JP3375260B2 - Temperature measuring device - Google Patents

Temperature measuring device

Info

Publication number
JP3375260B2
JP3375260B2 JP32528696A JP32528696A JP3375260B2 JP 3375260 B2 JP3375260 B2 JP 3375260B2 JP 32528696 A JP32528696 A JP 32528696A JP 32528696 A JP32528696 A JP 32528696A JP 3375260 B2 JP3375260 B2 JP 3375260B2
Authority
JP
Japan
Prior art keywords
temperature
detected
voltage
linear
detection voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32528696A
Other languages
Japanese (ja)
Other versions
JPH10170351A (en
Inventor
徹 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP32528696A priority Critical patent/JP3375260B2/en
Publication of JPH10170351A publication Critical patent/JPH10170351A/en
Application granted granted Critical
Publication of JP3375260B2 publication Critical patent/JP3375260B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は温度測定装置に係
り、特に二次電池の急速充電回路などに用いられる温度
測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a temperature measuring device, and more particularly to a temperature measuring device used in a quick charging circuit of a secondary battery.

【0002】[0002]

【従来の技術】二次電池の急速充電回路として、電池温
度が所定値に達したとき、あるいは電池温度の単位時間
当たりの上昇率が所定値に達したとき急速充電を停止す
る方式がある。このような急速充電回路で用いられる温
度測定装置においては、一般に温度をサーミスタなどの
感温素子により抵抗値として検知し、この抵抗値から電
池温度を測定する。具体的には、感温素子と抵抗素子を
直列に接続して一定の電圧を印加し、感温素子と抵抗素
子の接続点に発生する電圧(以下、温度検知電圧とい
う)から温度を測定する。
2. Description of the Related Art As a rapid charging circuit for a secondary battery, there is a method of stopping the rapid charging when the battery temperature reaches a predetermined value or when the rate of increase in battery temperature per unit time reaches a predetermined value. In a temperature measuring device used in such a quick charging circuit, generally, the temperature is detected as a resistance value by a temperature sensitive element such as a thermistor, and the battery temperature is measured from the resistance value. Specifically, a temperature sensing element and a resistance element are connected in series, a constant voltage is applied, and the temperature is measured from the voltage generated at the connection point between the temperature sensing element and the resistance element (hereinafter referred to as the temperature detection voltage). .

【0003】感温素子は温度変化に対する抵抗値変化が
非線形の特性を有するため、図4の特性曲線に示すよ
うに、温度検知電圧Vも検知温度Tの変化に対して
非線形に変化する。そこで、従来では感温素子の検知温
度Tと温度検知電圧Vとの関係を1本の直線2で近
似し、これに基づいて温度を測定していた(例えば、日
経エレクトロニクス、1981年7月2日号、第203
頁〜第212頁参照)。
Since the temperature sensitive element has a non-linear characteristic that the resistance value changes with respect to the temperature change, the temperature detection voltage V T also changes non-linearly with respect to the change in the detection temperature T, as shown by the characteristic curve E in FIG. . Therefore, conventionally, the relationship between the temperature T detected by the temperature sensing element and the temperature detection voltage V T is approximated by one straight line 2, and the temperature is measured based on this approximation (for example, Nikkei Electronics, July 1981). 2nd issue, 203rd
Pp.-212).

【0004】しかし、図4に示されるように近似直線
は実際の検知温度T−温度検知電圧Vの特性曲線1
に対して隔たりがあるため、これに基づいて温度測定を
行うと測定誤差が大きくなってしまう。
However, as shown in FIG. 4, the approximate straight line E
Is the actual detection temperature T-temperature detection voltage V T characteristic curve 1
Since there is a gap between them and the temperature measurement based on this, the measurement error becomes large.

【0005】[0005]

【発明が解決しようとする課題】上述したように、感温
素子の検知温度と温度検知電圧との関係を1本の直線で
近似する従来の技術では、測定誤差が大きいという問題
があった。本発明は、感温素子を用いてより正確な温度
測定を行うことができる温度測定装置を提供することを
目的とする。
As described above, the conventional technique for approximating the relationship between the temperature detected by the temperature sensitive element and the temperature detected voltage by one straight line has a problem that the measurement error is large. It is an object of the present invention to provide a temperature measuring device that can perform more accurate temperature measurement using a temperature sensitive element.

【0006】[0006]

【課題を解決するための手段】上記の課題を解決するた
め、本発明は温度変化に対する抵抗値変化が非線形の特
性を有するサーミスタのような感温素子と直列に抵抗素
子を接続し、これら感温素子と抵抗素子との直列回路に
一定の電圧を印加して、感温素子と抵抗素子との接続点
に発生する温度検知電圧から感温素子による検知温度を
測定する温度測定装置において、感温素子による検知温
度と温度検知電圧との関係を予め定めた複数の直線式で
近似し、温度検知電圧の検知温度に対する二次微分が正
の領域では該領域を通る隣接する二つの直線式に実際の
温度検知電圧をそれぞれ代入して得られた検知温度のう
ち大きい方を温度測定値として出力し、二次微分が負の
領域では該領域を通る隣接する二つの直線式に実際の温
度検知電圧をそれぞれ代入して得られた検知温度のうち
小さい方を温度測定値として出力するようにしたことを
特徴とする。ここで、複数の直線式は例えば検知温度と
温度検知電圧との関係を示す特性曲線に沿って引いた接
線からなる。
In order to solve the above-mentioned problems, the present invention connects a resistance element in series with a temperature-sensitive element such as a thermistor having a non-linear characteristic that a resistance value change with respect to a temperature change. In a temperature measuring device that measures the temperature detected by the temperature sensing element from the temperature sensing voltage generated at the connection point between the temperature sensing element and the resistance element by applying a constant voltage to the series circuit of the temperature sensing element and the resistance element, The relationship between the temperature detected by the temperature element and the temperature detected voltage is approximated by a plurality of predetermined linear equations, and the second derivative of the temperature detected voltage with respect to the detected temperature is positive.
In the region of
The detected temperature calculated by substituting the temperature detection voltage
The larger one is output as the temperature measurement value, and the second derivative is negative.
In the area, the actual temperature is divided into two adjacent linear equations passing through the area.
Of the detection temperature obtained by substituting the detection voltage
It is characterized in that the smaller one is output as the temperature measurement value. Here, the plurality of linear expressions are, for example, tangent lines drawn along a characteristic curve indicating the relationship between the detected temperature and the temperature detected voltage.

【0007】[0007]

【0008】[0008]

【0009】このように本発明では、感温素子による検
知温度と温度検知電圧との関係を予め定めた複数の直線
式で近似し、実際の温度検知電圧の大きさに応じて選択
した最適な一つの直線式に実際の温度検知電圧を代入し
て温度測定値を求めることにより、一つの直線式を用い
る従来の方式に比較して測定精度が向上する。すなわ
ち、複数の直線式の各々は検知温度と温度検知電圧との
関係を示す特性曲線の各部分によく近似しているため、
最適な一つの直線式を見い出せれば、その直線式を用い
た温度測定値は、直線式が一つしか用意されていない従
来の方式に比べ、より実際の検知温度に近い値となる。
As described above, according to the present invention, the relationship between the temperature detected by the temperature sensing element and the temperature detection voltage is approximated by a plurality of predetermined linear expressions, and the optimum temperature selected according to the magnitude of the actual temperature detection voltage is selected. By substituting the actual temperature detection voltage into one linear equation to obtain the temperature measurement value, the measurement accuracy is improved as compared with the conventional method using one linear equation. That is, since each of the plurality of linear equations is well approximated to each part of the characteristic curve showing the relationship between the detected temperature and the temperature detected voltage,
If an optimum linear equation is found , the temperature measurement value using the linear equation will be a value closer to the actual detected temperature than the conventional method in which only one linear equation is prepared.

【0010】[0010]

【発明の実施の形態】以下、図面を参照して本発明の実
施形態を説明する。図1に、本発明の一実施形態に係る
温度測定装置の構成を示す。同図に示すように、感温素
子であるサーミスタ11と抵抗素子12が直列に正電源
13とグラウンドGNDとの間に接続されている。サー
ミスタ11との抵抗素子12との接続点14からは、サ
ーミスタ1による検知温度に対応した温度検知電圧VT
が出力され、この温度検知電圧VT は温度測定部15に
入力される。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows the configuration of a temperature measuring device according to an embodiment of the present invention. As shown in the figure, a thermistor 11 which is a temperature sensitive element and a resistance element 12 are connected in series between a positive power source 13 and a ground GND. From the connection point 14 between the thermistor 11 and the resistance element 12, a temperature detection voltage V T corresponding to the temperature detected by the thermistor 1 is detected.
Is output, and this temperature detection voltage V T is input to the temperature measuring unit 15.

【0011】温度測定部15は、例えばマイクロコンピ
ュータを用いて構成され、温度検知電圧VT はまずA/
D変換器16によってディジタル値に変換される。A/
D変換器16の出力は電圧判定部17に入力され、温度
検知電圧VT が予め定められた複数の電圧範囲のどの範
囲に属するかが判定される。この電圧判定部17の判定
結果は直線式選択部18に入力され、この判定結果に基
づき、予め定められた複数の直線式から一つの直線式が
選択される。温度測定値出力部19は、直線式選択部1
8で選択された一つの直線式にA/D変換器16を介し
て得られた温度検知電圧VT を代入して、サーミスタ1
1による実際の検知温度を求め、これを温度測定値とし
て出力する。
The temperature measuring unit 15 is composed of, for example, a microcomputer, and the temperature detection voltage V T is first calculated by A /
It is converted into a digital value by the D converter 16. A /
The output of the D converter 16 is input to the voltage determination unit 17, and it is determined to which of a plurality of predetermined voltage ranges the temperature detection voltage V T belongs. The determination result of the voltage determination unit 17 is input to the linear equation selection unit 18, and one linear equation is selected from a plurality of predetermined linear equations based on the determination result. The temperature measurement value output unit 19 is the linear selection unit 1
Substituting the temperature detection voltage V T obtained via the A / D converter 16 into one linear equation selected in 8, the thermistor 1
The actual detected temperature according to 1 is obtained, and this is output as a temperature measurement value.

【0012】次に、図2および図3を用いて温度測定動
作の第1の実施形態を説明する。図2は検知温度Tと温
度検知電圧VT の関係を表す特性曲線1および特性曲線
1を近似する直線式A,B,Cを示す図であり、図3は
温度測定の処理手順を示すフローチャートである。
Next, a first embodiment of the temperature measuring operation will be described with reference to FIGS. 2 and 3. FIG. 2 is a diagram showing a characteristic curve 1 representing the relationship between the detected temperature T and the temperature detected voltage V T , and linear expressions A, B, and C approximating the characteristic curve 1, and FIG. 3 is a flowchart showing a processing procedure for temperature measurement. Is.

【0013】本実施形態では、図2に示すように特性曲
線1に沿って3本の接線を引き、これらを直線式A,
B,Cとする。直線式AとBは交点aで、また直線式B
とCは交点bでそれぞれ交差している。そして、交点
a,Bにおける温度検知電圧VTをそれぞれVTH,VTL
とし、直線式A,B,CとVTH,VTLをマイクロコンピ
ュータ内のメモリに記憶しておく。直線式A,B,Cに
ついては、例えば検知温度Tと温度検知電圧VT の関係
をテーブルとして格納しておくようにする。
In this embodiment, three tangent lines are drawn along the characteristic curve 1 as shown in FIG.
B and C. Linear equations A and B are at intersection a, and linear equation B
And C intersect at intersection b. Then, the temperature detection voltage V T at the intersection points a and B is set to V TH and V TL , respectively.
Then, the linear expressions A, B, C and V TH , V TL are stored in the memory in the microcomputer. For the linear expressions A, B, and C, for example, the relationship between the detected temperature T and the temperature detected voltage V T is stored as a table.

【0014】まず、サーミスタ11により検知された温
度検知電圧VT をA/D変換器16によりディジタル値
として計測する(ステップS101)。次に、交点a,
bにおける温度検知電圧VT の値VTH,VTLを判定閾値
として、ステップS101で計測された温度検知電圧V
T の電圧範囲を判定する(ステップS102)。すなわ
ち、ステップS103でVT <VTLか否かを判定し、ま
たステップS105でVTL<VT <VTHか否か(VT
TH)を判定する。
First, the temperature detection voltage V T detected by the thermistor 11 is measured by the A / D converter 16 as a digital value (step S101). Next, the intersection a,
Using the values V TH and V TL of the temperature detection voltage V T at b as the determination thresholds, the temperature detection voltage V measured in step S101
The voltage range of T is determined (step S102). That is, it is determined in step S103 whether V T <V TL , and in step S105 whether V TL <V T <V TH (V T >).
V TH ) is determined.

【0015】次に、この判定結果に基づいて、直線式
A,B,Cから一つの直線式を選択する。すなわち、直
線式A,B,CにVT <VTL,VTL<VT <VTH,VT
>VTHの電圧範囲をそれぞれ対応させておき、実際の温
度検知電圧VT の電圧範囲に対応する一つの直線式を選
択する。そして、選択した直線式に実際の温度検知電圧
T を代入して得られる検知温度を温度測定値として出
力する。
Next, based on this determination result, one linear expression is selected from the linear expressions A, B and C. That is, in the linear equations A, B, and C, V T <V TL , V TL <V T <V TH , V T
The voltage ranges> V TH are associated with each other, and one linear expression corresponding to the voltage range of the actual temperature detection voltage V T is selected. Then, the detected temperature obtained by substituting the actual temperature detection voltage V T into the selected linear equation is output as the temperature measurement value.

【0016】例えば、図2において実際の温度検知電圧
T がVT1のときは、VT <VTL(ステップS103で
YES)となるから、直線式Aを選択する。この直線式
AにVT1を代入すると、検知温度TはT1 となり、これ
を温度測定値として出力する(ステップS104)。
For example, in FIG. 2, when the actual temperature detection voltage V T is V T1 , since V T <V TL (YES in step S103), the linear expression A is selected. When V T1 is substituted into this linear expression A, the detected temperature T becomes T 1 and this is output as a temperature measurement value (step S104).

【0017】また、実際の温度検知電圧VT がVT2のと
きは、VTL<VT <VTH(ステップS105でYES)
となるから、直線式Bを選択する。この直線式BにVT2
を代入すると、検知温度TはT2 となり、これを温度測
定値として出力する(ステップS106)。
Further, when the actual temperature detection voltage V T is V T2 , V TL <V T <V TH (YES in step S105)
Therefore, the linear formula B is selected. This linear formula B has V T2
When is substituted, the detected temperature T becomes T 2 , which is output as a temperature measurement value (step S106).

【0018】さらに、実際の温度検知電圧VT がVT3
ときは、VT >VTH(ステップS105でNO)となる
から、直線式Cを選択する。この直線式CにVT3を代入
すると、検知温度TはT3 となり、これを温度測定値と
して出力する(ステップS107)。
Further, when the actual temperature detection voltage V T is V T3 , V T > V TH (NO in step S105), so the linear formula C is selected. By substituting V T3 into this linear expression C, the detected temperature T becomes T 3 , and this is output as a temperature measurement value (step S107).

【0019】なお、実際の温度検知電圧VT がちょうど
TLまたはVTHとなることもある。VT =VTLの場合は
直線式A,Bのいずれを選択してもよく、またVT =V
THの場合は直線式B,Cのいずれを選択してもよい。以
下同様に、選択した一つの直線式にVTLまたはVTHを代
入し、そのときの検知温度を温度測定値として出力す
る。
The actual temperature detection voltage V T may be just V TL or V TH . When V T = V TL , either of the linear expressions A and B may be selected, and V T = V
In the case of TH , either straight line type B or C may be selected. Similarly, V TL or V TH is substituted into one selected linear equation, and the detected temperature at that time is output as a temperature measurement value.

【0020】次に、図4および図5を用いて本実施形態
における温度測定動作の第2の実施形態を説明する。図
4は検知温度Tと温度検知電圧VT の関係を表す特性曲
線1および特性曲線1を近似する直線式D,E,Fと、
温度検知電圧VT の温度Tに対する一次微分dT/dV
および二次微分dT2 /dV2 を示す図であり、図5は
温度測定の処理手順を示すフローチャートである。
Next, a second embodiment of the temperature measuring operation in this embodiment will be described with reference to FIGS. 4 and 5. FIG. 4 shows a characteristic curve 1 representing the relationship between the detected temperature T and the temperature detected voltage V T , and linear equations D, E and F approximating the characteristic curve 1,
First derivative dT / dV of the temperature detection voltage V T with respect to the temperature T
FIG. 6 is a diagram showing the second derivative dT 2 / dV 2 , and FIG. 5 is a flowchart showing the processing procedure of temperature measurement.

【0021】本実施形態では、図4に示すように図2と
同様に特性曲線1に沿って3本の接線を引き、これらを
直線式D,E,Fとする。そして、特性曲線1の変曲点
(一次微分dT/dVが単調増加から単調減少に変化す
る点)における温度検知電圧VT をVT5とし、直線式
D,E,FとVT5をマイクロコンピュータ15で記憶し
ておく。直線式D,E,Fについては、検知温度Tと温
度検知電圧VT の関係をテーブルとして格納しておけば
よい。
In the present embodiment, as shown in FIG. 4, three tangent lines are drawn along the characteristic curve 1 as in FIG. 2, and these are expressed as linear expressions D, E, F. The temperature detection voltage V T at the inflection point of the characteristic curve 1 (the point where the first-order differential dT / dV changes from a monotone increase to a monotone decrease) is V T5 , and the linear equations D, E, F and V T5 are microcomputers. Remember in 15. For the linear equations D, E and F, the relationship between the detected temperature T and the temperature detected voltage V T may be stored as a table.

【0022】本実施形態では、先に述べた実施形態と同
様に、まずサーミスタ11により検知された温度検知電
圧VT をA/D変換器16によりディジタル値として計
測する(ステップS201)。
In this embodiment, similarly to the above-described embodiment, first, the temperature detection voltage V T detected by the thermistor 11 is measured by the A / D converter 16 as a digital value (step S201).

【0023】次に、変曲点の温度検知電圧VT5を判定閾
値として、ステップS201で計測された温度検知電圧
T の電圧範囲を温度検知電圧VT の温度Tに対する二
次微分dT2 /dV2 が正の領域か負の領域かを判定す
る(ステップS202)。すなわち、ステップS203
でVT <VT5か否かを判定し、またステップS207で
T >VT5か否か(VT =VT5)を判定する。
Next, as the determination threshold temperature detection voltage V T5 of the inflection point, the second derivative of the temperature detection voltage range of the voltage V T measured in step S201 with respect to the temperature T of the temperature detection voltage V T dT 2 / It is determined whether dV 2 is a positive region or a negative region (step S202). That is, step S203
In step S207, it is determined whether or not V T <V T5 . In step S207, it is determined whether or not V T > V T5 (V T = V T5 ).

【0024】次に、この判定結果に基づいて、直線式
D,E,Fから二つの直線式を選択する。すなわち、二
次微分dT2 /dV2 が正の領域を直線式D,Eに、二
次微分dT2 /dV2 が負の領域を直線式E,Fにそれ
ぞれ対応させておき、実際の温度検知電圧VT に基づく
二次微分dT2 /dV2 の極性に対応する二つの直線式
を選択する。そして、選択した二つの直線式に実際の温
度検知電圧VT を代入して得られる検知温度のうち、最
適な方を温度測定値として出力する。
Next, two linear equations are selected from the linear equations D, E, F based on the result of this judgment. That is, the regions where the secondary differential dT 2 / dV 2 is positive are associated with the linear expressions D and E, and the regions where the secondary differential dT 2 / dV 2 is negative are associated with the linear expressions E and F, respectively, and the actual temperature is Two linear equations corresponding to the polarities of the second derivative dT 2 / dV 2 based on the detection voltage V T are selected. Then, of the detected temperatures obtained by substituting the actual temperature detection voltage V T into the two selected linear equations, the optimum one is output as the temperature measurement value.

【0025】例えば、図5において実際の温度検知電圧
T がVT4のときは、VT <VT5(ステップS203で
YES)、つまり二次微分dT2 /dV2 が正の領域と
なるから、直線式D,Eを選択する。そして、直線式
D,EにVT4を代入して得られる検知温度Tを温度測定
値の候補TD4,TE4とする(ステップS204)。
For example, in FIG. 5, when the actual temperature detection voltage V T is V T4 , V T <V T5 (YES in step S203), that is, the second derivative dT 2 / dV 2 is in the positive region. , Linear equations D and E are selected. Then, the detected temperature T obtained by substituting V T4 into the linear expressions D and E is set as temperature measurement value candidates T D4 and T E4 (step S204).

【0026】次に、温度測定値の候補TD4,TE4を比較
すると(ステップS205)、TD4<TE4であるので、
この場合は大きい方の候補TE4を温度測定値として出力
する(ステップS206)。
Next, comparing the temperature measurement value candidates T D4 and T E4 (step S205), since T D4 <T E4 ,
In this case, the larger candidate T E4 is output as the temperature measurement value (step S206).

【0027】また、実際の温度検知電圧VT がVT6のと
きは、VT >VT5(ステップS207でYES)、つま
り二次微分dT2 /dV2 が負の領域となるから、直線
式E,Fを選択する。そして、これらの直線式E,Fに
T6を代入を得られる検知温度Tを温度測定値の候補T
E6,TF6とする(ステップS208)。
Further, when the actual temperature detection voltage V T is V T6 , V T > V T5 (YES in step S207), that is, the second derivative dT 2 / dV 2 is in the negative region, and therefore the linear expression Select E and F. Then, the detected temperature T at which V T6 can be obtained by substituting these linear expressions E and F is used as a candidate T for the temperature measurement value.
E6 and T F6 are set (step S208).

【0028】次に、温度測定値の候補TE6,TF6を比較
すると(ステップS209)、TE6>TF6であるので、
この場合は小さい方の候補TF6を温度測定値として出力
する(ステップS210)。
Next, comparing the temperature measurement value candidates T E6 and T F6 (step S209), since T E6 > T F6 ,
In this case, the smaller candidate T F6 is output as the temperature measurement value (step S210).

【0029】さらに、実際の温度検知電圧VT がちょう
どVT5(ステップS207でNO)のときは、二次微分
dT2 /dV2 は0、つまり正でも負でもないので、直
線式Eを選択し、この直線式EにVT5を代入して得られ
る検知温度T=TE5を温度測定値として出力する(ステ
ップS211)。
Further, when the actual temperature detection voltage V T is just V T5 (NO in step S207), the second derivative dT 2 / dV 2 is 0, that is, neither positive nor negative, so the linear equation E is selected. Then, the detected temperature T = T E5 obtained by substituting V T5 into this linear expression E is output as a temperature measurement value (step S211).

【0030】なお、上記実施形態では検知温度と温度検
知電圧の関係を示す特性曲線を3本の直線式で近似した
場合について説明したが、直線式の本数は2本でもよい
し、4本以上であってもよい。また、上記実施形態では
感温素子としてサーミスタを用いたが、他の素子を用い
てもよく、要するに温度に対する抵抗値変化が非線形の
特性を有する感温素子を用いた場合の全てに本発明は有
効である。さらに、サーミスタ(感温素子)と抵抗素子
の位置関係は図1の場合と逆でもよい。
In the above embodiment, the case where the characteristic curve showing the relationship between the detected temperature and the temperature detection voltage is approximated by three linear equations has been described, but the number of linear equations may be two or four or more. May be Further, although the thermistor is used as the temperature sensitive element in the above-described embodiment, other elements may be used, that is, the present invention is applicable to all cases where a temperature sensitive element having a non-linear characteristic of resistance change with temperature is used. It is valid. Further, the positional relationship between the thermistor (temperature sensitive element) and the resistance element may be opposite to that in FIG.

【0031】[0031]

【発明の効果】以上説明したように、本発明の温度測定
装置によれば、感温素子による検知温度と温度検知電圧
との関係を予め定めた複数の直線式で近似し、実際の温
度検知電圧の大きさに応じて選択した最適な一つの直線
式を選択して、その直線式に実際の温度検知電圧を代入
して温度測定値を求めることにより、測定精度を上げる
ことができる。
As described above, according to the temperature measuring device of the present invention, the relationship between the temperature detected by the temperature sensing element and the temperature detection voltage is approximated by a plurality of predetermined linear expressions to detect the actual temperature. It is possible to improve the measurement accuracy by selecting one optimal linear equation selected according to the magnitude of the voltage and substituting the actual temperature detection voltage into the linear equation to obtain the temperature measurement value.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施形態に係る温度測定装置の構成を
示す図
FIG. 1 is a diagram showing a configuration of a temperature measuring device according to an embodiment of the present invention.

【図2】本発明における温度測定の一実施形態を説明す
るためのサーミスタの検知温度と温度検知電圧の関係を
表す特性曲線および特性曲線を近似する複数の直線式を
示す図
FIG. 2 is a diagram showing a characteristic curve representing a relationship between a temperature detected by a thermistor and a temperature detected voltage and a plurality of linear equations approximating the characteristic curve for explaining an embodiment of temperature measurement in the present invention.

【図3】同実施形態における温度測定の処理手順を示す
フローチャート
FIG. 3 is a flowchart showing a processing procedure of temperature measurement in the same embodiment.

【図4】本発明における温度測定の他の実施形態を説明
するためのサーミスタの検知温度と温度検知電圧の関係
を表す特性曲線および特性曲線を近似する複数の直線式
を示す図
FIG. 4 is a diagram showing a characteristic curve showing a relationship between a temperature detected by a thermistor and a temperature detection voltage, and a plurality of linear equations approximating the characteristic curve for explaining another embodiment of temperature measurement in the present invention.

【図5】同実施形態における温度測定の処理手順を示す
フローチャート
FIG. 5 is a flowchart showing a temperature measurement processing procedure in the embodiment.

【図6】従来技術の温度測定装置を説明するためのサー
ミスタの検知温度と温度検知電圧の関係を表す特性曲線
および特性曲線を近似する直線式を示す図
FIG. 6 is a diagram showing a characteristic curve representing a relationship between a temperature detected by a thermistor and a temperature detected voltage and a linear equation approximating the characteristic curve for explaining a temperature measuring device of a conventional technique.

【符号の説明】[Explanation of symbols]

11…サーミスタ(感温素子) 12…抵抗素子 13…電源 14…接続点 15…温度測定部 16…A/D変換器 17…電圧判定部 18…直線式選択部 19…温度測定部 11 ... Thermistor (temperature sensitive element) 12 ... Resistance element 13 ... Power supply 14 ... Connection point 15 ... Temperature measuring unit 16 ... A / D converter 17 ... Voltage determination unit 18 ... Linear selection section 19 ... Temperature measuring unit

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】温度変化に対する抵抗値変化が非線形の特
性を有する感温素子と、 前記感温素子と直列に接続された抵抗素子と、 前記感温素子と前記抵抗素子との直列回路に一定の電圧
を印加する電圧印加手段と、 前記感温素子と前記抵抗素子との接続点に発生する温度
検知電圧から前記感温素子による検知温度を測定する温
度測定手段とを備え、 前記温度測定手段は、前記検知温度と前記温度検知電圧
との関係を予め定めた複数の直線式で近似し、前記温度
検知電圧の前記検知温度に対する二次微分が正の領域で
は該領域を通る隣接する二つの直線式に実際の温度検知
電圧をそれぞれ代入して得られた検知温度のうち大きい
方を温度測定値として出力し、前記二次微分が負の領域
では該領域を通る隣接する二つの直線式に実際の温度検
知電圧をそれぞれ代入して得られた検知温度のうち小さ
い方を温度測定値として出力することを特徴とする温度
測定装置。
1. A temperature sensitive element having a non-linear characteristic in which a resistance value change with respect to a temperature change, a resistance element connected in series with the temperature sensitive element, and a constant circuit in a series circuit of the temperature sensitive element and the resistance element. And a temperature measuring unit that measures a temperature detected by the temperature sensing element from a temperature sensing voltage generated at a connection point between the temperature sensing element and the resistance element. It is approximated by a plurality of linear equation determined in advance a relation between the detected temperature and the temperature detection voltage, the temperature
In the area where the second derivative of the detection voltage with respect to the detection temperature is positive
Is the actual temperature sensing in two adjacent linear equations passing through the area
Largest of the detected temperatures obtained by substituting each voltage
Is output as the temperature measurement value, and the second derivative is in the negative region.
Then, the actual temperature detection is performed by two adjacent linear equations passing through the area.
Smaller of the detected temperatures obtained by substituting each of the known voltages
A temperature measuring device characterized in that which one is output as a temperature measurement value.
【請求項2】前記複数の直線式は、前記検知温度と前記
温度検知電圧との関係を示す特性曲線に沿って引いた接
線からなることを特徴とする請求項1記載の温度測定装
置。
2. The temperature measuring device according to claim 1, wherein the plurality of linear equations are tangent lines drawn along a characteristic curve showing a relationship between the detected temperature and the temperature detected voltage.
【請求項3】前記感温素子はサーミスタであることを特
徴とする請求項1記載の温度測定装置。
3. A temperature measuring device according to claim 1, wherein the temperature sensitive device is a thermistor.
JP32528696A 1996-12-05 1996-12-05 Temperature measuring device Expired - Fee Related JP3375260B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32528696A JP3375260B2 (en) 1996-12-05 1996-12-05 Temperature measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32528696A JP3375260B2 (en) 1996-12-05 1996-12-05 Temperature measuring device

Publications (2)

Publication Number Publication Date
JPH10170351A JPH10170351A (en) 1998-06-26
JP3375260B2 true JP3375260B2 (en) 2003-02-10

Family

ID=18175127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32528696A Expired - Fee Related JP3375260B2 (en) 1996-12-05 1996-12-05 Temperature measuring device

Country Status (1)

Country Link
JP (1) JP3375260B2 (en)

Also Published As

Publication number Publication date
JPH10170351A (en) 1998-06-26

Similar Documents

Publication Publication Date Title
US8602645B2 (en) Temperature detection system
TWI403704B (en) Circuit, method and electronic system for temperature detection
CN107314830B (en) Equipment for correcting temperature measurement signal
US8326568B2 (en) Temperature sensor and temperature sensing method
JP2003240620A (en) Gas flow measuring device
JP2021508817A (en) Shunt resistor current value correction system and method
JP3375260B2 (en) Temperature measuring device
JPS5877630A (en) Temperature measuring device
US10320039B2 (en) Semiconductor device, battery monitoring system, and method of monitoring battery
JP2012208055A (en) Battery temperature detecting device
JP5482694B2 (en) Power converter
JPH06242044A (en) Environment sensor
JP5814884B2 (en) Thermal flow measurement device and control device using the same
JP2018021883A (en) Current sensor and method for detecting overheat of current sensor
JP6549235B2 (en) Air flow meter
JP2001174304A (en) Sensor with built-in arithmetic device
JP2018105888A (en) Semiconductor device and battery monitoring system
JP3715983B2 (en) Environmental measurement equipment
KR100347008B1 (en) Vibration indicator with a hybrid sensor for sensing vibration and temperature
JP3519464B2 (en) Heat detector
JPH0545235A (en) Temperature sensing device
CN115482560A (en) Capacitive fingerprint sensor and temperature drift calibration circuit thereof
JPH1096675A (en) Circuit and method for temperature compensation
JPH0674833A (en) Temperature detecting circuit
JPS5842938A (en) Temperature measuring device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081129

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081129

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091129

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees