の上限値(ポンプ
作動圧)及び下限値(ポンプ停止圧)を大気圧に関わら
ず一定値とすれば,負圧ポンプが連続運転状態になるこ
とは回避されるが,標高が高くなって大気圧が低くなる
と,大気圧とタンク内絶対圧との相対圧が小さくなって
負圧ブースタの能力が低下する問題がある。
【0005】そこで,図8(c)に示すように,大容量
の負圧ポンプを使用してタンク内絶対圧の上限値(ポン
プ作動圧)及び下限値(ポンプ停止圧)を真空に近い低
圧に設定すれば前記不具合は解消されるが,標高が低く
大気圧が高い状態では,図に斜線で示した領域で大気圧
とタンク内絶対圧との相対圧が過大になり,エネルギー
ロスが増大する問題が発生する。
【0006】本発明は前述の事情に鑑みてなされたもの
で,大気圧の変化に関わらず負圧ポンプの作動・停止を
常に最適に制御することが可能な負圧ポンプの制御方法
を提供することを目的とする。
【0007】
【課題を解決するための手段】上記目的を達成するため
に,請求項1に記載された発明は,負圧タンクの内圧を
所定範囲内に維持すべく前記負圧タンクに接続された負
圧ポンプの作動・停止を制御する負圧ポンプの制御方法
において,大気圧とタンク内絶対圧との相対圧が第1の
相対圧所定値未満であり,且つタンク内絶対圧が第1の
絶対圧所定値以上であるときに負圧ポンプを作動させる
とともに,前記相対圧が前記第1の相対圧所定値より大
きい第2の相対圧所定値以上であるときに負圧ポンプを
停止させ,また,タンク内絶対圧が前記第1の絶対圧所
定値より低い第2の絶対圧所定値未満であるときにも負
圧ポンプを停止させることを特徴とする。
【0008】
【発明の実施の形態】以下,本発明の実施の形態を,添
付図面に示した参考例及び本発明の実施例に基づいて説
明する。
【0009】図1〜図3は参考例を示すもので,図1は
電動車両の全体構成図,図2は作用を説明するフローチ
ャート,図3は負圧ポンプを作動・停止させる閾値を示
すグラフである。
【0010】図1に示すように,この電動車両は従動輪
としての一対の後輪Wr,Wrと駆動輪としての一対の
前輪Wf,Wfとを備えた4輪車であって,前輪Wf,
Wfはバッテリ1をエネルギー源とする走行用モータ2
にトランスミッション3を介して接続される。バッテリ
1と走行用モータ2との間にはパワードライブユニット
4が介装され,バッテリ1による走行用モータ2の駆動
を制御するとともに,回生制動に伴ってモータ2が発電
する電力によるバッテリ1の充電を制御する。前記パワ
ードライブユニット4はモータ制御ECU5に接続さ
れ,このモータ制御ECU5はブレーキECU6に接続
される。
【0011】ブレーキペダル7により作動するマスタシ
リンダ8は,差圧バルブ9及びモジュレータ10を介し
て,各前輪Wf,Wfのブレーキシリンダ11f,11
fと各後輪Wr,Wrのブレーキシリンダ11r,11
rとに接続される。モジュレータ10は前輪Wf,Wf
及び後輪Wr,Wrにロック傾向が生じた場合に,それ
らのブレーキシリンダ11f,11f;11r,11r
に伝達されるブレーキ油圧を減圧する。
【0012】マスタシリンダ8に設けられた負圧ブース
タ12には負圧タンク13が接続されており,この負圧
タンク13にはポンプ用モータ14で駆動される負圧ポ
ンプ15がチェック弁16を介して接続される。
【0013】負圧タンク13にはそのタンク内絶対圧を
検出する絶対圧センサ18が設けられるとともに,マス
タシリンダ8及び差圧バルブ9間の油路には油圧センサ
19が設けられる。前記絶対圧センサ18及び油圧セン
サ19からの信号と,車体の適所に設けた大気圧センサ
20からの信号はブレーキECU6に入力され,ブレー
キECU6は差圧バルブ9及びポンプ用モータ14の作
動を制御する。またブレーキECU6に接続されたモー
タ制御ECU5は走行用モータ2のパワードライブユニ
ット4の作動を制御する。
【0014】次に,前述の構成を備えた前記参考例の作
用を説明する。
【0015】ドライバーが車両を制動すべくブレーキペ
ダル7を踏んでマスタシリンダ8を作動させたとき,油
圧センサ19で検出された油圧が所定値に達するまで差
圧バルブ9を閉弁状態に保持する。これにより,マスタ
シリンダ8が発生したブレーキ油圧が前輪Wf,Wfの
ブレーキシリンダ11f,11fに伝達されなくなり,
ブレーキ油圧が伝達される後輪Wr,Wrのブレーキシ
リンダ11r,11rだけが油圧制動力を発生する。こ
のとき,モータECU5がパワードライブユニット4を
介して走行用モータ2を制御することにより,差圧バル
ブ9の閉弁による前輪Wf,Wfの油圧制動力の減少分
に相当する回生制動力を走行用モータ2に発生させ,走
行用モータ2が発電した電力でバッテリ1を充電する。
而して,油圧制動力の減少分を回生制動力で補ってトー
タルの制動力を一定に確保しながら,油圧制動に対して
回生制動を優先させてエネルギー回収効率を向上させ,
バッテリ1の一充電あたりの走行可能距離の延長を図る
ことができる。
【0016】また,油圧センサ19で検出された油圧が
前記所定値を越えるとブレーキペダル7の踏力の増加に
応じて差圧バルブ9が徐々に開弁し,前輪Wf,Wfの
ブレーキシリンダ11f,11fが油圧制動力を発生し
始める。即ち,差圧バルブ9はマスタシリンダ8が発生
するブレーキ油圧から前記回生制動力の大きさに相当す
るブレーキ油圧を減算した差圧を前輪Wf,Wfのブレ
ーキシリンダ11f,11fに伝達する。このように,
回生制動力の上限値を規制することにより,走行用モー
タ2が限界を越える回生制動力を発生して損傷したり,
バッテリ1が過充電により損傷することが未然に回避さ
れる。
【0017】さて,負圧ブースタ12の作動により負圧
タンク13のタンク内絶対圧は次第に上昇するため,負
圧タンク13のタンク内絶対圧が所定の上限値及び下限
値間に収まるように,ブレーキECU6が絶対圧センサ
18の出力と大気圧センサ20の出力とに基づいてポン
プ用モータ14の作動・停止(即ち,負圧ポンプ15の
作動・停止)を制御する。以下,その制御内容を図2の
フローチャート及び図3のグラフを参照しながら説明す
る。
【0018】先ず,ステップS1で大気圧センサ20で
検出した大気圧Paと予め設定した所定値Pa0 とを比
較し,標高が比較的に低いために大気圧Paが所定値P
a0以上である場合にはステップS2に移行し,標高が
比較的に高いために大気圧Paが所定値Pa0 未満であ
る場合にはステップS6に移行する。
【0019】ステップS1でPa≧Pa0 であれば,ス
テップS2において,大気圧センサ20で検出した大気
圧Paと絶対圧センサ18で検出したタンク内絶対圧P
bとの相対圧ΔPb(ΔPb=Pa−Pb)を予め設定
した一定値である閾値ΔPbONと比較し,相対圧ΔPb
が閾値ΔPbON未満であれば,即ち負圧ブースタ12の
作動によりタンク内絶対圧Pbが上昇していれば,ステ
ップS3で負圧ポンプ15を作動させて負圧タンク13
を減圧する。その結果,タンク内絶対圧Pbが低下して
相対圧ΔPbが閾値ΔPbON以上になると,ステップS
2の答えがNOになってステップS4に移行する。
【0020】ステップS4において,相対圧ΔPbと予
め設定した一定値である閾値ΔPbOFF (ΔPbOFF >
ΔPbON)とを比較し,相対圧ΔPbが閾値ΔPbOFF
以上であれば,即ち負圧ポンプ15の作動によりタンク
内絶対圧Pbが低下していれば,ステップS5で負圧ポ
ンプ15を停止させて負圧タンク13の減圧を停止す
る。このようにして,標高が比較的に低いために大気圧
Paが所定値Pa0 以上である場合には,相対圧ΔPb
を二つの閾値ΔPbON,ΔPbOFF と比較することによ
り負圧ポンプ15の作動・停止が制御される。
【0021】ステップS1でPa<Pa0 であれば,ス
テップS6において,タンク内絶対圧Pbと予め設定し
た一定値である閾値PbONとを比較し,タンク内絶対圧
Pbが閾値PbON以上であれば,即ち負圧ブースタ12
の作動によりタンク内絶対圧Pbが上昇していれば,ス
テップS7で負圧ポンプ15を作動させて負圧タンク1
3を減圧する。その結果,タンク内絶対圧Pbが低下し
て閾値PbON未満になると,ステップS6の答えがNO
になってステップS8に移行する。
【0022】ステップS8において,タンク内絶対圧P
bと予め設定した一定値である閾値PbOFF (PbOFF
<PbON)とを比較し,タンク内絶対圧Pbが閾値Pb
OFF未満であれば,即ち負圧ポンプ15の作動によりタ
ンク内絶対圧Pbが低下していれば,ステップS9で負
圧ポンプ15を停止させて負圧タンク13の減圧を停止
する。このようにして,標高が比較的に低いために大気
圧Paが所定値Pa0未満である場合には,タンク内絶
対圧Pbを二つの閾値PbON,PbOFF と比較すること
により負圧ポンプ15の作動・停止が制御される。
【0023】而して,本参考例では大気圧Paが所定値
Pa0 以上であるときに図8(a)の制御を行い,また
大気圧Paが所定値Pa0 未満であるときに図8(c)
の制御を行うことにより,図8(c)に斜線で示した領
域のエネルギーロスを回避するとともに,図8(a)に
示した負圧ポンプ15の連続運転を回避することが可能
となる。
【0024】また本参考例では,大気圧Paとタンク内
絶対圧Pbとの相対圧ΔPbを大気圧センサ20及び絶
対圧センサ18の出力から求めているので,前記相対圧
ΔPbを相対圧センサの出力から求める場合に比べてセ
ンサのレイアウトが容易になる。何故ならば,絶対圧セ
ンサ18は負圧タンク13(或いは負圧タンク13から
負圧ブースタ12に連なる配管)に設けなければならな
いが,大気圧センサ20は特に設置場所の制約がない。
それに対して,大気圧センサ20に代えて相対圧センサ
を用いた場合には,絶対圧センサ18及び相対圧センサ
の両方を負圧タンク13(或いは負圧タンク13から負
圧ブースタ12に連なる配管)に設けなければならず,
レイアウトの自由度が減少してしまう。
【0025】次に,図4及び図5に基づいて本発明の実
施例を説明する。この実施例は,前記参考例における負
圧ポンプ15の作動・停止の制御と同じ制御を,他の制
御プログラムに基づいて行えるようにしたものである。
【0026】先ず,図4のフローチャートのステップS
11で相対圧ΔPbと閾値ΔPbONとを比較し,相対圧
ΔPbが閾値ΔPbON未満であればステップS12に移
行する。ステップS12でタンク内絶対圧Pbと閾値P
bONとを比較し,タンク内絶対圧Pbが閾値PbON以上
であれば,即ちステップS11及びステップS12の
「AND条件」が成立すれば,ステップS3で負圧ポン
プ15を作動させる。ステップS11及びステップS1
2の「AND条件」が成立する領域は図5の斜線(A)
の領域であり,この領域(A)で前記参考例と同様に負
圧ポンプ15を作動させることができる。
【0027】続いて,ステップS14で相対圧ΔPbと
閾値ΔPbOFF とを比較し,相対圧ΔPbが閾値ΔPb
OFF 以上であるか,或いはステップS15でタンク内絶
対圧Pbと閾値PbOFF とを比較し,タンク内絶対圧P
bが閾値PbOFF 未満であれば,即ちステップS14及
びステップS15の「OR条件」が成立すれば,ステッ
プS16で負圧ポンプ15を停止させる。ステップS1
4及びステップS15の「OR条件」が成立する領域は
図5の斜線(B)の領域であり,この領域(B)で前記
参考例と同様に負圧ポンプ15を停止させることができ
る。
【0028】而して,この実施例によれば,前記参考例
よりも簡単な制御プログラムにより,前記参考例と同様
の作用効果を得ることができる。
【0029】次に,第2の参考例を図6に基づいて説明
する。
【0030】第2の参考例は負圧ポンプ15の作動・停
止を,大気圧センサ20で検出した大気圧Paと絶対圧
センサ18で検出したタンク内絶対圧Pbとの相対圧Δ
Pbにより制御するもので,その制御信号に大気圧Pa
は直接用いられていない。従って,大気圧センサ20及
び絶対圧センサ18を設ける代わりに,1個の相対圧セ
ンサを設けて前記相対圧ΔPbを検出することも可能で
ある。
【0031】図6(a)は大気圧が高い場合を示すもの
で,大気圧Paに対して一定の相対圧を有する閾値ΔP
bON-OFFを設定しておき,負圧ブースタ12の作動によ
り大気圧Paとタンク内絶対圧Pbとの相対圧ΔPbが
減少して閾値ΔPbON-OFF未満になると,負圧タンク1
3を減圧すべく負圧ポンプ15が作動する。負圧ポンプ
15が作動して相対圧ΔPbが増加し,その相対圧ΔP
bが閾値ΔPbON-OFF以上になってから所定時間T1 が
経過したときに負圧ポンプ15を停止させる。このよう
に,大気圧が高い場合には負圧ポンプ15の作動により
相対圧ΔPbが速やかに増加するため,負圧ポンプ15
を支障なく作動・停止させることができる。
【0032】一方,図6(b)に示すように大気圧が低
い場合には,相対圧ΔPbが閾値ΔPbON-OFF未満にな
って負圧ポンプ15が作動しても,相対圧ΔPbが速や
かに増加しないために閾値ΔPbON-OFF以上になること
ができず,結果として負圧ポンプ15が連続作動状態に
陥る可能性がある。
【0033】そこで,第2の参考例では,負圧ポンプ1
5が作動してから所定時間T2 が経過すると負圧ポンプ
15を強制的に停止させるとともに,前記閾値ΔPb
ON-OFFを減少側に変更する。而して,それ以後は変更さ
れた閾値ΔPbON-OFFに基づいて,図6(a)と同様に
して負圧ポンプ15を支障なく作動・停止させることが
できる。尚,この第2実施例において,一つの閾値ΔP
bON-OFFに代えて二つの閾値ΔPbON,ΔPbOFF を設
定し,閾値ΔPbONを負圧ポンプ15を作動させる条件
として使用し,閾値ΔPbOFF 及び所定時間T1 を負圧
ポンプ15を停止させる条件として使用しても良い。
【0034】次に,第3の参考例を図7に基づいて説明
する。
【0035】図7(a)は大気圧が高い場合を示すもの
で,大気圧Paに対してそれぞれ一定の相対圧を有する
二つの閾値ΔPbON,ΔPbOFF を設定しておき,相対
圧ΔPbが減少して閾値ΔPbON未満になると,負圧タ
ンク13を減圧すべく負圧ポンプ15を作動させるとと
もに,負圧ポンプ15の作動により相対圧ΔPbが閾値
ΔPbOFF 以上になると負圧ポンプ15を停止させる。
このように,大気圧が高い場合には負圧ポンプ15の作
動により相対圧ΔPbが速やかに増加するため,負圧ポ
ンプ15を支障なく作動・停止させることができる。
【0036】一方,図7(b)に示すように大気圧が低
い場合には,相対圧ΔPbが閾値ΔPbON未満になって
負圧ポンプ15が作動しても,相対圧ΔPbが速やかに
増加しないために閾値ΔPbOFF 以上になることができ
ず,結果として負圧ポンプ15が連続作動状態に陥る可
能性がある。
【0037】そこで,第3の参考例では,負圧ポンプ1
5が作動してから所定時間T2 が経過すると負圧ポンプ
15を強制的に停止させるとともに,前記二つの閾値Δ
PbON,ΔPbOFF を共に減少側に変更する。而して,
それ以後は変更された閾値ΔPbON,ΔPbOFF に基づ
いて,図7(a)と同様にして負圧ポンプ15を支障な
く作動・停止させることができる。
【0038】第3の参考例も負圧ポンプ15の作動・停
止を相対圧ΔPbだけに基づいて制御するため,大気圧
センサ20及び絶対圧センサ18を設ける代わりに1個
の相対圧センサを設けることができる。
【0039】上記第2及び第3の参考例によっても,大
気圧Paの変動に関わらず負圧ポンプ15の無駄な作動
を最小限に抑え,エネルギーロスの発生と耐久性の低下
とを回避することができる。しかも制御に必要な信号が
相対圧ΔPbだけなので,相対圧ΔPb及びタンク内絶
対圧Pbを制御信号に用いる場合に比べて制御プログラ
ムを簡素化することができる。
【0040】以上,本発明の実施例を詳述したが,本発
明はその要旨を逸脱しない範囲で種々の設計変更を行う
ことが可能である。
【0041】例えば,実施例では電動車両の負圧タンク
13を減圧する負圧ポンプ15を例示したが,本発明は
他の用途の負圧タンクを減圧する負圧ポンプに対しても
適用することができる。
【0042】
【発明の効果】以上のように請求項1に記載された発明
によれば,大気圧とタンク内絶対圧との相対圧が第1の
相対圧所定値未満であり,且つタンク内絶対圧が第1の
絶対圧所定値以上であるときに負圧ポンプを作動させる
とともに,前記相対圧が前記第1の相対圧所定値より大
きい第2の相対圧所定値以上であるときに負圧ポンプを
停止させ,また,タンク内絶対圧が前記第1の絶対圧所
定値より低い第2の絶対圧所定値未満であるときにも負
圧ポンプを停止させるので,大気圧が高いときには相対
圧が不必要に増加してエネルギーロスが発生するのを防
止することができ,また大気圧が低いときには負圧ポン
プが連続運転状態になってしまうのを防止しながら可及
的に大きい相対圧を確保することができる。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the operation of a negative pressure pump connected to a negative pressure tank in order to maintain the internal pressure of the negative pressure tank within a predetermined range. The present invention relates to a method for controlling a negative pressure pump to be controlled. A vehicle running on a gasoline engine uses a negative pressure generated in an intake passage to operate a negative pressure booster of a brake device, but an electric vehicle using an electric motor as a driving source for driving. Cannot use the intake negative pressure, the negative pressure generated by a negative pressure pump driven by a pump motor is stored in a negative pressure tank to operate a negative pressure booster. However, since the energy loss increases if the negative pressure pump is operated at all times, the absolute pressure in the negative pressure tank rises and reaches the upper limit. The negative pressure pump is stopped when the absolute pressure in the tank decreases to a lower limit as a result. [0003] In order to maintain a constant relative pressure between the atmospheric pressure, which determines the capacity of the negative pressure booster, and the absolute pressure in the tank, as shown in FIG. Upper limit (pump operating pressure) and lower limit (pump stop pressure) of the absolute pressure in the tank that is lower than the atmospheric pressure by a certain relative pressure
Let it be assumed that the negative pressure pump is activated when the absolute pressure in the tank reaches the upper limit, and the negative pressure pump is stopped when the absolute pressure in the tank reaches the lower limit. At this time, there is no problem if the atmospheric pressure is sufficiently high, but if the altitude increases and the atmospheric pressure decreases, the lower limit of the absolute pressure in the tank falls below the maximum capacity that the negative pressure pump can generate. The pump may be in a continuous operation state. In order to solve such a problem, FIG.
As shown in (b), if the upper limit value (pump operating pressure) and the lower limit value (pump stop pressure) of the absolute pressure in the tank are constant regardless of the atmospheric pressure, the negative pressure pump will be in a continuous operation state. However, when the altitude increases and the atmospheric pressure decreases, the relative pressure between the atmospheric pressure and the absolute pressure in the tank decreases, and the capacity of the negative pressure booster decreases. Therefore, as shown in FIG. 8 (c), the upper limit (pump operating pressure) and the lower limit (pump stop pressure) of the absolute pressure in the tank are reduced by using a large capacity negative pressure pump. Although the above problem can be solved by setting to, when the altitude is low and the atmospheric pressure is high, the relative pressure between the atmospheric pressure and the absolute pressure in the tank becomes excessive in the shaded area in the figure, and the energy loss increases. Problems occur. The present invention has been made in view of the above circumstances, and provides a method of controlling a negative pressure pump which can always optimally control the operation / stop of the negative pressure pump regardless of a change in atmospheric pressure. The purpose is to: [0007] In order to achieve the above object, the invention according to claim 1 is connected to the negative pressure tank so as to maintain the internal pressure of the negative pressure tank within a predetermined range. The relative pressure between the atmospheric pressure and the absolute pressure in the tank is less than a first relative pressure predetermined value, and the absolute pressure in the tank is equal to the first absolute pressure. of the time it is absolutely圧所value or actuates the suction pump, a negative pressure pump when the relative pressure is the first relative圧所value greater than the second relative圧所value or more
The pump is stopped, and the negative pressure pump is also stopped when the absolute pressure in the tank is less than a second predetermined absolute pressure value lower than the first predetermined absolute pressure value. Embodiments of the present invention will be described below based on reference examples shown in the accompanying drawings and embodiments of the present invention. 1 to 3 show a reference example, FIG. 1 is an overall configuration diagram of an electric vehicle, FIG. 2 is a flowchart for explaining the operation, and FIG. 3 is a graph showing threshold values for operating and stopping a negative pressure pump. It is. As shown in FIG. 1, this electric vehicle is a four-wheeled vehicle having a pair of rear wheels Wr, Wr as driven wheels and a pair of front wheels Wf, Wf as driving wheels.
Wf is a traveling motor 2 using the battery 1 as an energy source.
Via a transmission 3. A power drive unit 4 is interposed between the battery 1 and the traveling motor 2 to control the driving of the traveling motor 2 by the battery 1 and to charge the battery 1 with electric power generated by the motor 2 in association with regenerative braking. Control. The power drive unit 4 is connected to a motor control ECU 5, which is connected to a brake ECU 6. The master cylinder 8 operated by the brake pedal 7 is connected to the brake cylinders 11f, 11f of the front wheels Wf, Wf via a differential pressure valve 9 and a modulator 10.
f and brake cylinders 11r, 11 of the rear wheels Wr, Wr.
r. The modulator 10 has front wheels Wf, Wf
And when the rear wheels Wr, Wr tend to lock, the brake cylinders 11f, 11f; 11r, 11r
Decrease the brake hydraulic pressure transmitted to the motor. A negative pressure tank 13 is connected to a negative pressure booster 12 provided on the master cylinder 8, and a negative pressure pump 15 driven by a pump motor 14 has a check valve 16 connected to the negative pressure tank 13. Connected via. The negative pressure tank 13 is provided with an absolute pressure sensor 18 for detecting the absolute pressure in the tank, and a hydraulic pressure sensor 19 is provided in an oil passage between the master cylinder 8 and the differential pressure valve 9. The signals from the absolute pressure sensor 18 and the oil pressure sensor 19 and the signal from the atmospheric pressure sensor 20 provided at a suitable position on the vehicle body are input to the brake ECU 6, which controls the operation of the differential pressure valve 9 and the pump motor 14. I do. A motor control ECU 5 connected to the brake ECU 6 controls the operation of the power drive unit 4 of the traveling motor 2. Next, the operation of the reference example having the above-described configuration will be described. When the driver operates the master cylinder 8 by depressing the brake pedal 7 to brake the vehicle, the differential pressure valve 9 is kept closed until the oil pressure detected by the oil pressure sensor 19 reaches a predetermined value. . As a result, the brake oil pressure generated by the master cylinder 8 is not transmitted to the brake cylinders 11f, 11f of the front wheels Wf, Wf,
Only the brake cylinders 11r, 11r of the rear wheels Wr, Wr to which the brake hydraulic pressure is transmitted generate a hydraulic braking force. At this time, the motor ECU 5 controls the traveling motor 2 via the power drive unit 4 so that the regenerative braking force corresponding to the decrease in the hydraulic braking force of the front wheels Wf and Wf due to the closing of the differential pressure valve 9 is used for traveling. The battery 1 is charged with electric power generated by the motor 2 and generated by the traveling motor 2.
Thus, while reducing the decrease in the hydraulic braking force with a regenerative braking force to ensure a constant total braking force, the regenerative braking is prioritized over the hydraulic braking to improve the energy recovery efficiency.
The travelable distance per charge of the battery 1 can be extended. When the oil pressure detected by the oil pressure sensor 19 exceeds the predetermined value, the differential pressure valve 9 is gradually opened in accordance with an increase in the depression force of the brake pedal 7, and the brake cylinders 11f of the front wheels Wf, Wf are opened. 11f starts to generate the hydraulic braking force. That is, the differential pressure valve 9 transmits the differential pressure obtained by subtracting the brake oil pressure corresponding to the magnitude of the regenerative braking force from the brake oil pressure generated by the master cylinder 8 to the brake cylinders 11f, 11f of the front wheels Wf, Wf. in this way,
By regulating the upper limit of the regenerative braking force, the traveling motor 2 may generate regenerative braking force exceeding the limit and may be damaged.
The battery 1 is prevented from being damaged by overcharging. Now, the operation of the negative pressure booster 12 causes the absolute pressure in the negative pressure tank 13 to gradually increase, so that the absolute pressure in the negative pressure tank 13 falls between the predetermined upper limit and lower limit. The brake ECU 6 controls the operation / stop of the pump motor 14 (that is, the operation / stop of the negative pressure pump 15) based on the output of the absolute pressure sensor 18 and the output of the atmospheric pressure sensor 20. Hereinafter, the control contents will be described with reference to the flowchart of FIG. 2 and the graph of FIG. [0018] First, compared with the predetermined value Pa 0 set in advance and the atmospheric pressure Pa detected by the atmospheric pressure sensor 20 in step S1, the atmospheric pressure Pa in order altitude is relatively low predetermined value P
proceeds to step S2 when it is a 0 or more, when the atmospheric pressure Pa in order altitude is relatively high is less than the predetermined value Pa 0 moves to step S6. If Pa ≧ Pa 0 in step S 1, the atmospheric pressure Pa detected by the atmospheric pressure sensor 20 and the tank absolute pressure P detected by the absolute pressure sensor 18 are determined in step S 2.
b, and a relative pressure ΔPb (ΔPb = Pa−Pb) is compared with a threshold value ΔPb ON which is a preset constant value.
Is less than the threshold value ΔPb ON , that is, if the absolute pressure Pb in the tank is increased by the operation of the negative pressure booster 12, the negative pressure pump 15 is operated in step S3 to
Reduce the pressure. As a result, the relative pressure Delta] Pb becomes equal to or higher than the threshold Delta] Pb ON tank absolute pressure Pb decreases, the step S
If the answer to 2 is NO, the process moves to step S4. In step S4, the relative pressure ΔPb and a predetermined threshold value ΔPb OFF (ΔPb OFF >
ΔPb ON ) and the relative pressure ΔPb becomes the threshold ΔPb OFF
If this is the case, that is, if the absolute pressure Pb in the tank has decreased due to the operation of the negative pressure pump 15, the negative pressure pump 15 is stopped in step S5 to stop reducing the pressure in the negative pressure tank 13. In this way, when the atmospheric pressure Pa is equal to or higher than the predetermined value Pa 0 because the altitude is relatively low, the relative pressure ΔPb
Is compared with the two threshold values ΔPb ON and ΔPb OFF to control the operation / stop of the negative pressure pump 15. If Pa <Pa 0 in step S1, in step S6 the absolute pressure Pb in the tank is compared with a preset threshold value Pb ON, and if the absolute pressure Pb in the tank is equal to or greater than the threshold Pb ON , If there is, that is, the negative pressure booster 12
If the absolute pressure Pb in the tank has risen by the operation of, the negative pressure pump 15 is operated in step S7 to
3 is depressurized. As a result, when less than the threshold Pb ON tank absolute pressure Pb decreases, the answer at step S6 is NO
And the process moves to step S8. In step S8, the tank absolute pressure P
b and a predetermined threshold Pb OFF (Pb OFF
<Pb ON ), the absolute pressure Pb in the tank becomes the threshold Pb
If it is less than OFF, that is, if the absolute pressure Pb in the tank is reduced by the operation of the negative pressure pump 15, the negative pressure pump 15 is stopped in step S9 to stop reducing the pressure in the negative pressure tank 13. In this way, when the atmospheric pressure Pa is less than the predetermined value Pa 0 because the altitude is relatively low, the absolute pressure Pb in the tank is compared with the two thresholds Pb ON and Pb OFF to thereby reduce the negative pressure of the pump. 15 is controlled to start and stop. In this embodiment, the control shown in FIG. 8A is performed when the atmospheric pressure Pa is equal to or higher than the predetermined value Pa 0 , and when the atmospheric pressure Pa is lower than the predetermined value Pa 0 , the control shown in FIG. (C)
By performing the control described above, it is possible to avoid energy loss in the area shown by hatching in FIG. 8 (c) and to avoid continuous operation of the negative pressure pump 15 shown in FIG. 8 (a). In this embodiment, the relative pressure ΔPb between the atmospheric pressure Pa and the absolute pressure Pb in the tank is determined from the outputs of the atmospheric pressure sensor 20 and the absolute pressure sensor 18. The layout of the sensor is easier than in the case of obtaining from the output. The reason is that the absolute pressure sensor 18 must be provided in the negative pressure tank 13 (or a pipe connected from the negative pressure tank 13 to the negative pressure booster 12), but the atmospheric pressure sensor 20 is not particularly limited in installation location.
On the other hand, when a relative pressure sensor is used instead of the atmospheric pressure sensor 20, both the absolute pressure sensor 18 and the relative pressure sensor are connected to the negative pressure tank 13 (or a pipe connecting the negative pressure tank 13 to the negative pressure booster 12). )
Layout flexibility is reduced. Next, the actual <br/>施例of the present invention will be described with reference to FIGS. In this embodiment, the same control as the control of the operation / stop of the negative pressure pump 15 in the reference example can be performed based on another control program. First, step S in the flowchart of FIG.
Comparing the relative pressure Delta] Pb and threshold Delta] Pb ON at 11, relative pressure Delta] Pb is shifted to the step S12 if it is less than the threshold value Delta] Pb ON. In step S12, the tank absolute pressure Pb and the threshold P
comparing the b ON, if the absolute pressure Pb at the threshold Pb ON or tank, ie if "AND condition" is satisfied in step S11 and step S12, activating the negative pressure pump 15 in step S3. Step S11 and step S1
The area where the “AND condition” of No. 2 is satisfied is indicated by the oblique line (A) in FIG.
The negative pressure pump 15 can be operated in this area (A) in the same manner as in the reference example. Subsequently, in step S14, the relative pressure ΔPb is compared with the threshold value ΔPb OFF, and the relative pressure ΔPb is set to the threshold value ΔPb.
OFF , or in step S15, the absolute pressure Pb in the tank is compared with the threshold Pb OFF to determine the absolute pressure P in the tank.
If b is less than the threshold Pb OFF, i.e. if "OR condition" is satisfied at step S14 and step S15, causes stops negative pressure pump 15 in step S16. Step S1
The area where the "OR condition" is satisfied in step 4 and step S15 is the area indicated by oblique lines (B) in FIG. 5. In this area (B), the negative pressure pump 15 can be stopped in the same manner as in the reference example. According to this embodiment, the same operation and effect as those of the above-described reference example can be obtained by a control program that is simpler than that of the above-described reference example. Next, a second reference example will be described with reference to FIG. The relative pressure of the second reference example negative actuation and stop of the pressure pump 15, the atmospheric pressure Pa and the absolute pressure sensor 18 tank absolute pressure Pb detected by detected by the atmospheric pressure sensor 20 delta
It is controlled by Pb, and the control signal is the atmospheric pressure Pa
Is not used directly. Therefore, instead of providing the atmospheric pressure sensor 20 and the absolute pressure sensor 18, it is also possible to provide one relative pressure sensor and detect the relative pressure ΔPb. FIG. 6A shows a case where the atmospheric pressure is high, and a threshold ΔP having a constant relative pressure with respect to the atmospheric pressure Pa.
b ON-OFF is set, and when the relative pressure ΔPb between the atmospheric pressure Pa and the absolute pressure Pb in the tank is reduced by the operation of the negative pressure booster 12 and becomes smaller than the threshold value ΔPb ON-OFF , the negative pressure tank 1 is set.
The negative pressure pump 15 operates to reduce the pressure of the pump 3. The negative pressure pump 15 operates to increase the relative pressure ΔPb, and the relative pressure ΔPb
b is a negative pressure pump 15 is stopped when the predetermined time T 1 is elapsed from greater than or equal to a threshold value ΔPb ON-OFF. As described above, when the atmospheric pressure is high, the relative pressure ΔPb is rapidly increased by the operation of the negative pressure pump 15, so that the negative pressure pump 15
Can be started and stopped without any trouble. On the other hand, when the atmospheric pressure is low as shown in FIG. 6 (b), even if the relative pressure ΔPb becomes smaller than the threshold value ΔPb ON-OFF and the negative pressure pump 15 is operated, the relative pressure ΔPb is quickly increased. Therefore, the pressure ΔPb cannot be equal to or greater than the threshold value ΔPb ON-OFF , and as a result, the negative pressure pump 15 may fall into a continuous operation state. Therefore, in the second reference example, the negative pressure pump 1
When 5 has elapsed after operated for a predetermined time T 2 has to stop the suction pump 15 forcibly, the threshold ΔPb
Change ON-OFF to decrease. Thereafter, based on the changed threshold value ΔPb ON-OFF , the negative pressure pump 15 can be started and stopped without any trouble in the same manner as in FIG. 6A. In the second embodiment, one threshold value ΔP
Two thresholds ΔPb ON and ΔPb OFF are set instead of b ON-OFF , the threshold ΔPb ON is used as a condition for operating the negative pressure pump 15, and the threshold ΔPb OFF and the predetermined time T 1 are stopped for the negative pressure pump 15. It may be used as a condition for causing it to occur. Next, a third reference example will be described with reference to FIG. FIG. 7A shows a case where the atmospheric pressure is high. Two thresholds ΔPb ON and ΔPb OFF having a constant relative pressure with respect to the atmospheric pressure Pa are set, and the relative pressure ΔPb is set. When the pressure decreases and becomes less than the threshold value ΔPb ON , the negative pressure pump 15 is operated to reduce the pressure in the negative pressure tank 13, and when the relative pressure ΔPb becomes equal to or more than the threshold value ΔPb OFF by the operation of the negative pressure pump 15, the negative pressure pump 15 is stopped. Let it.
As described above, when the atmospheric pressure is high, the relative pressure ΔPb is rapidly increased by the operation of the negative pressure pump 15, so that the negative pressure pump 15 can be operated and stopped without any trouble. On the other hand, when the atmospheric pressure is low as shown in FIG. 7B, even if the relative pressure ΔPb becomes smaller than the threshold value ΔPb ON and the negative pressure pump 15 is operated, the relative pressure ΔPb increases quickly. As a result, the threshold value ΔPb OFF cannot be exceeded, and as a result, the negative pressure pump 15 may fall into a continuous operation state. Therefore, in the third reference example, the negative pressure pump 1
When 5 has elapsed after operated for a predetermined time T 2 has to stop the suction pump 15 forcibly, the two threshold Δ
Change both Pb ON and ΔPb OFF to the decreasing side. Thus,
Thereafter, based on the changed thresholds ΔPb ON and ΔPb OFF , the negative pressure pump 15 can be started and stopped without any trouble in the same manner as in FIG. 7A. [0038] To control based only on the relative pressure ΔPb the operation and stop of the third reference example is also the negative pressure pump 15, provided one of the relative pressure sensor instead of providing the atmospheric pressure sensor 20 and absolute pressure sensor 18 be able to. [0039] The second 及 beauty third reference example as well, to minimize wasteful operation of the vacuum pump 15 regardless of variations in the atmospheric pressure Pa, avoiding a reduction in the generation and durability of energy loss can do. Moreover, since only the relative pressure ΔPb is required for the control, the control program can be simplified as compared with the case where the relative pressure ΔPb and the absolute pressure Pb in the tank are used for the control signal. Although the embodiments of the present invention have been described in detail, various design changes can be made in the present invention without departing from the gist thereof. For example, in the embodiment, the negative pressure pump 15 for depressurizing the negative pressure tank 13 of the electric vehicle has been described. Can be. As described above, according to the first aspect of the invention, the relative pressure between the atmospheric pressure and the absolute pressure in the tank is less than the first relative pressure predetermined value, and the absolute pressure activates the negative pressure pump when it is first absolute圧所value or more, negative when the relative pressure is the first relative圧所value greater than the second relative圧所value or more Pressure pump
The negative pressure pump is also stopped when the tank absolute pressure is lower than the second absolute pressure predetermined value that is lower than the first absolute pressure predetermined value. It is possible to prevent the energy loss from being increased by necessity, and to secure as large a relative pressure as possible while preventing the negative pressure pump from operating continuously when the atmospheric pressure is low. be able to.
【図面の簡単な説明】
【図1】電動車両の全体構成図
【図2】参考例の作用を説明するフローチャート
【図3】負圧ポンプを作動・停止させる閾値を示すグラ
フ
【図4】実施例の作用を説明するフローチャート
【図5】実施例の作用を説明するグラフ
【図6】第2の参考例の作用を説明するタイムチャート
【図7】第3の参考例の作用を説明するタイムチャート
【図8】従来の負圧ポンプの制御を説明する図
【符号の説明】
13 負圧タンク
15 負圧ポンプ
Pa 大気圧
Pb タンク内絶対圧Pb ON 閾値(第1の絶対圧所定値) Pb OFF 閾値(第2の絶対圧所定値)
ΔPb 相対圧ΔPb ON 閾値(第1の相対圧所定値) ΔPb OFF 閾値(第2の相対圧所定値) BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a graph Figure 4 showing an entire configuration diagram [2] threshold for actuating and stopping the flow chart Figure 3 vacuum pump for explaining an operation of the reference example of the electric vehicle real illustrating the operation of a time chart 7 third reference example for explaining the operation of the graph 6 second reference example for explaining the flow chart Figure 5 effects the actual施例explaining the operation of施例FIG. 8 is a diagram for explaining control of a conventional negative pressure pump. [Description of References] 13 Negative pressure tank 15 Negative pressure pump Pa Atmospheric pressure Pb Absolute pressure Pb in tank ON threshold (first absolute pressure predetermined value) ) Pb OFF threshold (second absolute圧所value) Delta] Pb relative pressure Delta] Pb ON threshold (first relative圧所value) Delta] Pb OFF threshold (second relative圧所value)
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 実開 昭58−64877(JP,U) (58)調査した分野(Int.Cl.7,DB名) F04B 49/06 B60T 17/02 F04B 37/16 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References Japanese Utility Model Showa 58-64877 (JP, U) (58) Field surveyed (Int. Cl. 7 , DB name) F04B 49/06 B60T 17/02 F04B 37 / 16
Claims (1)
に維持すべく前記負圧タンク(13)に接続された負圧
ポンプ(15)の作動・停止を制御する負圧ポンプの制
御方法において, 大気圧(Pa)とタンク内絶対圧(Pb)との相対圧
(ΔPb)が第1の相対圧所定値(ΔPbON)未満であ
り,且つタンク内絶対圧(Pb)が第1の絶対圧所定値
(PbON)以上であるときに負圧ポンプ(15)を作動
させるとともに,前記相対圧(ΔPb)が前記第1の相
対圧所定値(ΔPbON)より大きい第2の相対圧所定値
(ΔPbOFF )以上であるときに負圧ポンプ(15)を
停止させ,また,タンク内絶対圧(Pb)が前記第1の
絶対圧所定値(PbON)より低い第2の絶対圧所定値
(PbOFF )未満であるときにも負圧ポンプ(15)を
停止させることを特徴とする,負圧ポンプの制御方法。(57) Claims 1. The operation of a negative pressure pump (15) connected to the negative pressure tank (13) to maintain the internal pressure of the negative pressure tank (13) within a predetermined range. In the method of controlling the negative pressure pump for controlling the stop, the relative pressure (ΔPb) between the atmospheric pressure (Pa) and the absolute pressure in the tank (Pb) is less than a first relative pressure predetermined value (ΔPb ON ), and When the internal absolute pressure (Pb) is equal to or more than a first absolute pressure predetermined value (Pb ON ), the negative pressure pump (15) is operated, and the relative pressure (ΔPb) is changed to the first relative pressure predetermined value (Pb ON ). When the second relative pressure is larger than ΔPb ON ) or more than the second relative pressure predetermined value (ΔPb OFF ) , the negative pressure pump (15) is turned off.
The negative pressure pump (15) is also stopped when the tank absolute pressure (Pb) is less than a second absolute pressure predetermined value (Pb OFF ) lower than the first absolute pressure predetermined value (Pb ON ). A method of controlling a negative pressure pump, characterized by stopping the operation.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33936995A JP3382440B2 (en) | 1995-12-26 | 1995-12-26 | Control method of negative pressure pump |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33936995A JP3382440B2 (en) | 1995-12-26 | 1995-12-26 | Control method of negative pressure pump |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09177678A JPH09177678A (en) | 1997-07-11 |
JP3382440B2 true JP3382440B2 (en) | 2003-03-04 |
Family
ID=18326819
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33936995A Expired - Fee Related JP3382440B2 (en) | 1995-12-26 | 1995-12-26 | Control method of negative pressure pump |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3382440B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104842987A (en) * | 2015-04-01 | 2015-08-19 | 北京新能源汽车股份有限公司 | Vacuum boosting system of electric automobile and pressure measuring method thereof |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10039787A1 (en) * | 2000-08-16 | 2002-02-28 | Bosch Gmbh Robert | Method, computer program and device for monitoring a vacuum device |
JP2006044314A (en) * | 2004-07-30 | 2006-02-16 | Hitachi Ltd | Negative pressure supply device |
US7475951B2 (en) | 2005-01-18 | 2009-01-13 | Fuji Jukogyo Kabushiki Kaisha | Control system for brake vacuum pump |
JP5972017B2 (en) * | 2012-04-11 | 2016-08-17 | 日野自動車株式会社 | Negative pressure actuator controller for vehicle braking |
JP6004749B2 (en) * | 2012-04-23 | 2016-10-12 | ダイハツ工業株式会社 | Electric negative pressure pump controller |
JP2014000903A (en) * | 2012-06-19 | 2014-01-09 | Mikuni Corp | Brake grear, control method, and program |
JP6137677B2 (en) * | 2013-04-19 | 2017-05-31 | 株式会社Subaru | Vehicle control device |
JP6066113B2 (en) * | 2014-08-19 | 2017-01-25 | トヨタ自動車株式会社 | Control device for electric vacuum pump |
JP6117163B2 (en) * | 2014-09-29 | 2017-04-19 | 本田技研工業株式会社 | Brake system for vehicles |
JP6604508B2 (en) | 2015-11-20 | 2019-11-13 | スズキ株式会社 | Control method of automotive negative pressure pump |
CN105424272A (en) * | 2015-12-28 | 2016-03-23 | 黄山迈普汽车部件有限公司 | vacuum degree sensor suitable for plateau |
CN110682901B (en) * | 2019-09-12 | 2020-12-01 | 东风汽车有限公司 | Control method of vacuum pump of electric vehicle and electronic equipment |
-
1995
- 1995-12-26 JP JP33936995A patent/JP3382440B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104842987A (en) * | 2015-04-01 | 2015-08-19 | 北京新能源汽车股份有限公司 | Vacuum boosting system of electric automobile and pressure measuring method thereof |
CN104842987B (en) * | 2015-04-01 | 2018-09-11 | 北京新能源汽车股份有限公司 | Vacuum boosting system of electric automobile and pressure measuring method thereof |
Also Published As
Publication number | Publication date |
---|---|
JPH09177678A (en) | 1997-07-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6687593B1 (en) | Combined regenerative and friction braking system for a vehicle | |
US6325470B1 (en) | Method and apparatus for proportioning regenerative braking | |
US7722135B2 (en) | Braking system for vehicle and braking method thereof | |
US7567042B2 (en) | Regenerative braking method for vehicle having electric motor | |
KR100534709B1 (en) | Method and apparatus for controlling regenerative braking of electric vehicle | |
US6508523B2 (en) | Control method for a coordinated regenerative brake system | |
US8042886B2 (en) | Vehicle brake system | |
JP3622395B2 (en) | Braking device | |
JP3158583B2 (en) | Electric vehicle braking control device | |
US7275795B2 (en) | Braking system of hybrid vehicle | |
JP3382440B2 (en) | Control method of negative pressure pump | |
JP3812147B2 (en) | Negative pressure control device for brake booster | |
US6179395B1 (en) | Method and apparatus for regenerative and anti-skid friction braking | |
US20060125317A1 (en) | Vehicle-brake control unit | |
US6099089A (en) | Method and apparatus for regenerative and friction braking | |
JP5699044B2 (en) | Brake control device | |
JP5814158B2 (en) | Brake control device | |
US6216808B1 (en) | Brake control system for an electrically operated vehicle | |
JP4355164B2 (en) | Vehicle braking device | |
JP5199765B2 (en) | Braking device for vehicle | |
JPH10264793A (en) | Brake device for type utilizing also regenerative braking for electric vehicle | |
JPH07205800A (en) | Brake device for electric vehicle | |
EP0906857B1 (en) | Method and apparatus for regenerative and friction braking | |
JP2003284204A (en) | Vehicle hybrid system | |
KR20160081510A (en) | An automobile and control method of an automobile and brake system for an automobile |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071220 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081220 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081220 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091220 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091220 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101220 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101220 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111220 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111220 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121220 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131220 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |