JP3374939B2 - Dilution degree measuring device by dilution method and its measuring method - Google Patents

Dilution degree measuring device by dilution method and its measuring method

Info

Publication number
JP3374939B2
JP3374939B2 JP00890894A JP890894A JP3374939B2 JP 3374939 B2 JP3374939 B2 JP 3374939B2 JP 00890894 A JP00890894 A JP 00890894A JP 890894 A JP890894 A JP 890894A JP 3374939 B2 JP3374939 B2 JP 3374939B2
Authority
JP
Japan
Prior art keywords
sample
dilution
pure water
cell
coloring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00890894A
Other languages
Japanese (ja)
Other versions
JPH07218497A (en
Inventor
博 丸山
久孝 向
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto Electronics Manufacturing Co Ltd
Original Assignee
Kyoto Electronics Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto Electronics Manufacturing Co Ltd filed Critical Kyoto Electronics Manufacturing Co Ltd
Priority to JP00890894A priority Critical patent/JP3374939B2/en
Publication of JPH07218497A publication Critical patent/JPH07218497A/en
Application granted granted Critical
Publication of JP3374939B2 publication Critical patent/JP3374939B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Sampling And Sample Adjustment (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば下水処理排水や
工場排水の水質管理に使用される着色度測定装置に関
し、特に希釈法による着色度測定装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a coloring degree measuring device used for controlling the water quality of, for example, sewage treatment wastewater and industrial wastewater, and more particularly to a coloring degree measuring apparatus using a dilution method.

【0002】[0002]

【従来の技術】下水処理排水や工場排水の水質を表す指
標のひとつである着色度は、該排水に含有された不純物
の種類を問わず、該排水の色づきの“レベル”もしくは
“強さ”を示すものであり、例えば重金属イオンやその
他の物質の濃度のように客観的なデータとして測定され
難い側面があるところから、従来より官能測定法によっ
て求められていた。
2. Description of the Related Art The degree of coloring, which is one of the indicators of the water quality of sewage treatment wastewater and factory wastewater, is the "level" or "strength" of the coloring of the wastewater, regardless of the type of impurities contained in the wastewater. Since it is difficult to measure it as objective data such as the concentration of heavy metal ions and other substances, it has been conventionally obtained by a sensory measurement method.

【0003】上記官能測定法としては、色度法(比色
法)、色汚染度法、希釈法等がある。このうち色
度法は長年にわたって下水処理排水の水質管理に採用さ
れてきたものであり、試料と段階的に調製された色度標
準液とを肉眼にて比較して、該試料に一致する色を呈す
る色度標準液の白金濃度及びコバルト濃度に応じて色度
を算出する方法であり、純水1lに対し白金1mg及びコ
バルト0.5mgが溶存した呈色に相当する場合を着色度
1度として算出される。
As the above-mentioned sensory measurement method, there are a chromaticity method (colorimetric method), a color contamination degree method, a dilution method and the like. Of these, the chromaticity method has been used for many years to control the water quality of sewage treatment effluent, and the sample and the chromaticity standard solution prepared in stages are compared with the naked eye, and the color matching the sample Is a method of calculating the chromaticity according to the platinum concentration and cobalt concentration of the chromaticity standard solution. When 1 mg of platinum and 0.5 mg of cobalt are dissolved in 1 liter of pure water, the coloring degree is 1 degree. Is calculated as

【0004】また、色汚染度法は、川崎市公害防止条
例に規定された方法であり、排水の呈する色を色相、明
度、彩度の3属性に分離し、このうち明度と彩度とに着
目して相当する標準色票(JIS Z8721 )の番号を下記の
算式(1) に代入して色汚染度として算出する方法であ
る。
The color pollution degree method is a method specified in the Kawasaki City Pollution Control Ordinance and separates the color of the wastewater into three attributes of hue, lightness, and saturation. This is a method of calculating the color pollution degree by substituting the corresponding standard color chart (JIS Z8721) number into the following formula (1).

【0005】 色汚染度=3(Vb −Vs )+Cs −Cb …(1) 但し、Vb:空試験(純水)の明度、Vs:試料の明度、C
b:空試験の彩度、Cs:試料の彩度。
Color pollution degree = 3 (Vb-Vs) + Cs-Cb (1) where Vb: lightness of blank test (pure water), Vs: lightness of sample, C
b: Saturation of blank test, Cs: Saturation of sample.

【0006】さらに希釈法は近年、東京都環境科学研
究所水質部三好康彦、西井戸敏夫両氏らによって提案さ
れたものであり、試料を純水にて順次規定の倍数比(例
えば10倍)で希釈し、標準色(純水)と比較し、試料
の色と標準色との間で区別の可能な最大の希釈倍数a1
と、該区別の不能な最小の希釈倍数a2 を決定し、下記
算式(2) に代入して着色度の常用対数値Ca を算出する
ものである。
Further, the dilution method was proposed by Yasuhiko Miyoshi, Toshio Nishiido, etc., Department of Water Quality, Institute of Environmental Science, Tokyo in recent years, and samples were successively purified with pure water at prescribed multiple ratios (for example, 10 times). Diluted and compared with the standard color (pure water), and the maximum dilution factor a 1 that can distinguish between the sample color and the standard color
Then, the minimum dilution factor a 2 that cannot be distinguished is determined and substituted into the following formula (2) to calculate the common logarithmic value Ca of the coloring degree.

【0007】 Ca =〔log(a1)+log(a2)〕/2 …(2) 上記常用対数値Ca を算出するまでの官能測定作業は5
人のモニタによって独立して行われ、最大値と最小値と
を除いた残る3者の値の相加平均値Cm より、試料の着
色度Cは10Cmとして決定される。
Ca = [log (a 1 ) + log (a 2 )] / 2 (2) The sensory measurement work until the above common logarithmic value Ca is calculated is 5
The coloring degree C of the sample is determined as 10 Cm from the arithmetic mean value Cm of the remaining three values excluding the maximum value and the minimum value, which is independently performed by a human monitor.

【0008】このように上記希釈法によって示される着
色度は試料を希釈していくに従って色相・彩度は認識で
きなくなるまで低下し、その明度を中心に比較判定する
ので異なった色相や彩度の試料相互での着色度の比較が
可能であり、また該着色度と同数の希釈倍率で希釈する
ことによって着色が見えなくなることを示しており、直
観的に着色の程度を捉えやすい利点がある。
As described above, as the sample is diluted, the coloring degree shown by the above-mentioned dilution method decreases until the hue / saturation becomes unrecognizable. Since the comparison is made mainly on the basis of the lightness, different hues and saturations are obtained. It is possible to compare the degree of coloring among the samples, and it is shown that the coloring becomes invisible by diluting with the same number of dilution ratios as the degree of coloring, which is an advantage that the degree of coloring can be grasped intuitively.

【0009】以上のようなモニタの感覚(視覚)に基づ
いた官能測定法に代わり、試料の透過光の分光光度分布
を測定する光学機器(分光光度計)を使用した機器測定
法も実施されている。この機器測定法は、例えば塩素濃
度や重金属濃度等の他のデータを測定する機器と組み合
わせて自動化システムを構築することが可能であるとと
もに、該測定に要する人件費を削減することができる利
点がある。
Instead of the sensory measurement method based on the sense (visual sense) of the monitor as described above, an instrument measurement method using an optical instrument (spectrophotometer) for measuring the spectrophotometric distribution of the transmitted light of the sample is also carried out. There is. This device measurement method has the advantage that it is possible to build an automated system by combining it with a device that measures other data such as chlorine concentration or heavy metal concentration, and at the same time, it is possible to reduce the labor cost required for the measurement. is there.

【0010】この機器測定法によれば、上記光学機器
(分光光度計)から出力される測定データに基づいて、
例えば下記のようにして算出される指標が着色度として
採用されている。
According to this instrument measuring method, based on the measurement data output from the above optical instrument (spectrophotometer),
For example, the index calculated as follows is adopted as the coloring degree.

【0011】すなわち、第1の指標として上記測定デー
タより下記算式(3) に基づいて、3刺激値(X,Y,
Z)を求め、このうちの刺激値Yを採用する一方、上記
3刺激値(X,Y,Z)より下記算式(4) によって導き
出される色度座標値xyに基づいて「2度視野XYZ系
による色度図」より求められる刺激純度及び主波長の合
計3つの数値を着色度を示す指標値として採用するもの
である。
That is, as the first index, the tristimulus values (X, Y,
Z) is obtained, and the stimulus value Y of these is adopted. On the other hand, based on the chromaticity coordinate value xy derived from the above-mentioned three stimulus values (X, Y, Z) by the following formula (4), the “2 degree visual field XYZ system” is obtained. A total of three numerical values, i.e., the stimulus purity and the dominant wavelength, which are obtained from the "chromaticity diagram according to the present invention" are adopted as index values indicating the degree of coloring.

【0012】[0012]

【数1】 [Equation 1]

【0013】また着色度を示す他の指標として、上記求
められた試料及び基標となる純水の各透過光の3刺激値
X,Y,Zに基づいて下記算式(5) で示す変換によって
3刺激値(L* ,a* ,b* )を各々算出し、両者の各
刺激値の差分(ΔL* ,Δa * ,Δb* )を取り、下記
算式(6) で算出される色差ΔEを採用する方法がある。
As another index showing the degree of coloring, the above
Tristimulus value of each transmitted light of the sample and the pure water used as a standard
By the conversion shown in the following formula (5) based on X, Y, Z
Tristimulus value (L*, A*, B*) Is calculated for each
Difference of stimulation value (ΔL*, Δa *, Δb*), And below
There is a method of adopting the color difference ΔE calculated by the formula (6).

【0014】[0014]

【数2】 尚、上記Xn ,Yn ,Zn は照明に用いた標準光の3刺
激値である。さらに他の指標として、溶解物質に応じて
選択される所定波長での試料の光透過率をそのまま着色
度として採用することも行われている。
[Equation 2] The above X n , Y n , and Z n are tristimulus values of standard light used for illumination. As another index, the light transmittance of the sample at a predetermined wavelength selected according to the dissolved substance is directly adopted as the degree of coloring.

【0015】[0015]

【発明が解決しようとする課題】以上のように着色度の
指標として様々な数値が採用されているが、一般に下記
の各条件に適合することが望まれている。
As described above, various numerical values are adopted as the index of the coloring degree, but it is generally desired to meet the following conditions.

【0016】すなわち、(a) 異なる色相の排水間でも比
較が可能であること、(b) 測定結果の表示が人の視覚に
よる印象と概ね一致すること、(c) 測定が簡単でコスト
のかかからないこと、(d) 数値で表現できること、(e)
個人差が少なく測定に再現性があること、(f) 溶解性物
質だけでなくコロイド性物質や懸濁性物質の呈する色に
ついても測定が可能であること。
[0016] That is, (a) it is possible to compare drainages of different hues, (b) the display of the measurement results roughly matches the visual impression of the human being, (c) the measurement is simple and inexpensive. That (d) can be expressed numerically, (e)
There are few differences among individuals and the measurement is reproducible. (F) It is possible to measure not only soluble substances but also colors exhibited by colloidal substances and suspending substances.

【0017】しかしながら、上記いずれの官能測定法に
おいても同一の測定対象について測定者(モニタ)が異
なれば導き出される着色度にばらつきが生じることは不
可避であり、上記条件(e) を完全に満足するには到らな
い。従って、上記着色度の再現性及び安定性を確保する
ためには、例えばモニタの選定にあたって事前に色覚テ
ストを行ったり、複数のモニタによる数値を平均化する
等の適正化のための作業が必要があり(上記希釈法の
測定要領参照)、人件費の高騰する昨今では該測定に要
するコストが嵩むことになり、上記条件(c) と(e) とを
同時に満足することができない。
However, in any of the sensory measurement methods described above, it is inevitable that the degree of coloring derived will vary if the measurer (monitor) is different for the same measurement object, and the above condition (e) is completely satisfied. Can't reach Therefore, in order to ensure the reproducibility and stability of the above-mentioned coloring degree, it is necessary to perform a color vision test in advance when selecting a monitor, and to perform an appropriate work such as averaging the numerical values of a plurality of monitors. However, due to the recent increase in labor costs, the cost required for the measurement increases, and the above conditions (c) and (e) cannot be satisfied at the same time.

【0018】さらに、官能測定法は各個別の測定作業そ
のものは熟練したモニタによれば比較的短時間で完了す
るので、充分な時間間隔をおいて測定しても差し支えの
ない程度に水質の変化が緩慢な場合には適当な測定方法
であるが、上記排水の水質の変化が急激でほとんど連続
的に監視する必要のある場合、その間拘束されるモニタ
の負担は過大になるとともに、コストも増大し、実現は
事実上不可能である。
Further, in the sensory measuring method, each individual measuring operation itself is completed in a relatively short time by a skilled monitor, so that the water quality change to such an extent that there is no problem even if the measuring is performed at sufficient time intervals. This is an appropriate measurement method when the water temperature is slow, but when changes in the water quality of the above wastewater are rapid and need to be monitored almost continuously, the burden on the monitor that is bound during that time becomes excessive and the cost also increases. However, realization is virtually impossible.

【0019】また上記官能測定法のうち色度法は、そ
もそも土中に存在するフミン質が水に溶解したときに呈
する類黄色乃至黄褐色の程度を測定するために開発され
たものであり、例えば染色工場からの排水のように様々
な色相に変化する場合には、上記フミン質水溶液の呈す
る色とは異なる色相の排水に対して色度の特定が困難で
あり、上記条件(a) に適合しない難点がある。
The chromaticity method among the sensory measurement methods was developed to measure the degree of yellowish to yellowish brown color which is exhibited when the humic substance existing in soil is dissolved in water. For example, when changing to various hues such as wastewater from a dyeing factory, it is difficult to specify the chromaticity for wastewater having a hue different from the color exhibited by the humic aqueous solution, and the above condition (a) There are difficulties that do not fit.

【0020】さらに上記色汚染度法によって示される
色汚染度は色彩学的には根拠があるものの、人の視覚と
は無関係の数値で表示されるため、該排水の着色の程度
が直観的に把握され難く、上記条件(d) を満足しない。
Furthermore, although the degree of color contamination indicated by the above-mentioned color contamination method is chromatically grounded, since it is displayed as a numerical value unrelated to human vision, the degree of coloring of the wastewater can be intuitively determined. It is difficult to understand and does not satisfy the above condition (d).

【0021】さらに上記機器測定法は、上記条件(c) 〜
(e) を完全に満足するものの、着色度の指標としての刺
激値Y、主波長及び刺激純度や、色差ΔEを採用した場
合には、これらは色彩学的には根拠のある数値ではある
ものの、上記官能測定法における色汚染度法の場合と同
様、上記数値に基づいて肉眼で確認される試料の色や濃
度を直観的に窺い知ることはできず、上記条件(d) を満
足しない難点がある。
Further, the above-mentioned instrument measuring method is based on the above condition (c)
Although (e) is completely satisfied, when the stimulus value Y as the index of the coloring degree, the dominant wavelength and the stimulus purity, and the color difference ΔE are adopted, these are chromatically valid values. , As in the case of the color contamination degree method in the sensory measurement method, it is not possible to intuitively know the color and concentration of the sample confirmed by the naked eye based on the above numerical values, and the above condition (d) is not satisfied. There is.

【0022】また機器測定法のうち試料の光透過率を着
色度の指標とする場合、色相の異なる試料相互では着色
程度を本質的に比較することはできず、上記条件(a) を
満足することができない。
In the instrumental measurement method, when the light transmittance of the sample is used as an index of the degree of coloring, it is essentially impossible to compare the degree of coloring between samples having different hues, and the above condition (a) is satisfied. I can't.

【0023】さらに上記光透過率を着色度の指標として
用いると、下記のように同一の試料に対する測定結果に
矛盾が生じる。すなわち、例えば赤の染料は人の視覚に
最も敏感な色であり、この赤の染料が溶解した試料に緑
の染料を少量添加すると、該赤の色相は減少して紫に近
い色となる。ところが赤の染料の吸収ピークに相当する
波長における光透過率には変化がなく、また緑の染料の
吸収ピークにおける波長での光透過率をも斟酌すると該
光透過率は低下することになる。
Further, when the above-mentioned light transmittance is used as an index of the coloring degree, the measurement results for the same sample are inconsistent as described below. That is, for example, the red dye is the color most sensitive to human vision, and when a small amount of the green dye is added to a sample in which the red dye is dissolved, the red hue decreases and becomes a color close to purple. However, there is no change in the light transmittance at the wavelength corresponding to the absorption peak of the red dye, and if the light transmittance at the wavelength at the absorption peak of the green dye is taken into consideration, the light transmittance will decrease.

【0024】また、上記紫に近い色となった試料の着色
度を官能測定法のうち、例えば希釈法にて測定すると、
人に敏感な赤色が人に視覚され難い紫色になったために
着色度は大幅に低下するという、上記光透過率とは矛盾
した結果が表れることとなる。
When the coloring degree of the sample having a color close to purple is measured by a sensory measurement method, for example, a dilution method,
This results in a result inconsistent with the above-mentioned light transmittance, in which the red color, which is sensitive to humans, becomes purple, which is difficult for humans to see, and thus the degree of coloring is significantly reduced.

【0025】その上、試料の着色の程度が著しく大きい
場合には適当に試料を希釈して測定がなされるが、該希
釈後の試料の希釈倍率で光透過率を除算すると該借り透
過率が極めて小さくなり(例えば10-4%オーダー)、
感覚的に理解し難い結果がでることがある。
In addition, when the degree of coloring of the sample is extremely large, the sample is appropriately diluted for measurement. When the light transmittance is divided by the dilution ratio of the sample after the dilution, the borrowed transmittance is Very small (eg 10 -4 % order),
The result may be difficult to understand perceptually.

【0026】さらに上記機器測定法で用いられる分光光
度計等の光学機器においては、測定される試料を収納す
る測定セルが該試料に含有される不純物によって汚れが
進み、測定誤差を生じる恐れがあり、該測定セルをこま
めに洗浄したり交換する等の煩瑣なメンテナンスが必要
である。
Further, in an optical instrument such as a spectrophotometer used in the above instrument measuring method, a measurement cell for accommodating a sample to be measured may be contaminated by impurities contained in the sample, resulting in a measurement error. However, complicated maintenance such as frequent cleaning and replacement of the measuring cell is required.

【0027】この発明は上記従来の事情に鑑み提案され
たものであって、上記官能測定法による希釈法の長所を
採り入れ、しかもメンテナンスも容易で、水質管理の自
動化も可能な着色度測定装置とその装置による着色度測
定方法を提供することを目的とするものである。
The present invention has been proposed in view of the above-mentioned conventional circumstances, and adopts the advantages of the dilution method by the above-mentioned sensory measurement method, is easy to maintain, and is a coloring degree measuring apparatus capable of automating water quality management. It is an object of the present invention to provide a method for measuring the degree of coloring with the device.

【0028】[0028]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明は以下の手段を採用する。すなわち、図1
に示すように、純水Wで希釈された試料Sを被検液Mと
し、該被検液Mの透過光量と該被検液Mにおける上記試
料Sの希釈倍率とに基づいて試料Sの着色度を測定する
ようにした構成であって、上記被検液Mを収容する測定
セル11、該測定セル11に光を照射する光源12及び
上記測定セル11の透過光量を検出する光検出素子13
で構成される透過光量測定部1と、上記測定セル11内
あるいは測定セル11の上流側の所定箇所において相互
に独立する試料流路Ps と純水流路Pw とを合流させた
供給路Pin及び測定セル11の下流側において上記被検
液Mを排出する排出路Pout で構成される被検液給排路
Pと、上記純水流路Pw に配置された希釈ポンプ21及
び上記被検液給排路Pのうち少なくとも上記試料流路P
s と純水流路Pw との合流箇所よりも下流側の所定位置
に配置された排出ポンプ22で構成される給排ポンプ機
構2とを備える希釈法による着色度測定装置である。
In order to achieve the above object, the present invention employs the following means. That is, FIG.
As shown in FIG. 3, a sample S diluted with pure water W is used as a test solution M, and the color of the sample S is colored based on the amount of transmitted light of the test solution M and the dilution ratio of the sample S in the test solution M. And a light detecting element 13 for detecting the amount of light transmitted through the measuring cell 11, a light source 12 for irradiating the measuring cell 11 with light, and a measuring cell 11 for measuring the degree of light.
And a supply path P in in which a sample flow path Ps and a pure water flow path Pw, which are independent of each other, are joined at a predetermined position in the measurement cell 11 or on the upstream side of the measurement cell 11, the test liquid discharge channel and the sample liquid supply and discharge passage P constituted by P out, the pure water passage disposed Pw was diluted pump 21 and the test liquid for discharging the M downstream of the measurement cell 11 sheet At least the sample flow path P among the discharge paths P
The coloring degree measuring apparatus by the dilution method is provided with a supply / discharge pump mechanism 2 including a discharge pump 22 arranged at a predetermined position on the downstream side of the confluence of s and the pure water flow path Pw.

【0029】また図2に示すように、上記純水流路Pw
に形成され、上記測定セル11と共通の光源12からの
光が照射されるように配置された対照セル14と、該対
照セル14の透過光量を検出する光検出素子15とを、
上記図1に示す構成における透過光量測定部1に付加し
た希釈法による着色度測定装置である。
Further, as shown in FIG. 2, the pure water flow path Pw.
A control cell 14 formed so as to irradiate light from a light source 12 common to the measurement cell 11 and a photodetector element 15 for detecting the amount of transmitted light of the control cell 14,
This is a coloring degree measuring device by the dilution method added to the transmitted light amount measuring unit 1 in the configuration shown in FIG.

【0030】また、上記光検出素子13,15の分光感
度特性は、標準比視感度特性に近似させるようにすると
望ましい。さらに、上記透過光量測定部1からの出力に
基づいて、上記希釈ポンプ21・排出ポンプ22間の流
量差ΔFを制御する流量制御部31と、該流量差ΔFに
基づいて被検液Mにおける試料Sの希釈倍率Dを算出す
る希釈倍率演算部32とを備える制御手段3を付加する
ことも可能である。
Further, it is desirable that the spectral sensitivity characteristics of the photo-detecting elements 13 and 15 are approximated to the standard relative luminous efficiency characteristics. Further, based on the output from the transmitted light amount measuring unit 1, a flow rate control unit 31 that controls a flow rate difference ΔF between the dilution pump 21 and the discharge pump 22, and a sample in the test liquid M based on the flow rate difference ΔF. It is also possible to add the control means 3 including the dilution ratio calculator 32 that calculates the dilution ratio D of S.

【0031】上記図1に示す装置を使用した第1の測定
方法としては、上記排出ポンプ22の流量FM より希釈
ポンプ21の流量FW を減算した流量差ΔFを零もしく
は零よりも小さくしたときの光検出素子13の出力T0
と、上記流量差ΔFを漸増させたときの光検出素子13
の出力T1 とを比較し、両出力T0 ,T1 間の変位量Δ
tが所定の基準値Ta に達したときの流量差ΔF1 に基
づいて被検液Mにおける試料Sの希釈倍率Dを算出する
ようにする。
As a first measuring method using the apparatus shown in FIG. 1, the flow rate difference ΔF obtained by subtracting the flow rate F W of the dilution pump 21 from the flow rate F M of the discharge pump 22 is set to zero or smaller than zero. Output T 0 of the photodetector 13
And the photodetector element 13 when the flow rate difference ΔF is gradually increased.
Of the output T 1 and the displacement Δ between the outputs T 0 and T 1.
The dilution ratio D of the sample S in the test liquid M is calculated based on the flow rate difference ΔF 1 when t reaches the predetermined reference value Ta.

【0032】上記図2に示す装置を使用した測定方法と
しては、上記排出ポンプ22の流量FM より希釈ポンプ
21の流量FW を減算した流量差ΔFを零より漸増させ
たときの上記2基の光検出素子13,15の各出力間の
差Δtが所定の基準値ta に達したときの上記希釈ポン
プ21・排出ポンプ22間の流量差ΔF1 に基づいて被
検液Mにおける試料Sの希釈倍率(D) を算出するように
する。
As a measuring method using the apparatus shown in FIG. 2, the two flow rate differences ΔF obtained by subtracting the flow rate F W of the dilution pump 21 from the flow rate F M of the discharge pump 22 are gradually increased from zero. Of the sample S in the test liquid M based on the flow rate difference ΔF 1 between the dilution pump 21 and the discharge pump 22 when the difference Δt between the outputs of the photodetector elements 13 and 15 reaches a predetermined reference value ta. Be sure to calculate the dilution factor (D).

【0033】[0033]

【作用】上記図1及び図2に示す構成によれば、希釈ポ
ンプ21の流量(以下FW とする)を排出ポンプ22の
流量(以下FM とする)よりも小さくすることにより、
上記試料流路PS を測定セル11に向かって流れる試料
Sの流量FS は両流量F W ,FM 間の流量差ΔF(=F
M −FW )に相当することになる。
According to the structure shown in FIGS. 1 and 2, the dilution po
Flow rate of pump 21 (hereinafter FWOf the discharge pump 22
Flow rate (hereinafter FMBy setting it smaller than
The sample flow path PSSample flowing toward the measuring cell 11
Flow rate F of SSIs both flow rate F W, FMFlow rate difference ΔF (= F
M-FW) Will be equivalent to.

【0034】これによって測定セル11内の被検液Mは
上記純水W、試料Sの各流量FW ,FS の比に等しい割
合で混合される。従って、被検液Mにおける試料Sの希
釈倍率Dは上記ポンプ流量FW を試料Sの流量FS で除
算した値であるから、これをポンプ流量FW ,FM で表
すと、下記算式(A) に示すような流量FW ,FM による
2変数関数として表現され、例えば排出ポンプ22の流
量FM を一定とする一方、希釈ポンプ21の流量FW
変化させることにより上記希釈倍率Dを任意の値に調整
することができる。
As a result, the test liquid M in the measuring cell 11 is mixed at a ratio equal to the ratio of the flow rates F W and F S of the pure water W and the sample S. Therefore, since the dilution ratio D of the sample S in the test liquid M is a value obtained by dividing the pump flow rate F W by the flow rate F S of the sample S, this can be expressed by the pump flow rates F W and F M as follows: It is expressed as a two-variable function by the flow rates F W and F M as shown in A). For example, while the flow rate F M of the discharge pump 22 is made constant, while changing the flow rate F W of the dilution pump 21, the dilution ratio D Can be adjusted to any value.

【0035】D=FW /(FM −FW ) …(A) 尚、上記流量差ΔFを零よりも小さくした場合には、一
部の純水Wは試料流路Ps を逆流することになるが、試
料Sと混合しさえしなければ下記のようにして行われる
測定の妨げとなることがない。むしろ、純水Wを測定セ
ル1に供給しつつ試料流路Ps を洗浄することができる
という作用を奏する。
[0035] D = F W / (F M -F W) ... (A) In addition, when less than zero the flow rate difference ΔF is part of the pure water W is to flow back through the sample flow path Ps However, if it is not mixed with the sample S, it does not interfere with the measurement performed as described below. Rather, the sample channel Ps can be cleaned while supplying the pure water W to the measuring cell 1.

【0036】図1に示す構成の装置を用いた第1の着色
度測定方法は、まず上記ポンプ流量FW ,FM 間の流量
差ΔFを零として測定セル11に純水Wだけを供給し、
この状態における光検出素子13の出力T0 を基標とし
て採用する。次いで上記流量差ΔF(但しFW <FM
を漸増させると、これ以降の光検出素子13の出力T 1
は上記基標となる出力T0 から次第に低下し、該出力T
0 からの変位量Δtが基準値Ta に達した時点での各ポ
ンプ流量FW ,FM を上記算式(A) に代入して算出され
る希釈倍率Dがそのまま着色度として採用される。
First coloring using the apparatus having the configuration shown in FIG.
First, the pump flow rate FW, FMFlow rate between
Only the pure water W is supplied to the measuring cell 11 with the difference ΔF set to zero,
The output T of the photodetector element 13 in this state0Based on
To adopt. Next, the flow rate difference ΔF (however, FW<FM)
Is gradually increased, the output T of the photodetector element 13 thereafter is increased. 1
Is the output T that is the above-mentioned standard0Gradually decreases from the output T
0When the amount of displacement Δt from reaches the reference value Ta,
Pump flow rate FW, FMIs calculated by substituting
The dilution ratio D is used as it is as the coloring degree.

【0037】上記第1の測定方法において、基準値Ta
は被検液Mにおける試料Sの希釈倍率Dを直ちに着色度
として採用するために制御手段5に予め設定されるもの
であり、これによって官能測定による希釈法においては
モニタの視覚に依存していた被検液Mと純水Wとの判別
の可否判断を上記光検出素子13の出力に委ねることが
できる。
In the above first measuring method, the reference value Ta
Is preset in the control means 5 in order to immediately adopt the dilution ratio D of the sample S in the test liquid M as the coloring degree, whereby the dilution method by sensory measurement depends on the visual sense of the monitor. Whether or not the test liquid M and the pure water W can be discriminated can be entrusted to the output of the photodetection element 13.

【0038】従って、上記基準値Ta が、例えば適当な
値よりも低いレベルでは同じ試料Sに対して従来の官能
測定による希釈法より算出された着色度よりも高いレベ
ルで着色度が算出され、逆に高いレベルに設定されると
低い値が算出されることになる。そこで、適当なレベル
の基準値Ta を設定するためには、例えば官能測定によ
る希釈法におけるモニタの視覚によって純水との間で識
別が不能と認定された希釈倍率の試料を上記測定セル1
1に収容させ、このときの透過光量測定部1からの出力
レベルを参考に複数の測定を行うようにする等、帰納的
に決定される。
Therefore, when the reference value Ta is lower than, for example, an appropriate value, the coloring degree is calculated for the same sample S at a level higher than the coloring degree calculated by the conventional dilution method by sensory measurement. Conversely, when the level is set to a high level, a low value will be calculated. Therefore, in order to set the reference value Ta at an appropriate level, for example, a sample having a dilution ratio, which is recognized as indistinguishable from pure water by visual inspection of a monitor in a dilution method by sensory measurement, is used as the measurement cell 1 above.
No. 1 is set, and a plurality of measurements are performed with reference to the output level from the transmitted light amount measuring unit 1 at this time.

【0039】さらに図2に示す構成の装置では上記流量
M ,FW に関わらず対照セル14には常に純水Wだけ
が流入するので、該対照セル14に対応する光検出素子
15の出力がそのまま上記第1の測定方法における基標
0 に相当することになり、着色度の出力に到るまでの
流量の調整手順を簡略化できると同時に経時的に純水W
自体の純度が低下し、極微に着色しても保障される利点
がある。
Further, in the apparatus having the structure shown in FIG. 2, only pure water W always flows into the reference cell 14 regardless of the flow rates F M and F W , so that the output of the photodetection element 15 corresponding to the reference cell 14 is output. Corresponds to the standard T 0 in the first measurement method as it is, and the procedure of adjusting the flow rate until the output of the coloring degree is simplified, and at the same time, the pure water W is changed over time.
There is an advantage that the purity of the product itself decreases and even if it is colored extremely, it is guaranteed.

【0040】上記構成において使用される光検出素子1
3,15は、あらゆる色の試料Sの着色度が測定できる
ように少なくとも可視波長全域をカバーする分光感度特
性を備えることが望ましく、さらに図3に示すように、
標準比視感度特性に近似した分光感度特性を備えるよう
にすることで肉眼による測定に準じた値の出力が得られ
ることとなる。
Photodetector 1 used in the above-mentioned structure
3, 15 preferably have a spectral sensitivity characteristic that covers at least the entire visible wavelength range so that the degree of coloring of the sample S of any color can be measured, and as shown in FIG.
By providing the spectral sensitivity characteristic close to the standard relative luminous efficiency characteristic, the output of the value according to the measurement by the naked eye can be obtained.

【0041】[0041]

【実施例】図1は本発明に係る着色度測定装置の構成図
である。図1に示すように、測定対象となる被検液Mを
収容する測定セル11と、該測定セル11の一面に対向
する位置に配置され、該測定セル11に対して光を照射
する光源12と、上記測定セル11に関して光源12と
反対側に配置され、該測定セル11を透過する光の光量
を検出する光検出素子13とよりなる透過光量測定部1
を備える。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a block diagram of a coloring degree measuring apparatus according to the present invention. As shown in FIG. 1, a measurement cell 11 containing a test liquid M to be measured, and a light source 12 arranged at a position facing one surface of the measurement cell 11 and irradiating the measurement cell 11 with light. And a transmitted light quantity measuring unit 1 including a photodetector 13 arranged on the opposite side of the measurement cell 11 from the light source 12 and detecting the quantity of light transmitted through the measurement cell 11.
Equipped with.

【0042】また上記測定セル11に接続される被検液
給排路Pは、該測定セル11の上流側の所定箇所におい
て相互に独立する試料流路PS と純水流路PW とを合流
させた供給路Pinと測定セル11下流側において該測定
セル11内の被検液Mを排出する排出路Pout とで構成
される。尚、上記試料流路PS と純水流路PW とは測定
セル11において合流する構成としてもよい。
The test liquid supply / discharge path P connected to the measurement cell 11 joins the sample flow path P S and the pure water flow path P W , which are independent of each other, at a predetermined position on the upstream side of the measurement cell 11. The supply path P in and the discharge path P out for discharging the test liquid M in the measurement cell 11 on the downstream side of the measurement cell 11 are configured. The sample flow path P S and the pure water flow path P W may be merged in the measurement cell 11.

【0043】さらに上記被検液給排路Pに純水W及び試
料Sを流通させるための給排ポンプ機構2は、上記純水
流路PW に配置される希釈ポンプ21及び排出路Pout
に配置される排出ポンプ22とで構成され、該希釈ポン
プ21、排出ポンプ22の各流量FW ,FM は後述する
構成の制御手段5によって上記透過光量測定部1からの
出力Tに応じて制御されるようにしている。尚、上記排
出ポンプ22は少なくとも試料流路PS と純水流路PW
との合流箇所よりも下流側にさえ配置されれば(すなわ
ち供給路Pinと測定セル11との間、または図示のよう
な測定セル11と排出路Pout との間)、後述する被検
液Mにおける試料Sの希釈倍率の調整操作が可能であ
る。
Further, the supply / discharge pump mechanism 2 for circulating the pure water W and the sample S through the test liquid supply / discharge path P has a dilution pump 21 arranged in the pure water flow path P W and a discharge path P out.
Of the dilution pump 21 and the discharge pump 22. The flow rates F W and F M of the dilution pump 21 and the discharge pump 22 are controlled by the control means 5 which will be described later according to the output T from the transmitted light amount measuring unit 1. I'm trying to be controlled. The discharge pump 22 has at least the sample flow path P S and the pure water flow path P W.
As long as it is arranged on the downstream side of the confluence point with (that is, between the supply path P in and the measurement cell 11 or between the measurement cell 11 and the discharge path P out as shown in the drawing), the test object described later It is possible to adjust the dilution ratio of the sample S in the liquid M.

【0044】以上のような構成の着色度測定装置におい
て、測定セル11内の被検液Mに於ける試料の希釈倍率
Dの調整は、上記希釈ポンプ21の流量Fw を排出ポン
プ22の流量FM よりも小さい範囲で該流量Fw ,FM
の内の少なくともいずれか一方を調整することによって
なされる。
In the coloring degree measuring apparatus having the above-mentioned structure, the sample dilution ratio D of the sample liquid M in the measuring cell 11 is adjusted by adjusting the flow rate Fw of the dilution pump 21 to the flow rate F of the discharge pump 22. the flow rate Fw in the range smaller than M, F M
It is made by adjusting at least one of the above.

【0045】すなわち、上記希釈ポンプ21の流量Fw
が排出ポンプ22の流量FM よりも小さい状態では、測
定セル11に純水Wが該流量Fw で供給されるととも
に、試料Sが流量FM より流量Fw を減算した流量差Δ
F(=FS )で供給され、これによって測定セル11内
の被検液Mは、上記流量FW と流量FS との比率に等し
い割合で純水Wと試料Sとの混合されることになる。こ
れによって被検液Mにおける試料Sの希釈倍率Dは上記
ポンプ流量FW を試料Sの流量FS で除算した値である
から、希釈倍率Dを流量FW ,FM で表すと、下記算式
(A) に示すような流量FW ,FM による2変数関数とし
て表現され、例えば排出ポンプ22の流量FM を一定と
する一方、希釈ポンプ21の流量FW を変化させること
により上記希釈倍率Dを任意の値に調整することができ
る。
That is, the flow rate Fw of the dilution pump 21.
Is smaller than the flow rate F M of the discharge pump 22, pure water W is supplied to the measuring cell 11 at the flow rate Fw, and the sample S has a flow rate difference Δ obtained by subtracting the flow rate Fw from the flow rate F M.
F (= F S ), so that the test liquid M in the measurement cell 11 is mixed with the pure water W and the sample S at a rate equal to the ratio of the flow rate F W and the flow rate F S. become. Accordingly, the dilution ratio D of the sample S in the test liquid M is a value obtained by dividing the pump flow rate F W by the flow rate F S of the sample S. Therefore, when the dilution ratio D is represented by the flow rates F W and F M , the following formula is obtained.
It is expressed as a two-variable function by the flow rates F W and F M as shown in (A). For example, while the flow rate F M of the discharge pump 22 is kept constant, the flow rate F W of the dilution pump 21 is changed to produce the above dilution ratio. D can be adjusted to any value.

【0046】D=FW /(FM −FW ) …(A) 上記のように構成された着色度測定装置を用いて試料S
の着色度を測定するには、以下の手順を採用することが
できる。
[0046] D = F W / (F M -F W) ... (A) the sample S using the configured colored measuring apparatus as described above
The following procedure can be adopted to measure the degree of coloring.

【0047】すなわち、まず上記制御手段3における流
量制御部31からの出力に基づき、上記希釈ポンプ21
のポンプ流量FW と排出ポンプ22のポンプ流量PM
が等しくなるように制御される(このとき流量差ΔF=
M −FW =0)。この状態では試料流路PS には試料
Sが流通せず、上記光源12からの光は純水Wだけで構
成される被検液Mを満たした測定セル11を透過して光
検出素子13に到達し、このときの光検出素子13の出
力T0 を基標として採用する。
That is, first, based on the output from the flow rate control unit 31 in the control means 3, the dilution pump 21 is
Pump flow F W of the pump flow rate P M of the discharge pump 22 is controlled to be equal (this time flow differential [Delta] F =
F M -F W = 0). In this state, the sample S does not flow through the sample flow path P S , and the light from the light source 12 passes through the measurement cell 11 filled with the test liquid M composed of only pure water W and the photodetector 13 And the output T 0 of the photodetector 13 at this time is used as a reference.

【0048】尚、上記流量差ΔFを零ではなく、零より
も小さくし、純水Wを確実に測定セル11に導入するよ
うにしてもよい。この場合、該純水Wのオーバーフロー
分は試料流路Ps を逆流することになるが、試料Sとの
混合することさえ防止するようにすれば、測定に支障は
なく、むしろ試料流路Ps の洗浄が行われる利点があ
る。
The flow rate difference ΔF may be set to be not zero but smaller than zero so that the pure water W is surely introduced into the measuring cell 11. In this case, the overflow of the pure water W flows back through the sample flow path Ps, but if it is prevented from mixing with the sample S, the measurement will not be hindered, but rather the sample flow path Ps. There is an advantage that cleaning is performed.

【0049】次いで、上記排出ポンプ22のポンプ流量
M を一定値に保持する一方、希釈ポンプ21のポンプ
流量FW を漸減すると、上記流量差ΔFすなわち試料流
路P S を通じて測定セル11に供給される試料Sの流量
S は次第に増加するので、上記被検液Mの透過光量が
減少し、このときの上記光検出素子13の出力T1 は上
記基標となる出力T0 より低下する。
Next, the pump flow rate of the discharge pump 22.
FMWhile maintaining a constant value, the pump of the dilution pump 21
Flow rate FWIs gradually decreased, the flow rate difference ΔF, that is, the sample flow
Road P SFlow rate of the sample S supplied to the measuring cell 11 through
FSIs gradually increased, the transmitted light amount of the test liquid M is
The output T of the photodetector 13 at this time1Is above
Output T as a reference0Lower.

【0050】やがて、上記出力T0 ,T1 間の変位量Δ
tが、後述するようにして予め設定された基準値Ta に
達すると、その時点での上記ポンプ流量FW ,FM を上
記算式(A) に代入する演算が希釈倍率演算部32で行わ
れ、これによって算出される被検液Mにおける試料Sの
希釈倍率Dを着色度として直ちに表示手段4が表示する
ようにしている。
Eventually, the displacement Δ between the outputs T 0 and T 1
When t reaches a preset reference value Ta as will be described later, the dilution rate calculator 32 performs a calculation for substituting the pump flow rates F W and F M at that time into the formula (A). The display unit 4 immediately displays the dilution ratio D of the sample S in the test liquid M calculated as the coloring degree.

【0051】上記第1の測定方法において、基準値Ta
は被検液Mにおける試料Sの希釈倍率Dを直ちに着色度
として採用するための基準であり、該基準値Ta のレベ
ルが不適当であると従来の官能測定による希釈法より算
出された着色度との誤差が過大となる。すなわち、上記
基準値Ta が適当な値よりも低すぎると同じ試料Sに対
して従来の官能測定による希釈法より算出された着色度
よりも高い値が表示され、逆に高すぎると低い値が表示
されることになる。
In the first measuring method, the reference value Ta
Is a standard for immediately adopting the dilution ratio D of the sample S in the test liquid M as the coloring degree, and if the level of the reference value Ta is inappropriate, the coloring degree calculated by the conventional sensory dilution method The error between and becomes too large. That is, when the reference value Ta is lower than an appropriate value, a value higher than the coloring degree calculated by the conventional dilution method by sensory measurement is displayed for the same sample S, and when it is too high, a low value is displayed. Will be displayed.

【0052】従って、上記測定方法による着色度を上記
官能測定による希釈法によって得られる着色度に整合さ
せるためには、例えば官能測定による希釈法におけるモ
ニタの視覚によって純水との間で識別が不能と認定され
た既知の希釈倍率の試料を上記測定セル11に収容さ
せ、このときの光検出素子13の出力を参考にする等し
て帰納的に決定するようにしている。
Therefore, in order to match the degree of coloring obtained by the above-mentioned measuring method with the degree of coloring obtained by the above-mentioned sensory dilution method, it is impossible to distinguish it from pure water by the visual observation of the monitor in the above-mentioned sensory dilution method. A sample having a known dilution ratio, which is certified as, is accommodated in the measurement cell 11, and the output of the photodetection element 13 at this time is used as a reference to make the inductive determination.

【0053】以上のようにこの測定方法によれば、所定
の希釈倍率で希釈した試料と純水との間で判別可能か否
かの判断を、官能測定法による希釈法におけるモニタの
視覚に代わり、上記光検出素子13の出力に基づいて行
うことができる。これによって、官能測定法による希釈
法と同様、異なった色相や彩度の試料相互での着色度の
比較が可能であり、また得られた着色度は、これと同数
の希釈倍率で試料Sを希釈することによって着色が見え
なくなることを示しており、直観的に着色の程度を捉え
やすいという利点も具備することになる。しかも、得ら
れる着色度の再現性・安定性に優れる機器測定法の長所
をも兼ね備えることになる。
As described above, according to this measuring method, the judgment as to whether or not the sample diluted with a predetermined dilution ratio and pure water can be discriminated is replaced by the visual observation of the monitor in the dilution method by the sensory measurement method. , Can be performed based on the output of the photodetection element 13. As a result, similar to the dilution method by the sensory measurement method, it is possible to compare the degree of coloring between the samples having different hues and saturations, and the obtained degree of coloring is the same as that of the sample S at the same dilution ratio. It shows that coloring becomes invisible by diluting, and it has an advantage that it is easy to intuitively grasp the degree of coloring. Moreover, it also has the advantage of the instrumental measurement method that is excellent in the reproducibility and stability of the obtained coloring degree.

【0054】またこの実施例における光検出素子13は
上記のとおり官能測定法における視覚に代えて上記純水
Wと被検液Mとの間でなされる判別可否の判断を行うた
めのセンサであるところから、該視覚にできるだけ近似
した感度特性を備える素子を使用している。
The photo-detecting element 13 in this embodiment is a sensor for determining whether or not the pure water W and the test liquid M can be discriminated instead of the visual sense in the sensory measurement method as described above. Therefore, an element having a sensitivity characteristic as close as possible to the visual sense is used.

【0055】すなわち、図3は上記実施例において使用
される光検出素子の分光感度特性を示すグラフであり、
光検出素子13は図示の通り、可視課長域である400
〜700nmの感度領域をもち、波長560nmをピークと
した標準比視感度曲線CE に近似した分光感度曲線Cで
表される感度特性を備えるものとし、これによって様々
な色相の試料Sに対しても視覚に準じた出力が得られ、
これに対して何ら補正を加えることなしに上記官能測定
法による希釈法で算出される着色度に近い値を得ること
ができる。
That is, FIG. 3 is a graph showing the spectral sensitivity characteristics of the photodetector used in the above embodiment,
As shown in the figure, the photodetector element 13 is 400 in the visible section.
It has a sensitivity region of up to 700 nm and has sensitivity characteristics represented by a spectral sensitivity curve C that approximates the standard relative luminous efficiency curve C E having a peak at a wavelength of 560 nm. Also produces an output similar to the visual one,
It is possible to obtain a value close to the coloring degree calculated by the dilution method by the sensory measurement method without any correction.

【0056】さらに上記光源12としては単波長光源を
用いるのは妥当でないことは明らかであり、例えば図4
に示すように太陽光線の分光分布曲線CS のような可視
波長域の全域にわたって所定レベルを維持するような分
光分布曲線CL で表される特性を備える昼白色蛍光灯を
用いることとする。
Further, it is obvious that it is not appropriate to use a single wavelength light source as the light source 12, as shown in FIG.
As shown in, a daylight white fluorescent lamp having a characteristic represented by a spectral distribution curve C L that maintains a predetermined level over the entire visible wavelength range, such as the spectral distribution curve C S of sunlight, is used.

【0057】さらに上記測定方法によって着色度の測定
がなされる図1に示す構成では、上記試料流路PS と純
水流路PW とが合流する箇所よりも下流側の透過光量測
定部1(測定セル11)には試料Sの原液でなく極めて
希釈倍率の大きな被検液Mもしくは純水Wが流通するの
で、比較的長時間にわたってメンテナンスを行わなくて
も上記測定セル11の汚れ等の要因で測定精度が低下す
ることがない。
Further, in the configuration shown in FIG. 1 in which the degree of coloration is measured by the above-mentioned measuring method, the transmitted light amount measuring unit 1 (at the downstream side of the point where the sample flow path P S and the pure water flow path P W meet). Since the test solution M or the pure water W having an extremely large dilution ratio flows through the measuring cell 11) instead of the stock solution of the sample S, the factors such as the contamination of the measuring cell 11 without maintenance for a relatively long time. Therefore, the measurement accuracy does not decrease.

【0058】希釈ポンプ21には純水Wだけが、排出ポ
ンプ22には極めて希釈倍率の大きくほとんど純水Wに
近い被検液Mが流通するので該ポンプ21,22もほと
んど汚れない。
Since only the pure water W flows through the dilution pump 21 and the test liquid M having a very large dilution ratio and almost close to the pure water W flows through the discharge pump 22, the pumps 21 and 22 are hardly soiled.

【0059】しかも、上記構成においては、排出ポンプ
22を停止させつつ希釈ポンプ21だけを稼働させるこ
とにより、純水Wが試料流路PS を稼働時と逆方向に流
通するいわゆる「逆洗」によって該試料流路PS をも洗
浄することが可能であり、該着色度測定装置のメンテナ
ンスが一層容易となる利点もある。
In addition, in the above-described structure, by operating only the dilution pump 21 while stopping the discharge pump 22, the pure water W flows through the sample flow path P S in the direction opposite to the so-called "backwashing". The sample flow path P S can also be cleaned by this, and there is also an advantage that the maintenance of the coloring degree measuring device becomes easier.

【0060】図2は本発明に係る着色度測定装置の他の
実施例の構成図である。この実施例では、上記図1に示
す着色度測定装置における透過光量測定部1に、対照セ
ル14とそれに対応する光検出素子15とが付加されて
いる。
FIG. 2 is a block diagram of another embodiment of the coloring degree measuring apparatus according to the present invention. In this embodiment, a control cell 14 and a photodetecting element 15 corresponding thereto are added to the transmitted light amount measuring unit 1 in the coloring degree measuring apparatus shown in FIG.

【0061】上記対照セル14は純水流路Pw に形成さ
れ、上記測定セル11と共通の光源12からの光が照射
される位置に配置されるものであり、光検出素子15は
該対照セル14を透過する光の光量を検出することにな
る。
The control cell 14 is formed in the pure water flow path Pw and is arranged at a position where light from the light source 12 common to the measurement cell 11 is irradiated, and the photodetection element 15 is provided in the control cell 14. The amount of light that passes through will be detected.

【0062】従って、希釈ポンプ21と排出ポンプ22
との流量差ΔFがいかなる値に設定されても上記対照セ
ル14には上記純水Wだけが満たされることになり、光
検出素子15の出力は、上記図1に基づく装置の測定方
法において基標となる出力T 0 に相当することになる。
Therefore, the dilution pump 21 and the discharge pump 22
The flow rate difference ΔF with
Only the pure water W will be filled in the rule 14,
The output of the detection element 15 is measured by the device based on FIG.
Output T that is the standard in the law 0Will be equivalent to.

【0063】従って上記図2に示す構成の装置を用いて
測定を行う際には測定セル11に対応する光検出素子1
3の出力と上記光検出素子15の出力を同時に比較し、
上記2基の光検出素子13,15の各出力間の差Δtが
所定の基準値Ta に達したときの上記希釈ポンプ21・
排出ポンプ22間の流量差ΔF1 に基づいて被検液Mに
おける試料Sの希釈倍率Dを算出することができる。
Therefore, when the measurement is performed using the apparatus having the configuration shown in FIG. 2, the photodetector element 1 corresponding to the measurement cell 11 is used.
The output of 3 and the output of the photodetector 15 are compared at the same time,
When the difference Δt between the outputs of the two photodetector elements 13 and 15 reaches a predetermined reference value Ta, the dilution pump 21.
The dilution ratio D of the sample S in the test liquid M can be calculated based on the flow rate difference ΔF 1 between the discharge pumps 22.

【0064】これによって上記流量差ΔFの制御のため
に上記希釈ポンプ21・排出ポンプ22のいずれかの流
量を大きく変化させる必要がなくなり、且つたとえ純水
Wの純度が低下し、極微に着色される等の変動があって
も測定精度を保障することだでき、極めて短い時間間隔
で試料Sの着色度を測定できるという効果がある。
As a result, it becomes unnecessary to greatly change the flow rate of either the dilution pump 21 or the discharge pump 22 in order to control the flow rate difference ΔF, and the purity of the pure water W is lowered, so that it is extremely colored. It is possible to guarantee the measurement accuracy even if there is a variation such as a change, and it is possible to measure the coloring degree of the sample S at an extremely short time interval.

【0065】[0065]

【発明の効果】以上のように、本発明によれば上記希釈
ポンプ及び排出ポンプ間の流量差に基づいて測定セル内
の被検液における試料の希釈倍率を調整でき、これによ
って希釈法による着色度が容易に算出できる。
As described above, according to the present invention, the dilution ratio of the sample in the test liquid in the measurement cell can be adjusted based on the difference in flow rate between the dilution pump and the discharge pump, whereby the coloring by the dilution method can be performed. The degree can be easily calculated.

【0066】しかも水質管理の自動化も可能な機器測定
法でありながらも、官能測定法のうちの希釈法の利点で
ある最大限に採り入れ、しかもメンテナンスが容易とい
う効果をも奏することになる。
Moreover, even though the water quality control can be automated, it has the advantage that the dilution method among the sensory measurement methods is adopted to the maximum, and the maintenance is easy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る装置の一実施例の構成図である。FIG. 1 is a configuration diagram of an embodiment of an apparatus according to the present invention.

【図2】本発明に係る装置の他の実施例の構成図であ
る。
FIG. 2 is a configuration diagram of another embodiment of the device according to the present invention.

【図3】光検出素子の感度特性図である。FIG. 3 is a sensitivity characteristic diagram of a photodetector.

【図4】光源の分光分布特性図である。FIG. 4 is a spectral distribution characteristic diagram of a light source.

【符号の説明】[Explanation of symbols]

1 透過光量測定部 2 給排ポンプ機構 3 制御手段 11 測定セル 12 光源 13 光検出素子 14 対照セル 15 光検出素子 21 希釈ポンプ 22 排出ポンプ 31 流量制御部 32 希釈倍率演算部 FM 排出ポンプの流量 FW 希釈ポンプの流量 D 希釈倍率 M 被検液 P 被検液給排路 PS 試料流路 PW 純水流路 Pin 供給路 Pout 排出路 S 試料 T0 ,T1 ,T10,T20 光検出素子の出力 Ta 基準値 Tb 所定値 W 純水 ΔF 流量差 Δt 出力の変位量1 the flow rate of the transmitted light quantity measurement unit 2 supply and discharge pump mechanism 3 control unit 11 measuring cell 12 light source 13 light-detecting element 14 controls the cell 15 light-detecting element 21 dilution pump 22 discharge pump 31 flow rate control unit 32 dilution magnification calculator F M discharge pump F W Dilution pump flow rate D Dilution ratio M Test liquid P Test liquid supply / discharge path P S Sample flow path P W Pure water flow path P in Supply path P out Discharge path S Sample T 0 , T 1 , T 10 , T 20 Photodetector output Ta Reference value Tb Predetermined value W Pure water ΔF Flow rate difference Δt Output displacement

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−272361(JP,A) 特開 平2−248844(JP,A) 実開 平6−86056(JP,U) 登録実用新案3005439(JP,U) 三好康彦 他,排水の着色測定法の特 徴と問題点,東京都環境科学研究所年報 1991−2,日本,1991年12月16日,PA GE.162−169 (58)調査した分野(Int.Cl.7,DB名) G01N 21/00 - 21/61 G01N 1/10 G01N 33/18 JICSTファイル(JOIS)─────────────────────────────────────────────────── ───Continued from the front page (56) References JP-A-2-272361 (JP, A) JP-A-2-248844 (JP, A) Fukukaihei 6-86056 (JP, U) Registered utility model 3005439 ( JP, U) Yasuhiko Miyoshi et al., Characteristics and Problems of Coloring Measurement Method of Wastewater, Tokyo Metropolitan Institute of Environmental Science 1991-2, Japan, December 16, 1991, PAGE. 162-169 (58) Fields surveyed (Int.Cl. 7 , DB name) G01N 21/00-21/61 G01N 1/10 G01N 33/18 JISST file (JOIS)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 純水(W) で希釈された試料(S) を被検液
(M) とし、該被検液(M) の透過光量と該被検液(M) にお
ける上記試料(S) の希釈倍率とに基づいて試料(S) の着
色度を測定するようにした希釈法による着色度測定装置
であって、 上記被検液(M) を収容する測定セル(11)、該測定セル(1
1)に光を照射する光源(12)及び上記測定セル(11)の透過
光量を検出する光検出素子(13)で構成される透過光量測
定部(1) と、 上記測定セル(11)内あるいは測定セル(11)の上流側の所
定箇所において相互に独立する試料流路(Ps)と純水流路
(Pw)とを合流させた供給路(Pin) 及び測定セル(11)の下
流側において上記被検液(M) を排出する排出路(Pout )
で構成される被検液給排路(P) と、 上記純水流路(Pw)に配置された希釈ポンプ(21)及び上記
被検液給排路(P) のうち少なくとも上記試料流路(Ps)と
純水流路(Pw)との合流箇所よりも下流側の所定位置に配
置された排水ポンプ(22)で構成される給排ポンプ機構
(2) とを備え、 上記透過光量測定部(1) に、上記純水流路(Pw)に形成さ
れ、上記測定セル(11)と共通の光源(12)からの光が照射
されるように配置された対象セル(14)と、該対象セル(1
4)の透過光量を検出する光検出素子(15)とを 備える希釈
法による着色度測定装置。
1. A test liquid prepared by diluting a sample (S) with pure water (W).
(M) and the dilution so that the degree of coloring of the sample (S) is measured based on the amount of transmitted light of the sample solution (M) and the dilution ratio of the sample (S) in the sample solution (M). A coloring degree measuring apparatus by the method, comprising a measuring cell (11) containing the test liquid (M), the measuring cell (1)
In the measurement cell (11), a transmitted light quantity measuring unit (1) composed of a light source (12) for irradiating light to 1) and a light detection element (13) for detecting the transmitted light quantity of the measurement cell (11) Alternatively, a sample flow path (Ps) and a pure water flow path that are independent of each other at a predetermined location on the upstream side of the measurement cell (11).
A supply path (Pin) that merges with (Pw) and a discharge path (Pout) that discharges the test liquid (M) on the downstream side of the measurement cell (11).
And a dilution pump (21) disposed in the pure water flow path (Pw) and at least the sample flow path (P) of the test liquid supply / discharge path (P). Ps) and pure water flow path (Pw) supply and discharge pump mechanism composed of a drainage pump (22) arranged at a predetermined position downstream from the junction
(2) and provided with, the transmitted light quantity measurement unit (1), is formed in the pure water passage (Pw)
The light from the light source (12) common to the measuring cell (11) is emitted.
The target cell (14) arranged as described above and the target cell (1
A coloring degree measuring device by a dilution method , which comprises a photodetector (15) for detecting the amount of transmitted light of 4) .
【請求項2】 上記光検出素子(13)、(15)の分光感度特
性を、標準比視感度特性に近似させた構成とする請求項
に記載の希釈法による着色度測定装置。
2. A structure in which the spectral sensitivity characteristics of the photodetector elements (13), (15) are approximated to the standard relative luminous efficiency characteristics.
A coloring degree measuring device according to the dilution method described in 1 .
JP00890894A 1994-01-28 1994-01-28 Dilution degree measuring device by dilution method and its measuring method Expired - Fee Related JP3374939B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00890894A JP3374939B2 (en) 1994-01-28 1994-01-28 Dilution degree measuring device by dilution method and its measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00890894A JP3374939B2 (en) 1994-01-28 1994-01-28 Dilution degree measuring device by dilution method and its measuring method

Publications (2)

Publication Number Publication Date
JPH07218497A JPH07218497A (en) 1995-08-18
JP3374939B2 true JP3374939B2 (en) 2003-02-10

Family

ID=11705778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00890894A Expired - Fee Related JP3374939B2 (en) 1994-01-28 1994-01-28 Dilution degree measuring device by dilution method and its measuring method

Country Status (1)

Country Link
JP (1) JP3374939B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4044163B2 (en) * 1995-11-15 2008-02-06 アークレイ株式会社 Liquid detection method and apparatus
JP6109398B1 (en) * 2016-11-14 2017-04-05 日本電色工業株式会社 Sample water dilution apparatus and sample water dilution method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
三好康彦 他,排水の着色測定法の特徴と問題点,東京都環境科学研究所年報1991−2,日本,1991年12月16日,PAGE.162−169

Also Published As

Publication number Publication date
JPH07218497A (en) 1995-08-18

Similar Documents

Publication Publication Date Title
US5094958A (en) Method of self-compensating a fiber optic chemical sensor
AU660305B2 (en) Organic pollutant monitor
US20110188042A1 (en) Self referencing led detection system for spectroscopy applications
US6028663A (en) Photometric analysis of water suspensions
KR920704126A (en) Measurement method of color reaction by monitor of fluorescence change
Junker et al. Fluorescence sensing of fermentation parameters using fiber optics
EP0635570A2 (en) Blood culture sensor station utilizing two distinct light sources
JP3374939B2 (en) Dilution degree measuring device by dilution method and its measuring method
Hamilton et al. Development of a low-cost four-color LED photometer
US3807872A (en) Process for regulating the concentration of a bath of dye or coloring and equipment for implementing this process
DE69505353T2 (en) MONITORING THE BITNESS OR BITTERY AND COLOR OF BEER
US4715710A (en) Pump colorimetric analyzer
JP3374938B2 (en) Method for measuring coloring degree by dilution method and its measuring device
GB2256043A (en) Organic pollutant monitor
JP3095954B2 (en) Tap water color and turbidity detector
JP3422083B2 (en) Method and apparatus for measuring chromaticity in sewage or wastewater treatment
JP3882347B2 (en) Measuring method of light transmittance of liquid
JPH0125017B2 (en)
Anders Control of Whites: The Cibanoid White Scale
JP3269831B2 (en) Method and apparatus for controlling ink pigment concentration
CN205262965U (en) Measurement device for quality of water colourity
JP3646615B2 (en) Online colorimetric method for pulp slurry
SU1104400A1 (en) Method of determination of optically bleached material whiteness in zeiss leucometer
JPH0953988A (en) Apparatus for measuring coloring of liquid
JP3005439U (en) Coloring water color meter

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees