JP3371616B2 - Battery and manufacturing method thereof - Google Patents

Battery and manufacturing method thereof

Info

Publication number
JP3371616B2
JP3371616B2 JP12224695A JP12224695A JP3371616B2 JP 3371616 B2 JP3371616 B2 JP 3371616B2 JP 12224695 A JP12224695 A JP 12224695A JP 12224695 A JP12224695 A JP 12224695A JP 3371616 B2 JP3371616 B2 JP 3371616B2
Authority
JP
Japan
Prior art keywords
battery
sealing body
resin sealing
synthetic resin
thin portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12224695A
Other languages
Japanese (ja)
Other versions
JPH08315791A (en
Inventor
一朗 松久
光司 足立
浩文 岩城
威 大窪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP12224695A priority Critical patent/JP3371616B2/en
Publication of JPH08315791A publication Critical patent/JPH08315791A/en
Application granted granted Critical
Publication of JP3371616B2 publication Critical patent/JP3371616B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Gas Exhaust Devices For Batteries (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電池における封口体の改
良に関し、特に正常時においては電池の密閉作用をな
し、電池の内部圧力が異常に高まった時点で部分的に破
れ、内部の発生ガスを電池外に放出させる封口体を備え
た防爆型電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of a sealing body for a battery, and in particular, in a normal state, the battery has a sealing function, and when the internal pressure of the battery is abnormally increased, the battery is partially ruptured to generate an internal gas. The present invention relates to an explosion-proof battery provided with a sealing body for discharging the gas to the outside of the battery.

【0002】[0002]

【従来の技術】従来より、発電要素を内蔵した電池ケー
スの開口部を熱可塑性樹脂よりなる封口体を用いて気密
封口を行うようにした電池、例えば、円筒形のアルカリ
乾電池、アルカリ蓄電池、リチウム電池等では、電池が
短絡されたりあるいは過放電、過充電などの異常な使用
状態においては、電池内部でガス発生が急激に起こり、
電池が膨脹あるいは破裂して、使用機器を破損させた
り、人体に害を及ぼす危険があった。これらを防止する
ため、封口体の一部に薄肉部を形成することによって、
異常使用時に過度のガス発生があった際、電池の封口部
が破裂する以前に封口体の薄肉部が低い圧力で破れ、そ
こからガスを逸散させるような構成としていた。そし
て、その際使用される樹脂封口体は射出成形により成形
されている。つまり、融点以上に加熱された熱可塑性樹
脂を成形金型に射出成形後、自然冷却し、封口体として
使用していた。
2. Description of the Related Art Conventionally, a battery in which an opening of a battery case containing a power generating element is sealed by using a sealing body made of a thermoplastic resin, for example, a cylindrical alkaline dry battery, an alkaline storage battery, lithium In the case of batteries, etc., when the batteries are short-circuited or in abnormal use such as over-discharge or over-charge, gas is suddenly generated inside the battery,
There is a risk that the battery may expand or rupture, damage the equipment used, or harm the human body. In order to prevent these, by forming a thin portion in a part of the sealing body,
When excessive gas is generated during abnormal use, the thin portion of the sealing body is ruptured by a low pressure before the sealing portion of the battery is ruptured, and the gas is diffused from there. The resin sealing body used at that time is molded by injection molding. That is, a thermoplastic resin heated to a temperature equal to or higher than the melting point is injection-molded in a molding die, naturally cooled, and used as a sealing body.

【0003】[0003]

【発明が解決しようとする課題】上記構成により、異常
使用時の過渡のガス発生を電池外部に逸散させることを
目的に、薄肉部の厚みや封口体自体の形状、封口構造等
種々の検討がなされてきたが、ある特定の環境条件、例
えば、高温の60℃条件下で過充電された場合、電池内
部で発生したガスが樹脂封口体を押し上げ、応力を薄肉
部に集中させてこの部分を破ろうとするが、高温状態で
は樹脂自体の引っ張り伸びが常温時に比較して大きくな
り、破れない場合があるといった問題があった。
With the above-mentioned structure, various studies such as the thickness of the thin portion, the shape of the sealing body itself, the sealing structure, etc. are conducted for the purpose of dissipating transient gas generation during abnormal use to the outside of the battery. However, when the battery is overcharged under certain specific environmental conditions, for example, at a high temperature of 60 ° C, the gas generated inside the battery pushes up the resin sealing body and concentrates stress on the thin wall portion. However, there is a problem in that the tensile elongation of the resin itself becomes higher than that at normal temperature in a high temperature state and the resin may not be broken.

【0004】本発明が解決しようとする課題は、複雑な
封口体の形状変更や材質の変更を必要とせず、薄肉部の
引っ張り強度を下げることで電池の安全性を確保するこ
とにある。
The problem to be solved by the present invention is to secure the safety of the battery by reducing the tensile strength of the thin portion without requiring a complicated shape change and material change of the sealing body.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するた
め、本発明の電池は、一部にガス圧により破断する薄肉
部を持った合成樹脂封口体で封口した電池であって、少
なくともその薄肉部の表面部分および内部が、平均粒径
1〜5μmの粒状結晶樹脂からなることを特徴とする。
In order to solve the above-mentioned problems, the battery of the present invention is a battery sealed with a synthetic resin sealing body having a thin-walled portion partially broken by gas pressure, and at least the thin-walled battery. surface portions and internal parts, characterized in that it consists of flat Hitoshitsubu径1~5μm granular crystalline resin.

【0006】なお、前記合成樹脂封口体はポリアミド樹
脂であることが好ましい。また、本発明の電池の製造方
法は、一部にガス圧により破断する薄肉部を持った合成
樹脂封口体で封口した電池の製造方法であって、前記合
成樹脂封口体を射出成形後に急冷することを特徴とす
る。
The synthetic resin sealing body is preferably a polyamide resin. Further, the method for producing a battery of the present invention is a method for producing a battery which is sealed with a synthetic resin sealing body having a thin portion partially broken by gas pressure, wherein the synthetic resin sealing body is rapidly cooled after injection molding. It is characterized by

【0007】なお、前記合成樹脂封口体はポリアミド樹
脂であることが好ましい。
The synthetic resin sealing body is preferably a polyamide resin.

【0008】[0008]

【作用】本発明の作用を以下に述べる。The function of the present invention will be described below.

【0009】熱可塑性樹脂を射出成形する際、その成形
条件やその後の放置、冷却方法により、樹脂封口体内の
高分子の粒状結晶の成長状態が大きく変わる。封口体の
表面は射出成形直後、直ちに成形金型および外気に接し
て急冷されるため非晶質あるいは粒径1μm程度の粒状
結晶であるのに対して、内部は比較的徐冷されるため大
きな粒径の球状結晶が成長する。図2は封口体9の薄肉
部9′の断面を示し、内部の粒状結晶11と表面の非晶
質部分12を示す模式図である。例えば、封口体が射出
成形後常温で放冷され、表面から固化して内部がゆっく
り冷却される場合は、平均粒径が10μm〜40μm程
度の高分子の球状結晶が成長する。高温状態で電池の内
部ガス圧により引っ張り応力が働いた場合、結晶が大き
く成長した樹脂封口体では、高温で樹脂が伸びやすくな
り薄肉部が破れにくく電池が破裂することがある。とこ
ろが、樹脂成形直後に急冷するなどの方法で非晶質かあ
るいは平均粒径が1〜5μmの微細な粒状結晶を生成さ
せた場合は、非晶質部分あるいは微細結晶の粒界が脆く
裂けて破れやすいため、高温条件下においても伸びは低
く、ガス圧により薄肉部9′が破断して電池内部のガス
を電池外部に逃がすことができる。
When a thermoplastic resin is injection-molded, the growth state of the granular crystals of the polymer in the resin-sealed body greatly changes depending on the molding conditions and the subsequent standing and cooling methods. The surface of the sealing body is amorphous or granular crystals having a particle size of about 1 μm because it is immediately cooled immediately after injection molding by contacting the molding die and the outside air, whereas the inside is large because it is gradually cooled. Spherical crystals of grain size grow. FIG. 2 is a schematic view showing a cross section of the thin portion 9 ′ of the sealing body 9 and showing an internal granular crystal 11 and an amorphous portion 12 on the surface. For example, when the sealing body is left to cool at room temperature after injection molding, and solidifies from the surface to cool the inside slowly, spherical macromolecule crystals having an average particle size of about 10 μm to 40 μm grow. When tensile stress is exerted by the internal gas pressure of the battery in a high temperature state, in the resin sealing body in which the crystal grows largely, the resin easily expands at a high temperature, the thin portion is less likely to be broken, and the battery may burst. However, when amorphous or fine granular crystals having an average grain size of 1 to 5 μm are generated by a method such as rapid cooling immediately after resin molding, the amorphous part or the grain boundaries of the fine crystals are fragilely torn. Since it easily breaks, the elongation is low even under high temperature conditions, and the thin portion 9 ′ is broken by the gas pressure and the gas inside the battery can escape to the outside of the battery.

【0010】[0010]

【実施例】以下、本発明の実施例を図面を参照しつつ説
明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0011】図1は、本実施例で用いた円筒型アルカリ
電池の構造断面図である。図1において1は陽極端子、
2はカップ状セパレータ、3は二酸化マンガンと黒鉛か
らなる正極合剤、4は正極ケースである金属缶、5は外
装ラベル、6はゲル状電解液に粉末状活物質を分散させ
たゲル負極、7は集電子、8は負極端子である底板、9
はポリアミド樹脂からなり、一部に薄肉部9’を設けた
樹脂封口体、10は金属ワッシャーである。
FIG. 1 is a structural sectional view of a cylindrical alkaline battery used in this embodiment. In FIG. 1, 1 is an anode terminal,
2 is a cup-shaped separator, 3 is a positive electrode mixture made of manganese dioxide and graphite, 4 is a metal can as a positive electrode case, 5 is an outer label, 6 is a gel negative electrode in which a powdery active material is dispersed in a gel electrolyte, 7 is a current collector, 8 is a bottom plate as a negative electrode terminal, 9
Is a polyamide resin, and a resin sealing body 10 having a thin portion 9 ′ partially provided is a metal washer.

【0012】本実施例では、樹脂封口体9としてポリア
ミド樹脂(デュポン社製 ナイロン66)を使用した場
合を例に述べる。まず、ナイロン66を射出成形機に供
給し、所定の温度、本実施例では、250℃〜270℃
で溶融させて樹脂金型に供給し、一部に薄肉部9′をも
った樹脂封口体9を射出成形した。金型から離型した樹
脂封口体9を直ちに0℃程度の循環する氷水に浸し、樹
脂封口体9の表面温度が0℃〜20℃になるまで2分以
内に完全に冷却させた。
In this embodiment, the case where a polyamide resin (Nylon 66 manufactured by DuPont) is used as the resin sealing body 9 will be described as an example. First, nylon 66 is supplied to an injection molding machine, and a predetermined temperature, in this embodiment, 250 ° C. to 270 ° C.
Was melted and supplied to a resin mold, and a resin sealing body 9 having a thin portion 9'on a part thereof was injection-molded. The resin sealing body 9 released from the mold was immediately immersed in circulating ice water at about 0 ° C. and completely cooled within 2 minutes until the surface temperature of the resin sealing body 9 became 0 ° C. to 20 ° C.

【0013】次に、このようにして得られた樹脂封口体
9を切断し、表面を研磨して偏向顕微鏡により結晶の大
きさを測定した。
Next, the resin sealing body 9 thus obtained was cut, the surface was polished, and the size of the crystal was measured by a deflection microscope.

【0014】その後、乾燥処理で樹脂封口体9の水分を
調湿した後、これを用いて電池を組み立て、安全性試験
を実施した。この安全性試験としては、アルカリ乾電池
4個の直列の回路において、その中の1個だけを逆向き
に接続させて短絡させる試験を実施した。このような回
路では、逆に接続された電池が残り3個の電池により充
電されるため、電池内で水の電気分解反応が進行し水素
ガスと酸素ガスが発生して、電池内部の圧力が高まり、
その結果、常温領域では薄肉部9′が裂けてガスが逸散
されて電池の破裂現象を未然に防ぐことができる。本実
施例では、薄肉部9′の樹脂条件を変化させて、20
℃、45℃、60℃、80℃の各温度条件下で各20セ
ットづつこの安全性試験を実施した。その結果を表1に
示す。なお、表中には、分母に試験セット数、分子に破
裂したセット数を示した。
After that, the moisture content of the resin sealing body 9 was adjusted by a drying process, and then a battery was assembled using this to conduct a safety test. As this safety test, in a circuit of four alkaline dry batteries in series, only one of them was connected in the reverse direction to short-circuit. In such a circuit, since the battery connected in reverse is charged by the remaining three batteries, the electrolysis reaction of water proceeds in the battery, hydrogen gas and oxygen gas are generated, and the pressure inside the battery is increased. Rising,
As a result, in the room temperature region, the thin portion 9'is torn and gas is dissipated to prevent the battery from bursting. In this embodiment, the resin condition of the thin portion 9'is changed to 20
This safety test was conducted for each 20 sets under each temperature condition of ° C, 45 ° C, 60 ° C and 80 ° C. The results are shown in Table 1. In the table, the denominator shows the number of test sets and the number of sets ruptured in the numerator.

【0015】[0015]

【表1】 [Table 1]

【0016】表1に示すように、比較例1,2では、2
0℃の常温領域においては、全数薄肉部が破断し破裂し
なかったが、45℃以上の高温領域では薄肉部が破断せ
ず破裂した。しかしながら、本実施例1,2では、高温
を含む広い温度領域で全数薄肉部9′が破断して、電池
内部のガスを電池外部に逃がすことができ、破裂しなか
った。すなわち、薄肉部の表面部分および内部の粒状結
晶の平均粒径が5μm以下であれば、全て薄肉部が破断
して安全性を確保することができることが確認された。
As shown in Table 1, in Comparative Examples 1 and 2, 2
In the room temperature region of 0 ° C, all the thin-walled parts did not break and burst, but in the high-temperature region of 45 ° C or higher, the thin-walled parts did not break and burst. However, in Examples 1 and 2, all the thin-walled portions 9 ′ were broken in a wide temperature range including a high temperature, the gas inside the battery could be released to the outside of the battery, and it did not burst. That is, it was confirmed that if the average grain size of the granular crystals on the surface portion and inside of the thin portion is 5 μm or less, the thin portion is broken and safety can be secured.

【0017】なお、実施例では、封口体としてナイロン
66を用いたが、ポリエチレン、ポリプロピレンでもほ
ぼ同様の結果が得られた。
Although nylon 66 was used as the sealing body in the examples, almost the same results were obtained with polyethylene and polypropylene.

【0018】また、樹脂封口体の製造は、本実施例以外
の方法、例えば、成形条件を変更することによっても同
様の効果が得られた。
The same effects can be obtained by manufacturing the resin sealing body by a method other than this embodiment, for example, by changing the molding conditions.

【0019】また、ガス圧により破断する防爆用薄肉部
を有する他の電池系、例えばリチウム電池や角型電池に
おいても同様の効果が得られることは言うまでもない。
Needless to say, the same effect can be obtained in other battery systems having an explosion-proof thin wall portion that breaks due to gas pressure, such as lithium batteries and prismatic batteries.

【0020】[0020]

【発明の効果】以上のように、本発明によれば、電池内
部が高圧となっても、高温を含む広い温度領域で樹脂封
口体の薄肉部が確実に裂けて内部のガスを逸散させるこ
とができ、破裂することのない安全性に優れた電池を提
供することができる。
As described above, according to the present invention, even if the inside of the battery has a high pressure, the thin portion of the resin sealing body is surely torn in a wide temperature range including a high temperature to dissipate the gas inside. It is possible to provide a battery with excellent safety that does not burst.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例における筒形アルカリ乾電池を
示す側断面図。
FIG. 1 is a side sectional view showing a cylindrical alkaline dry battery according to an embodiment of the present invention.

【図2】図1の筒形アルカリ乾電池の樹脂封口体の薄肉
部の断面を模式的に示した図
FIG. 2 is a diagram schematically showing a cross section of a thin portion of a resin sealing body of the cylindrical alkaline dry battery of FIG.

【符号の説明】[Explanation of symbols]

1 陽極端子 2 セパレータ 3 正極合剤 4 金属缶(正極ケース) 5 外装ラベル 6 ゲル負極 7 集電子 8 底板(負極端子) 9 樹脂封口体 9′薄肉部 10 金属ワッシャー 11 薄肉部内部の粒状結晶 12 薄肉部表面の非晶質部分 1 Anode terminal 2 separator 3 Positive electrode mixture 4 metal cans (positive electrode case) 5 Exterior label 6 Gel negative electrode 7 Electronic 8 Bottom plate (negative electrode terminal) 9 Resin sealing body 9'thin wall 10 metal washers 11 Granular crystals inside the thin part 12 Amorphous part of thin surface

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大窪 威 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 平1−173565(JP,A) 特開 昭56−132765(JP,A) 特開 昭56−136453(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 2/08 H01M 2/12 101 B29C 33/42 B29C 45/00 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Takeshi Okubo 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (56) Reference JP-A-1-173565 (JP, A) JP-A-56- 132765 (JP, A) JP-A-56-136453 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H01M 2/08 H01M 2/12 101 B29C 33/42 B29C 45/00

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】一部にガス圧により破断する薄肉部を持っ
た合成樹脂封口体で封口した電池であって、少なくとも
その薄肉部の表面部分および内部が、平均粒径1〜5μ
mの粒状結晶樹脂からなる電池。
1. A battery was sealed with synthetic resin sealing member having a thin portion breaking by gas pressure to a portion, the surface portion and the interior of at least a thin portion, a flat Hitoshitsubu径1~5μ
A battery made of m crystalline resin.
【請求項2】前記合成樹脂封口体がポリアミド樹脂であ
ることを特徴とする請求項1記載の電池。
2. The battery according to claim 1, wherein the synthetic resin sealing body is a polyamide resin.
【請求項3】一部にガス圧により破断する薄肉部を持っ
た合成樹脂封口体で封口した電池の製造方法であって、
前記合成樹脂封口体を射出成形後に急冷することを特徴
とする電池の製造方法。
3. A method for producing a battery, which is sealed with a synthetic resin sealing body having a thin portion partially broken by gas pressure, the method comprising:
A method for manufacturing a battery, characterized in that the synthetic resin sealing body is rapidly cooled after injection molding.
【請求項4】金型から離型した前記合成樹脂封口体を、
樹脂封口体の表面温度が0〜20℃なるまで2分以内に
冷却させて急冷することを特徴とする請求項3記載の電
池の製造方法。
4. The synthetic resin sealing body released from a mold,
Within 2 minutes until the surface temperature of the resin sealing body reaches 0 to 20 ℃
The electric power according to claim 3, wherein the electric power is cooled and rapidly cooled.
Pond manufacturing method.
【請求項5】前記合成樹脂封口体がポリアミド樹脂であ
ることを特徴とする請求項3または4記載の電池の製造
方法。
5. A method according to claim 3 or 4 manufacturing method of battery, wherein said synthetic resin gasket is a polyamide resin.
JP12224695A 1995-05-22 1995-05-22 Battery and manufacturing method thereof Expired - Fee Related JP3371616B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12224695A JP3371616B2 (en) 1995-05-22 1995-05-22 Battery and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12224695A JP3371616B2 (en) 1995-05-22 1995-05-22 Battery and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH08315791A JPH08315791A (en) 1996-11-29
JP3371616B2 true JP3371616B2 (en) 2003-01-27

Family

ID=14831216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12224695A Expired - Fee Related JP3371616B2 (en) 1995-05-22 1995-05-22 Battery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3371616B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6042967A (en) * 1998-07-29 2000-03-28 Duracell Inc End cap seal assembly for an electrochemical cell
JP6083024B2 (en) * 2013-07-25 2017-02-22 新生化学工業株式会社 Gasket for alkaline battery
WO2016038793A1 (en) * 2014-09-09 2016-03-17 パナソニックIpマネジメント株式会社 Alkaline dry battery

Also Published As

Publication number Publication date
JPH08315791A (en) 1996-11-29

Similar Documents

Publication Publication Date Title
US9722226B2 (en) Polyolefin microporous membrane and separator for nonaqueous electrolyte battery
Ihm et al. Effect of polymer blending and drawing conditions on properties of polyethylene separator prepared for Li-ion secondary battery
US20230006307A1 (en) Battery separator, preparation method for battery separator, battery, and terminal
JP2883726B2 (en) Manufacturing method of battery separator
JP5052135B2 (en) Polyolefin microporous membrane and battery separator
CN110621731B (en) Polyolefin microporous membrane, separator for electricity storage device, and electricity storage device
JP5512461B2 (en) Microporous film and battery separator
JP2010202828A (en) Polyolefin microporous membrane
WO2020137336A1 (en) Microporous polyolefin membrane and method for producing microporous polyolefin membrane
JP3371616B2 (en) Battery and manufacturing method thereof
WO2013141306A1 (en) Porous film and electrical storage device
JP4033546B2 (en) Method for producing separator for lithium ion secondary battery
JP5295857B2 (en) Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery
JP2952017B2 (en) Battery separator, method for producing the same, and battery
JPH09241411A (en) Porous membrane, its production, and lithium ion secondary cell
JP5077975B2 (en) Battery separator
JPH09213295A (en) Separator for battery
JP4744773B2 (en) Lithium ion secondary battery
JP3331287B2 (en) Alkaline battery
JP4007641B2 (en) Porous film manufacturing method
JPH03219552A (en) Lithium battery
JPH09328566A (en) Porous thermoplastic fluoroplastic body, its production and production of battery
KR20150037393A (en) Separator for electrochemical device and electrochemical device containing the same
JP2002343429A (en) Nonaqueous electrolyte secondary battery
KR101806410B1 (en) Separator for electrochemical device with improved safety and electrochemical device comprising the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081122

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091122

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091122

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees