JP3381941B2 - Group delay optical equalization circuit - Google Patents

Group delay optical equalization circuit

Info

Publication number
JP3381941B2
JP3381941B2 JP22581692A JP22581692A JP3381941B2 JP 3381941 B2 JP3381941 B2 JP 3381941B2 JP 22581692 A JP22581692 A JP 22581692A JP 22581692 A JP22581692 A JP 22581692A JP 3381941 B2 JP3381941 B2 JP 3381941B2
Authority
JP
Japan
Prior art keywords
optical
light
group delay
reflection film
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22581692A
Other languages
Japanese (ja)
Other versions
JPH0667228A (en
Inventor
健 小関
マニッシュ・シャーマ
博之 井辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP22581692A priority Critical patent/JP3381941B2/en
Publication of JPH0667228A publication Critical patent/JPH0667228A/en
Application granted granted Critical
Publication of JP3381941B2 publication Critical patent/JP3381941B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Control Of Non-Electrical Variables (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、例えば光伝送路の群
遅延分散を補償する群遅延光等化回路に関する。
BACKGROUND OF THE INVENTION The present invention relates to, for example, a group of optical transmission lines.
The present invention relates to a group delay optical equalizer circuit that compensates for delay dispersion.

【0002】[0002]

【従来の技術】周知のように、光伝送システムは知的情
報化社会のインフラストラクチャに重要な役割を果たす
べく技術の高度化が要請されており、より経済的な光伝
送路の要求からますます超高速化、超多重化されつつあ
る。また、従来損失制限されていた光伝送距離の飛躍的
拡大の要求に応え、光伝送路に介在して損失を補償する
Er(エルビウム)ドープ光ファイバ増幅器の開発も進
められている。
2. Description of the Related Art As is well known, optical transmission systems are required to have higher technology so as to play an important role in the infrastructure of the intelligent information society, and this is due to the demand for more economical optical transmission lines. It is becoming increasingly faster and more multiplexed. Further, in response to the demand for a dramatic increase in the optical transmission distance, which has been conventionally limited by loss, the development of an Er (erbium) -doped optical fiber amplifier that intervenes in the optical transmission line to compensate for the loss is also underway.

【0003】ところで、光伝送路の周波数帯域は、光フ
ァイバの使用材料(石英)による群遅延分散特性と伝送
モードによる構造上の群遅延分散特性によって制約を受
ける。このため、超高速化に十分な帯域としては、ファ
イバの零分散周波数近傍の狭い光周波数領域に限定さ
れ、結果的に帯域不足を生じることになる。
By the way, the frequency band of the optical transmission line is restricted by the group delay dispersion characteristic of the material (quartz) used for the optical fiber and the structural group delay dispersion characteristic of the transmission mode. Therefore, the band sufficient for ultra-high speed operation is limited to a narrow optical frequency region near the zero-dispersion frequency of the fiber, resulting in insufficient band.

【0004】例えば、従来の光伝送システムにおいて、
光伝送路に使用される光ファイバの群遅延分散特性は
1.3μmに零分散点を持つが、このシステムの使用帯
域を光ファイバ増幅器が使用可能な1.55μm帯に変
更する場合には、大きな群遅延分散のために超高速化が
制約されることになる。
For example, in a conventional optical transmission system,
The group delay dispersion characteristic of the optical fiber used for the optical transmission line has a zero dispersion point at 1.3 μm, but when changing the used band of this system to the 1.55 μm band where the optical fiber amplifier can be used, Due to the large group delay dispersion, ultra high speed will be restricted.

【0005】このような問題を解決するため、従来では
光ファイバにファブリペロー共振器を用いた群遅延光等
化回路を接続することが提案されている。図5にその構
成を示す。
In order to solve such a problem, it has been conventionally proposed to connect a group delay optical equalization circuit using a Fabry-Perot resonator to an optical fiber. The structure is shown in FIG.

【0006】図5において、伝送光は光カプラ1を介し
てファブリペロー共振器2に導かれる。このファブリペ
ロー共振器2に入射された光は誘電体多層膜によるハー
フミラー21を透過して水晶による光透過媒体22中を
通り、全反射ミラー23で全反射され、光透過媒体22
中を逆行し、ハーフミラー21で一部再反射される。ハ
ーフミラー21の透過光は光カプラ1によって取り出さ
れ、光伝送路の光ファイバ(図示せず)に導出される。
In FIG. 5, the transmitted light is guided to the Fabry-Perot resonator 2 via the optical coupler 1. The light incident on the Fabry-Perot resonator 2 passes through the half mirror 21 made of a dielectric multilayer film, passes through the light transmission medium 22 made of quartz, and is totally reflected by the total reflection mirror 23, so that the light transmission medium 22.
It goes backwards and is partially reflected again by the half mirror 21. The light transmitted through the half mirror 21 is taken out by the optical coupler 1 and led out to an optical fiber (not shown) in the optical transmission line.

【0007】すなわち、ファブリペロー共振器2は、そ
の共振長を適当に選ぶことにより、特定の周波数帯に対
して直線的な群遅延分散特性を有する。そこで、上記光
等化回路では、使用周波数帯について、ファブリペロー
共振器2に光ファイバとは逆の群遅延分散特性を持たせ
ることで、使用周波数帯での帯域幅を拡大し、超高速化
の制限緩和を図っている。
That is, the Fabry-Perot resonator 2 has a linear group delay dispersion characteristic with respect to a specific frequency band by appropriately selecting its resonance length. Therefore, in the above optical equalization circuit, the Fabry-Perot resonator 2 is provided with a group delay dispersion characteristic opposite to that of the optical fiber in the used frequency band, thereby expanding the bandwidth in the used frequency band and achieving ultra-high speed operation. We are trying to ease restrictions.

【0008】しかしながら、ファブリペロー共振器を用
いた群遅延光等化回路は、誘電体多層膜の損失等の内部
損失が無視できず、等化帯域内に周波数に依存する大き
な損失を伴う欠点を有している。すなわち、群遅延分散
等化は、振幅特性が周波数に依存せず一定で、群遅延分
散のみを補償するものでなければその効果は半減してし
まうのに対し、上記光等化回路では振幅特性が周波数に
応じて変化してしまい、伝送光に歪みを与えてしまうこ
とになる。
However, in the group delay optical equalization circuit using the Fabry-Perot resonator, the internal loss such as the loss of the dielectric multilayer film cannot be ignored, and there is a drawback that a large loss depending on the frequency is present in the equalization band. Have That is, in the group delay dispersion equalization, the amplitude characteristic is constant without depending on the frequency, and the effect is halved unless the group delay dispersion is compensated. Changes depending on the frequency, which gives distortion to the transmitted light.

【0009】また、上記ファブリペロー共振器は直線的
群遅延分散(一次分散ともいう)を精度よく補償できる
帯域幅は極めて狭く、群遅延光等化回路の設計自由度を
著しく制限してしまう。
Further, the Fabry-Perot resonator has a very narrow bandwidth capable of accurately compensating for linear group delay dispersion (also referred to as first-order dispersion), which significantly limits the design flexibility of the group delay optical equalization circuit.

【0010】[0010]

【発明が解決しようとする課題】以上述べたように従来
の群遅延光等化回路では、光伝送システムにおける光伝
送路の超高速化、通信容量の増大を図る上で、振幅特性
を周波数に応じて一定に維持できず、さらには直線的群
遅延分散の精度よく補償できる帯域幅が極めて狭いた
め、設計自由度が著しく制限されてしまう。
As described above, in the conventional group delay optical equalization circuit, in order to achieve an ultrahigh speed optical transmission line and an increase in communication capacity in the optical transmission system, the amplitude characteristic is changed to the frequency. Accordingly, the bandwidth cannot be maintained constant, and furthermore, the band width with which the linear group delay dispersion can be accurately compensated is extremely narrow, so that the degree of freedom in design is significantly limited.

【0011】この発明は上記の課題を解決するためにな
されたもので、振幅特性が周波数にかかわらず一定で、
直線的群遅延分散を精度よく補償できる帯域幅が広く、
これによって設計自由度を高め、光伝送システムにおけ
る光伝送路の超高速化、通信容量の増大を図ることので
きる群遅延光等化回路を提供することを目的とする。
らに、この群遅延光等化回路に用いて好適な光増幅器を
提供することを目的とする。
The present invention has been made to solve the above-mentioned problems, and the amplitude characteristic is constant regardless of the frequency.
Wide bandwidth that can accurately compensate for linear group delay dispersion,
Accordingly, it is an object of the present invention to provide a group delay optical equalization circuit which can increase the degree of freedom in design, can achieve ultra-high speed of an optical transmission line in an optical transmission system, and can increase communication capacity. It
In addition, a suitable optical amplifier is used for this group delay optical equalization circuit.
The purpose is to provide.

【0012】[0012]

【課題を解決するための手段】上記目的を達成するため
にこの発明に係る群遅延光等化回路は、第1、第2の制
御電極を備える半導体レーザを用い、当該半導体レーザ
の一方の光入出力端に低反射膜を施し他方の光入出力端
に高反射膜を施して低反射膜側の光入出力端からの入射
光を低反射膜と高反射膜との間で往復させ、前記第1の
制御電極に主として入出力光の利得を制御するための制
御電流を与えるとともに前記第2の制御電極に主として
入出力光の位相をシフトするための制御電流を与えて前
記半導体レーザの低反射膜側の光入出力端からの入射光
を増幅しつつ所定の群遅延分散特性を与えて低反射膜側
の光入出力端から放射する光増幅器と、この光増幅器の
低反射膜側の光入出力端に光伝送路の光ファイバから伝
送光を導き前記光増幅器からの出射光を前記光ファイバ
に導く伝送光経路制御手段とを具備し、前記光増幅器の
群遅延分散特性を前記光伝送路の光ファイバが有する直
線的群遅延分散特性とは逆の特性に設定するようにした
ことを特徴とする。
In order to achieve the above object, a group delay light equalization circuit according to the present invention uses a semiconductor laser having first and second control electrodes, and uses one of the semiconductor lasers. A low reflection film is applied to the input / output end and a high reflection film is applied to the other light input / output end, and incident light from the light input / output end on the low reflection film side is reciprocated between the low reflection film and the high reflection film, A control current for mainly controlling the gain of the input / output light is applied to the first control electrode, and a control current for mainly shifting the phase of the input / output light is applied to the second control electrode of the semiconductor laser. An optical amplifier that amplifies the incident light from the light input / output end on the low reflection film side and gives a predetermined group delay dispersion characteristic and radiates from the light input / output end on the low reflection film side, and the low reflection film side of this optical amplifier. The transmitted light is guided from the optical fiber of the optical transmission line to the optical input / output end of And a transmission optical path control means for guiding the light emitted from the width device to the optical fiber, wherein the group delay dispersion characteristic of the optical amplifier is opposite to the linear group delay dispersion characteristic of the optical fiber of the optical transmission line. It is characterized in that the characteristic is set.

【0013】[0013]

【作用】上記構成による群遅延光等化回路では、光増幅
機能を有する光増幅器に、ファブリペロー共振器と同様
の、光ファイバの直線的遅延分散特性の補償機能を持た
せることで、振幅特性を周波数にかかわらず一定にし、
直線的群遅延分散の補償帯域幅を広げ、これによって設
計自由度を高め、光伝送システムにおける光伝送路の超
高速化、通信容量の増大を図る。
In the group delay optical equalization circuit having the above structure, the optical amplifier having the optical amplification function is provided with the function of compensating the linear delay dispersion characteristic of the optical fiber similar to that of the Fabry-Perot resonator, whereby the amplitude characteristic is improved. Constant regardless of frequency,
The compensation band width of the linear group delay dispersion is widened, thereby increasing the degree of freedom in design, ultra-high speed of the optical transmission line in the optical transmission system, and increasing the communication capacity.

【0014】[0014]

【実施例】以下、図1を参照してこの発明の一実施例を
説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG.

【0015】図1はこの発明に係る群遅延光等化回路の
構成を示すものである。図1において、11は光ファイ
バである。この光ファイバ11の端部は光送信機(図示
せず)の光出射端に結合される。この光ファイバ11に
入射された伝送光は光サーキュレータ12に送出され、
この光サーキュレータ12によって光ファイバ13に導
出される。この光ファイバ13に入射された伝送光はそ
の端部から非球面レンズ14に照射され、この非球面レ
ンズ14によって光増幅器15のハーフミラー装着面に
集光される。
FIG. 1 shows the configuration of a group delay optical equalizer circuit according to the present invention. In FIG. 1, 11 is an optical fiber. The end of this optical fiber 11 is coupled to the light emitting end of an optical transmitter (not shown). The transmitted light incident on the optical fiber 11 is sent to the optical circulator 12,
The optical circulator 12 guides the optical fiber 13. The transmitted light incident on the optical fiber 13 is irradiated onto the aspherical lens 14 from its end, and is condensed on the half mirror mounting surface of the optical amplifier 15 by the aspherical lens 14.

【0016】この光増幅器15はpn接合型半導体レー
ザ151の一方のレーザ出射面にハーフミラー152を
装着し、他方のレーザ出射面に全反射ミラー153を装
着したものである。非球面レンズ14からの入射光はハ
ーフミラー152を介してレーザ151の一方のレーザ
出射部に照射される。
In this optical amplifier 15, a half mirror 152 is attached to one laser emission surface of a pn junction type semiconductor laser 151, and a total reflection mirror 153 is attached to the other laser emission surface. The incident light from the aspherical lens 14 is applied to one laser emitting portion of the laser 151 via the half mirror 152.

【0017】上記半導体レーザ151のnチャネル側に
は導体層が形成され、アース電極aとして接地される。
pチャネル側には第1、第2の制御電極b,cが形成さ
れる。第1の制御電極bには利得制御電流Ig が与えら
れ、第2の制御電極cには位相シフト制御電流Ip が与
えられる。
A conductor layer is formed on the n-channel side of the semiconductor laser 151 and is grounded as a ground electrode a.
First and second control electrodes b and c are formed on the p-channel side. A gain control current Ig is applied to the first control electrode b, and a phase shift control current Ip is applied to the second control electrode c.

【0018】上記半導体レーザ151は伝送光の波長
1.55μmに利得を持つInGaAsP系のもので、
発振直前に維持されており、n,pチャネルの接合部に
光が照射されると励起して、その両端面のpn接合部か
ら入射光に比例したレーザ光を放射する。但し、光入射
面と反対側には全反射ミラー153が装着されているた
め、レーザ光は光入射面側からのみ放射される。
The semiconductor laser 151 is of InGaAsP type having a gain at the wavelength of transmitted light of 1.55 μm.
It is maintained immediately before oscillation, and is excited when light is applied to the n- and p-channel junctions and emits laser light proportional to the incident light from the pn junctions on both end faces thereof. However, since the total reflection mirror 153 is mounted on the side opposite to the light incident surface, the laser light is emitted only from the light incident surface side.

【0019】上記半導体レーザ151の出射光はハーフ
ミラー152を介して非球面レンズ14及び光ファイバ
13を逆行し、光サーキュレータ12によって光ファイ
バ16に導出され、その端部より光伝送路の光ファイバ
(図示せず)に送出される。
The light emitted from the semiconductor laser 151 travels backward through the aspherical lens 14 and the optical fiber 13 via the half mirror 152, is guided to the optical fiber 16 by the optical circulator 12, and from the end thereof the optical fiber of the optical transmission line. (Not shown).

【0020】すなわち、この群遅延光等化回路は光ファ
イバ16の光出射端を光伝送路の光ファイバ光入射端に
結合して使用され、光送信機からの伝送光を光サーキュ
レータ12によって光増幅器15に導く。この光増幅器
15には半導体レーザ型のものが使用され、伝送光を励
起光としてレーザ光を発生させる。
That is, this group delay light equalization circuit is used by coupling the light emitting end of the optical fiber 16 to the optical fiber light incident end of the optical transmission line, and transmits the transmitted light from the optical transmitter by the optical circulator 12. It leads to the amplifier 15. A semiconductor laser type is used as the optical amplifier 15, and laser light is generated by using the transmitted light as excitation light.

【0021】ここで、半導体レーザ151に対する制御
電流Ig ,Ip により利得及び位相シフトをコントロー
ルし、光共振周波数を入射光に一致させる。これによ
り、半導体レーザ151から入射光を増幅したレーザ光
が放射される。但し、光入射面にはハーフミラー152
が装着され、反対側の面には全反射ミラー153が装着
されているため、前述したファブリペロー共振器と全く
同様に、光伝送路の光ファイバの群遅延分散特性とは逆
の特性を実現することができる。
Here, the gain and the phase shift are controlled by the control currents Ig and Ip for the semiconductor laser 151, and the optical resonance frequency is matched with the incident light. As a result, laser light obtained by amplifying incident light is emitted from the semiconductor laser 151. However, the half mirror 152 is provided on the light incident surface.
Is mounted, and the total reflection mirror 153 is mounted on the surface on the opposite side. Therefore, the characteristics opposite to the group delay dispersion characteristics of the optical fiber of the optical transmission line are realized just like the Fabry-Perot resonator described above. can do.

【0022】上記光増幅器15の光周波数対群遅延分散
量の関係を図2(a)に示し、光周波数対振幅2乗特性
との関係を図2(b)に示す。同図から明らかなよう
に、光増幅器15は入射光を増幅する機能と共に伝送路
の群遅延分散を補償する機能を発揮する。その出射光は
入射系路を逆行し、光サーキュレータ12によって光伝
送路へと導かれる。
The relationship between the optical frequency and the group delay dispersion amount of the optical amplifier 15 is shown in FIG. 2 (a), and the relationship with the optical frequency vs. amplitude square characteristic is shown in FIG. 2 (b). As is clear from the figure, the optical amplifier 15 has a function of amplifying the incident light and a function of compensating for the group delay dispersion of the transmission line. The emitted light travels backward in the incident system path and is guided to the optical transmission path by the optical circulator 12.

【0023】したがって、振幅特性を周波数にかかわら
ず一定のまま、直線的群遅延分散を精度よく補償できる
帯域幅を広くとることができる。これによって設計自由
度を高めることができ、光伝送システムにおける光伝送
路の超高速化、通信容量の増大を図ることができる。
Therefore, it is possible to widen the bandwidth for accurately compensating the linear group delay dispersion while keeping the amplitude characteristic constant regardless of the frequency. As a result, the degree of freedom in design can be increased, and the optical transmission line in the optical transmission system can be made ultra-high-speed and the communication capacity can be increased.

【0024】尚、上記実施例では1段構成としたが、図
3に示すように複数段(図ではA〜Cの3段)直列に結
合して、各段において半導体レーザの利得波長帯をずら
すようにすれば、さらに直線的分散特性の補償範囲を広
げることができる。
Although the above embodiment has a single-stage configuration, as shown in FIG. 3, a plurality of stages (three stages A to C in the figure) are connected in series, and the gain wavelength band of the semiconductor laser is provided at each stage. If they are shifted, the compensation range of the linear dispersion characteristic can be further expanded.

【0025】また、上記実施例では光増幅器15として
半導体レーザを利用する場合について説明したが、リン
グ共振器を利用することも可能である。図4にその構成
を示す。図4において、31はErドープのリング光フ
ァイバ、32は励起光源、33は光カプラであり、その
光入出射端には光アイソレータ34,35が結合されて
いる。
In the above embodiment, the case where the semiconductor laser is used as the optical amplifier 15 has been described, but it is also possible to use the ring resonator. The structure is shown in FIG. In FIG. 4, 31 is an Er-doped ring optical fiber, 32 is an excitation light source, 33 is an optical coupler, and optical isolators 34 and 35 are coupled to the light input / output ends thereof.

【0026】すなわち、この光増幅器は励起光源32か
ら出射される励起光によりリング光ファイバ31上の伝
送光を光増幅するようにしたものである。ここで、リン
グ光ファイバ31によるリング共振波長帯を使用波長帯
に選ぶことで、ファブリペロー共振器と同様の直線的分
散補償を実現できる。その他、この発明の要旨を逸脱し
ない範囲で種々変形しても、同様に実施可能であること
はいうまでもない。
That is, this optical amplifier optically amplifies the transmission light on the ring optical fiber 31 by the excitation light emitted from the excitation light source 32. Here, by selecting the ring resonance wavelength band of the ring optical fiber 31 as the used wavelength band, it is possible to realize linear dispersion compensation similar to that of the Fabry-Perot resonator. Needless to say, various modifications can be made in the same manner without departing from the scope of the present invention.

【0027】[0027]

【発明の効果】以上のようにこの発明によれば、振幅特
性が周波数にかかわらず一定で、直線的群遅延分散を精
度よく補償できる帯域幅が広く、これによって設計自由
度を高め、光伝送システムにおける光伝送路の超高速
化、通信容量の増大を図ることのできる群遅延光等化回
路を提供することができる。
As described above, according to the present invention, the amplitude characteristic is constant irrespective of the frequency, and the wide band width with which the linear group delay dispersion can be accurately compensated is widened, thereby increasing the degree of freedom in design and optical transmission. A group delay optical equalization circuit that can achieve ultra-high speed optical transmission lines in systems and increase communication capacity
A path can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明に係る群遅延光等化回路の一実施例を
示す構成図。
FIG. 1 is a configuration diagram showing an embodiment of a group delay light equalization circuit according to the present invention.

【図2】図1の実施例の光増幅器の光周波数特性を示す
特性図。
2 is a characteristic diagram showing an optical frequency characteristic of the optical amplifier of the embodiment of FIG.

【図3】図1の実施例の群遅延光等化回路を多段結合し
た様子を示す構成図。
FIG. 3 is a configuration diagram showing a state in which the group delay optical equalization circuits of the embodiment of FIG. 1 are connected in multiple stages.

【図4】この発明に係る他の実施例として光増幅器にリ
ング共振器を利用した場合の構成を示す構成図。
FIG. 4 is a configuration diagram showing a configuration when a ring resonator is used in an optical amplifier as another embodiment according to the present invention.

【図5】従来の群遅延光等化回路の構成を示す構成図。FIG. 5 is a configuration diagram showing a configuration of a conventional group delay optical equalization circuit.

【符号の説明】[Explanation of symbols]

1…光カプラ、2…ファブリペロー共振器、21…ハー
フミラー、22…光透過媒体、23…全反射ミラー、1
1…光ファイバ、12…光サーキュレータ、13…光フ
ァイバ、14…非球面レンズ、15…光増幅器、151
…半導体レーザ、152…ハーフミラー、153…全反
射ミラー、16…光ファイバ、31…リング光ファイ
バ、32…励起光源、33…光カプラ、34,35…光
アイソレータ、Ig …利得制御電流、Ip …位相シフト
制御電流。
DESCRIPTION OF SYMBOLS 1 ... Optical coupler, 2 ... Fabry-Perot resonator, 21 ... Half mirror, 22 ... Optical transmission medium, 23 ... Total reflection mirror, 1
DESCRIPTION OF SYMBOLS 1 ... Optical fiber, 12 ... Optical circulator, 13 ... Optical fiber, 14 ... Aspherical lens, 15 ... Optical amplifier, 151
... Semiconductor laser, 152 ... Half mirror, 153 ... Total reflection mirror, 16 ... Optical fiber, 31 ... Ring optical fiber, 32 ... Excitation light source, 33 ... Optical coupler, 34, 35 ... Optical isolator, Ig ... Gain control current, Ip ... Phase shift control current.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−120830(JP,A) 特開 昭62−29188(JP,A) 特開 平3−169131(JP,A) 特開 昭64−50016(JP,A) 特開 平3−71118(JP,A) 特開 昭58−52890(JP,A) 特開 平3−192222(JP,A) 矢崎陽史パウロ,他,光位相補償のた めの2領域半導体増幅器,1990年電子情 報通信学会秋季全国大会講演論文集, 1990年10月1日,分冊4,pp.4− 168 (58)調査した分野(Int.Cl.7,DB名) G02F 1/35 - 1/365 H01S 5/50 JICSTファイル(JOIS)─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-2-120830 (JP, A) JP-A-62-29188 (JP, A) JP-A-3-169131 (JP, A) JP-A 64-- 50016 (JP, A) JP-A-3-71118 (JP, A) JP-A-58-52890 (JP, A) JP-A-3-192222 (JP, A) Yafumi Y. Paul, et al. Optical phase compensation 2 Area Semiconductor Amplifier, 1990 IEICE Autumn National Conference Proceedings, October 1, 1990, Volume 4, pp. 4-168 (58) Fields surveyed (Int.Cl. 7 , DB name) G02F 1/35-1/365 H01S 5/50 JISST file (JOIS)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 第1、第2の制御電極を備える半導体レ
ーザを用い、当該半導体レーザの一方の光入出力端に低
反射膜を施し他方の光入出力端に高反射膜を施して低反
射膜側の光入出力端からの入射光を低反射膜と高反射膜
との間で往復させ、前記第1の制御電極に主として入出
力光の利得を制御するための制御電流を与えるとともに
前記第2の制御電極に主として入出力光の位相をシフト
するための制御電流を与えて前記半導体レーザの低反射
膜側の光入出力端からの入射光を増幅しつつ所定の群遅
延分散特性を与えて低反射膜側の光入出力端から放射す
る光増幅器と、 この光増幅器の低反射膜側の光入出力端に光伝送路の光
ファイバから伝送光を導き前記光増幅器からの出射光を
前記光ファイバに導く伝送光経路制御手段とを具備し、 前記光増幅器の群遅延分散特性を前記光伝送路の光ファ
イバが有する直線的群遅延分散特性とは逆の特性に設定
するようにしたことを特徴とする群遅延光等化回路。
1. A semiconductor laser having first and second control electrodes is used, wherein one of the semiconductor lasers has a low reflection film on one light input / output end and the other has a high reflection film on the other light input / output end. Incident light from the light input / output end on the reflection film side is reciprocated between the low reflection film and the high reflection film, and a control current for mainly controlling the gain of the input / output light is given to the first control electrode. A predetermined group delay dispersion characteristic is provided while applying a control current mainly for shifting the phase of input / output light to the second control electrode to amplify the incident light from the light input / output end of the semiconductor laser on the low reflection film side. And an optical amplifier that emits light from the optical input / output end on the low reflection film side, and guides the transmitted light from the optical fiber of the optical transmission line to the optical input / output end on the low reflection film side of this optical amplifier. A transmission optical path control means for guiding the emitted light to the optical fiber, Group delay optical equalizer being characterized in that so as to set the reverse characteristics to the linear group delay dispersion characteristic having a group delay dispersion characteristics optical fiber of the optical transmission line of the optical amplifier.
【請求項2】 多段接続され、互いに異なる波長帯を受
け持つ請求項1記載の群遅延光等化回路。
2. The group delay optical equalizer circuit according to claim 1, wherein the group delay optical equalizer circuits are connected in multiple stages and are responsible for different wavelength bands.
JP22581692A 1992-08-25 1992-08-25 Group delay optical equalization circuit Expired - Lifetime JP3381941B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22581692A JP3381941B2 (en) 1992-08-25 1992-08-25 Group delay optical equalization circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22581692A JP3381941B2 (en) 1992-08-25 1992-08-25 Group delay optical equalization circuit

Publications (2)

Publication Number Publication Date
JPH0667228A JPH0667228A (en) 1994-03-11
JP3381941B2 true JP3381941B2 (en) 2003-03-04

Family

ID=16835250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22581692A Expired - Lifetime JP3381941B2 (en) 1992-08-25 1992-08-25 Group delay optical equalization circuit

Country Status (1)

Country Link
JP (1) JP3381941B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3350460B2 (en) 1998-11-05 2002-11-25 アスモ株式会社 Vehicle wiper device
US6522450B2 (en) 2001-04-25 2003-02-18 Corning Incorporated Loss-less tunable per-channel dispersion compensator
US7515626B2 (en) 2003-05-29 2009-04-07 Novera Optics, Inc. Light source capable of lasing that is wavelength locked by an injected light signal
JP4618118B2 (en) * 2005-12-14 2011-01-26 沖電気工業株式会社 Passive mode-locked semiconductor laser and optical clock signal extraction device
JP2017037961A (en) * 2015-08-10 2017-02-16 日本電信電話株式会社 Multi-wavelength semiconductor laser

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
矢崎陽史パウロ,他,光位相補償のための2領域半導体増幅器,1990年電子情報通信学会秋季全国大会講演論文集,1990年10月1日,分冊4,pp.4−168

Also Published As

Publication number Publication date
JPH0667228A (en) 1994-03-11

Similar Documents

Publication Publication Date Title
US5673141A (en) Optical amplifier
US5115338A (en) Multi-stage optical amplifier
JP2718770B2 (en) Transceiver for bidirectional coherent optical transmission system
US5598491A (en) Optical fiber amplifier and optical fiber transmission apparatus
US5363385A (en) Fiber-optic amplifier with control of the pump light wavelength
US6535331B2 (en) Wideband optical amplifier and wideband variable wavelength optical source
US5566018A (en) Apparatus for adjusting channel width of multi-channel fiber amplifier light source
JPS62116030A (en) Coherent light wave transmitter
JP3296983B2 (en) Optical amplifier
JP3381941B2 (en) Group delay optical equalization circuit
US6137932A (en) Apparatus for controlling gain of an optical fiber amplifier and method thereof
WO2002079813A2 (en) Semiconductor quantum dot optical amplifier, and optical amplifier module and optical transmission system using the same
US5526174A (en) Optical amplification system
JP3461121B2 (en) Optical limiter circuit
JP2669483B2 (en) Optical amplifier repeater circuit
US5235604A (en) Optical amplifier using semiconductor laser as multiplexer
JPH05107573A (en) Optical amplifier
JP3164870B2 (en) Optical fiber amplifier gain controller
JPH11145538A (en) Super wideband optical fiber amplifier
JPH09172407A (en) Optical communication system using adjustable tandem fabry-perot etalon
US7057803B2 (en) Linear optical amplifier using coupled waveguide induced feedback
KR100350231B1 (en) Gain control in semiconductor optical amlifier using an optical fiber grating
US7031052B2 (en) Optical fiber amplifier
JPH07307512A (en) Optically pumped ultrahigh-speed laser of forced mode locking type
US7088502B2 (en) Semiconductor optical amplifier and optical amplifying apparatus using the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071220

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081220

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091220

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091220

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101220

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111220

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121220

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121220

Year of fee payment: 10